固体物理学1~6章习题解答
- 格式:doc
- 大小:1.74 MB
- 文档页数:39
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 31.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω31230,,22(),0,224,,022a aa a a a a a a a Ω=⋅⨯==,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++ 同理可得:232()2()b i j k ab i j k aππ=-+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。
《固体物理学》习题解答( 仅供参考 )参加编辑学生柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章)指导教师黄新堂华中师范大学物理科学与技术学院2003级2006 年 6 月第一章晶体结构1.氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为 a。
解:氯化钠与金刚石型结构都是复式格子。
氯化钠的基元为一个 Na+和一个 Cl-组成的正负离子对。
金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。
由于 NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:⎧⎪a1=a2( j + k)⎪⎪⎨a 2=a2( k + i)⎪⎪⎪a 3=a ( i +j)⎩ 2相应的晶胞基矢都为:⎧a =a i,⎪⎨b =a j,⎪⎩c =a k.2.六角密集结构可取四个原胞基矢a1, a 2,a 3与 a4,如图所示。
试写出O'A1A3、A1 A3 B3 B1、 A2 B2 B5 A5、 A1 A2 A3 A4 A5 A6这四个晶面所属晶面族的晶面指数(h k l m)。
解:(1).对于O'A1A3面,其在四个原胞基矢上的截矩分别为:1,1,- 1 ,1。
所以,其晶面2( )指数为。
(2).对于A1A3B3B1面,其在四个原胞基矢上的截矩分别为:1,1,-12,∞。
所以,其晶面指数为(1120)。
(3).对于A2B2B5A5面,其在四个原胞基矢上的截矩分别为:1,-1,∞,∞。
1所以,其晶面指数为 (1 100)。
(4).对于 A 1 A 2 A 3 A 4 A 5 A 6 面,其在四个原胞基矢上的截矩分别为:∞ ,∞ ,∞ ,1。
所以, 其晶面指数为 (0001) 。
3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方: π6 ;体心立方: 83π;面心立方: 62π ;六角密集: 62π ;金刚石:3π 。
第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。
在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。
在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。
也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。
2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。
晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。
3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。
除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。
4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。
价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。
在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。
由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。
这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。
电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。
固体物理习题解答《固体物理学》习题解答( 仅供参考)参加编辑学⽣柯宏伟(第⼀章),李琴(第⼆章),王雯(第三章),陈志⼼(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章)指导教师黄新堂华中师范⼤学物理科学与技术学院2003级2006年6⽉第⼀章晶体结构1. 氯化钠与⾦刚⽯型结构是复式格⼦还是布拉维格⼦,各⾃的基元为何?写出这两种结构的原胞与晶胞基⽮,设晶格常数为a 。
解:氯化钠与⾦刚⽯型结构都是复式格⼦。
氯化钠的基元为⼀个Na +和⼀个Cl -组成的正负离⼦对。
⾦刚⽯的基元是⼀个⾯⼼⽴⽅上的C原⼦和⼀个体对⾓线上的C原⼦组成的C原⼦对。
由于NaCl 和⾦刚⽯都由⾯⼼⽴⽅结构套构⽽成,所以,其元胞基⽮都为:123()2()2()2a a a ?=+??=+=+a j k a k i a i j 相应的晶胞基⽮都为:,,.a a a =??=??=?a ib jc k2. 六⾓密集结构可取四个原胞基⽮123,,a a a 与4a ,如图所⽰。
试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶⾯所属晶⾯族的晶⾯指数()h k l m 。
解:(1).对于13O A A '⾯,其在四个原胞基⽮上的截矩分别为:1,1,12-,1。
所以,其晶⾯指数为()1121。
(2).对于1331A A B B ⾯,其在四个原胞基⽮上的截矩分别为:1,1,12-,∞。
所以,其晶⾯指数为()1120。
(3).对于2255A B B A ⾯,其在四个原胞基⽮上的截矩分别为:1,1-,∞,∞。
所以,其晶⾯指数为()1100。
(4).对于123456A A A A A A ⾯,其在四个原胞基⽮上的截矩分别为:∞,∞,∞,1。
所以,其晶⾯指数为()0001。
3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最⼤体积与总体积的⽐为:简⽴⽅:6π;六⾓密集:6;⾦刚⽯:。
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 31.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω31230,,22(),0,224,,022a aa a a a a a a a Ω=⋅⨯==,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++ 同理可得:232()2()b i j k ab i j k aππ=-+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。
固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
《固体物理学》习题解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb1.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么晶面族是(123)的离原点最近的晶面在三个基矢坐标轴上的截距分别是a1、(1/2)a2、(1/3)a3。
固体物理学中基矢的长度等于相邻两个格点的距离,所以只要“OA,OB 和OC 分别与基矢a1,a2,a3重合”,而O 又是格点,则A 、B 、C 一定是格点。
OA 、OB 、OC 间无格点,(234)情况一样。
结晶学以晶包基矢为坐标轴表示晶面指数,但称为米勒指数。
1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°123o o o a n hda n kd a n id=== ……… (1) 由于a 3=–(a 1+ a 2)313()o o a n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为(001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2)体心立方:8(3)面心立方:6(4)六方密堆积:6(5)金刚石:16。
答:令Z 表示一个立方晶胞中的硬球数,Ni 是位于晶胞内的球数,Nf 是在晶胞面上的球数,Ne 是在晶胞棱上的球数,Nc 是在晶胞角隅上的球数。
于是有:111248i f e c Z N N N N =+++ 边长为a 的立方晶胞中堆积比率为334*3r F Z aπ=假设硬球的半径都为r ,占据的最大面积与总体积之比为θ,依据题意 (1)对于简立方,晶胞中只含一个原子,简立方边长为2r ,那么:θ= 334/3(2)r r π= 6π(2)对于体心立方,晶胞中有两个原子,其体对角线的长度为4r,那么: θ=3= (3)对于面心立方,晶胞中有四个原子,面对角线的长度为4r,则其边长为r ,那么:θ=3= 6(4)对于六方密堆积一个晶胞有两个原子,其坐标为(000)(1/3,2/3,1/2),在理想的密堆积情况下,密排六方结构中点阵常数与原子半径的关系为a=2r ,因此θ342()r π⨯=6 (5)对于金刚石结构Z=8 8r =那么33344*8(338r F Z a ππ==⨯⨯=16.1.6 有一晶格,每个格点上有一个原子,基失(以nm 为单位)a=3i ,b=3j ,c=1.5(i+j+k ),此处i ,j ,k 为笛卡儿坐标系中x ,y ,z 方向的单位矢量.问: (1)这种晶格属于哪种布拉维格子?(2)原胞的体积和晶胞的体积各等于多少? 答:(1)因为a=3i ,b=3j ,而c=1.5(i+j+k )=1/2(3i+3j+3k )=1/2(a+b+c ′)式中c ′=3k 。
显然,a 、b 、c ′构成一个边长为3*10-10m 的立方晶胞,基矢c 正处于此晶胞的体心上。
因此,所述晶体属于体心立方布喇菲格子。
(2)晶胞的体积= c (a b)'⨯= 3k (3i 3j)⨯=27*10-30(m 3)原胞的体积=c (a b)⨯=1(333)(33)2i j k i j +++=13.5*10-30(m 3) 1.7六方晶胞的基失为:22a a j =+,22a b ai j =-+,c ck = 求其倒格子基失,并画出此晶格的第一布里渊区.答:根据正格矢与倒格矢之间的关系,可得: 正格子的体积Ω=a·(b*c )=2c 那么,倒格子的基矢为12()b c b π⨯=Ω2j a π=+ ,22()c a b π⨯=Ω2j a π=+ ,32()a b b π⨯=Ω2k c π= 其第一布里渊区如图所示:(略)1.8 若基失a ,b ,c 构成正交晶系,求证:晶面族(hkl )的面间距为hkl d =答:根据晶面指数的定义,平面族(hkl )中距原点最近平面在三个晶轴a 1,a 2,a 3上的截距分别为1a h ,2a k ,3a l。
该平面(ABC )法线方向的单位矢量是 123dh dk dl n x y z a a a =++ 这里d 是原点到平面ABC 的垂直距离,即面间距。
由|n|=1得到222123()()()1dh dk dl a a a ++= 故12222123[()()()]h k l d a a a -=++1.9 用波长为0.15405nm 的X 射线投射到钽的粉末上,得到前面几条衍射谱线的布拉格角θ如下已知钽为体心立方结构,试求:(1)各谱线对应的衍射晶面族的面指数; (2)上述各晶面族的面间距;(3)利用上两项结果计算晶格常数.答:对于体心立方结构,衍射光束的相对强度由下式决定:2222|[1cos ()]sin ()hkl I F f n h k l f n h k l ππ∞=++++++考虑一级衍射,n=1。
显然,当衍射面指数之和(h+k+l )为奇数时,衍射条纹消失。
只有当(h+k+l )为偶数时,才能产生相长干涉。
因此,题给的谱线应依次对应于晶面(110)、(200)、(211)、(220)和(310)的散射。
由布喇格公式2sin (1)hkl d n θλ==得 1011011.54052.29510()2sin 2sin19.611od m λθ-===⨯ 同法得1020021.633410()2sin d m λθ-==⨯1021131.337710()2sin d m λθ-==⨯1022031.160910()2sin d m λθ-==⨯1031041.040310()2sin d m θ-==⨯应用立方晶系面间距公式222hkl d h k l=++可得晶格常数222hkl a d h k l =++把上面各晶面指数和它们对应的面间距数值代入,依次可得a 的数值*10-10m 为3.2456,3.2668,3.2767,3.2835,3.2897取其平均值则得103.272510()a m -=⨯1.10 平面正三角形,相邻原子的间距为a ,试给出此晶格的正格矢和倒格矢;画出第一和第二布里渊区.答:参看下图,晶体点阵初基矢量为1a ai =21322a ai aj =+用正交关系式{022,i ji j ij i j b a ππδ≠===求出倒易点阵初基矢量b1,b2。
设 111x y b b i b j =+ 222x y b b i b j =+由112b a π= 120b a = 210b a = 222b a π= 得到下面四个方程式11()2x y ai b i b j π+= (1)1113()()02x y ai b i b j += (2) 22()0x y ai b i b j += (3)2213()()22x y ai b i b j π+= (4) 由(1)式可得:12x b aπ=由(2)式可得:1y b = 由(3)式可得:20x b = 由(4)式可得:2y b =于是得出倒易点阵基矢12b i j a π=- 2b j =第二章2.2证明两种一价离子组成的一维晶格的马德隆常数为2ln 2α=. 证 设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用r 表示相邻离子间的距离,于是有(1)11112[...]234jij r r r r r r α±'==-+-+∑ 前边的因子2是因为存在着两个相等距离i r 的离子,一个在参考离子左面,一个在其右面,故对一边求和后要乘2,马德隆常数为234(1) (34)n x x x x x x +=-+-+ 当X=1时,有1111 (2234)n -+-+= 2.3有一晶体,平衡时体积为 0V , 原子间相互作用势为0U .如果相距为 r 的两原子互作用势为()n m rr a r u β+-= 证明体积弹性模量为 K=.90V mnU [解答]设晶体共含有 N 个原子,则总能量为U(r)=()∑∑i jij r u '21.020******* 由于晶体表面层的原子数目与晶体内原子数目相比小得多,因此可忽略它们之间的基异,于是上式简化为U=().2'∑jijr u N设最近邻原子间的距离为R 则有j ij a r =R再令 A ,1'∑=j m j m a A ,1'∑=j n j n a 得到 U=.200⎪⎪⎭⎫ ⎝⎛+-n n m m R A R A N βα 平衡时R=R 0,则由已知条件U(R 0) = 0U 得0002U R A R A N n n m m =⎪⎪⎭⎫ ⎝⎛+-βα 由平衡条件1112[1...]234α=-+-+22n α∴=0)(0=R dRR dU得021010=⎪⎪⎭⎫⎝⎛-++n nm m R A n R A m N βα. 由(1),(2)两式可解得.)(2,)(20000n n m m nR n m N U A nR n m N U A -=-=βα利用体积弹性模量公式[参见《固体物理教程》(2.14)式]K=0220209R R U V R ⎪⎪⎭⎫ ⎝⎛∂∂得K= ⎥⎦⎤⎢⎣⎡+++-n n m m R A n n R A m m N V 000)1()1(291βα = ⎥⎦⎤⎢⎣⎡-++-+-)(2)1()(2)1(2910000000n m N mR U R n n n m N nR U R m m N V nnm m = .900V mn U - 由于,00<U 因此,00U U -= 于是 K= .900V mnU2.6 由N个原子(离子)所组成的晶体的体积V可写为3RNβNvN==。