2018届苏教版(文) 导数的应用(2) 单元测试
- 格式:doc
- 大小:4.29 MB
- 文档页数:33
一、选择题1.已知函数()()221sin 1x xf x x ++=+,其中()f x '为函数()f x 的导数,则()()()()2020202020192019f f f f ''+-+--=( )A .0B .2C .2019D .20202.已知111ln 20x x y --+=,22262ln 20x y +--=,记()()221212M x x y y =-+-,则( )A .M 的最小值为25B .M 的最小值为45C .M 的最小值为85D .M 的最小值为1653.已知()21ln (0)2f x a x x a =+>,若对任意两个不等的正实数1x ,2x ,都有()()12122f x f x x x ->-恒成立,则a 的取值范围是( )A .(]0,1B .()1,+∞C .()0,1D .[)1,+∞4.已知()1()2ln 0f x a x x a x ⎛⎫-⎪⎝⎭=->在[1)+∞,上为单调递增函数,则a 的取值范围为( )A .[0)+∞,B .(0)+∞,C .(1)+∞,D .[1)+∞, 5.已知函数f (x )(x ∈R )满足(1)1f =,且()f x 的导数f ′(x )>12,则不等式1()22x f x <+的解集( ) A .(-∞,1) B .(1,+∞)C .(-∞,-1]∪[1,+∞)D .(-1,1)6.已知函数()2ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .7.定义域为R 的函数()f x 的导函数为()f x ',满足()()f x f x '<,若()01f =,则不等式()xf x e >的解集为( )A .()01,B .()1+∞, C .()1-∞, D .()0-∞,8.函数()262xf x x x e =-+的极值点所在的区间为( ) A .()1,0- B .()0,1C .()1,2D .()2,1--9.已知函数()32114332f x x mx x =-+-在区间[]1,2上是增函数,则实数m 的取值范围为( ) A .45m ≤≤B .24m ≤≤C .2m ≤D .4m ≤10.函数()ln 22f x x x x a =-++,若()f x 与()()f f x 有相同的值域,则a 的取值范围为( ) A .(],0-∞B .1,02⎛⎤- ⎥⎝⎦C .30,2⎡⎫⎪⎢⎣⎭D .[)0,+∞11.已知函数2()sin cos f x x x x x =++,则不等式1(ln )(ln )2(1)0f x f f x+-<的解集为( ) A .(,)e +∞B .(0,)eC .1(,)e eD .1(0,)(1,)e e12.已知定义在(0,)+∞上的函数()f x 的导函数()f x '满足()1xf x '>,则( ) A .()()21ln 2f f -< B .()()21ln 2f f -> C .()()211f f -<D .()()211f f ->二、填空题13.已知曲线()32351f x x x x =+-+,过点()1,0的直线l 与曲线()y f x =相切于点P ,则点P 的横坐标为______________.14.已知()f x 是定义在R 上的奇函数,当0x >时,()()xf x f x '<,若()10f =,则不等式()0f x x>的解集为________. 15.已知函数1()f x x ax=+在(),1-∞-上单调递增,则实数a 的取值范围是_____________.16.函数322()f x x ax bx a =--+在1x =处有极值10,则+a b 的值为________. 17.已知曲线x xy e=在1x x =处的切线为1l ,曲线ln y x =在2x x =处的切线为2l ,且12l l ⊥,则21x x -的取值范围是_________.18.已知32()26f x x x m =-++(m 为常数)在[]22-,上有最小值3,那么此函数在[]22-,上的最大值为______.19.已知函数()sin f x x x =+,若正实数,a b 满足()()490f a f b +-=,则11a b+的最小值为______________. 20.已知函数f (x )=ln x -f ′ (12)x 2+3x -4,则f ′(1)=________. 三、解答题21.已知函数321()12f x x x ax =-++. (1)当2a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若函数()f x 在1x =处有极小值,求函数()f x 在区间31,2⎡⎤-⎢⎥⎣⎦上的最大值.22.已知函数2()ln f x x x =-,()g x kx =. (1)求函数()f x 的最小值;(2)若()g x 是()f x 的切线,求实数k 的值;(3)若()f x 与()g x 的图象有两个不同交点A (1x ,1y ),B (2x ,2y ),求证:121x x >. 23.已知函数311()ln 62f x x x x x =+-.(1)求曲线()y f x =在点(1,(1)f )处的切线方程; (2)若()f x a <对1(,)x e e∈恒成立,求a 的最小值. 24.已知函数()3ln 42x a f x x x =+--,其中a R ∈,且曲线()y f x =在点()()1,1f 处的切线垂直于直线12y x =. (1)求a 的值;(2)求函数()f x 的单调区间.25.已知集合M 是同时满足下列两个性质的函数()f x 的全体①函数()f x 在其定义域上是单调函数;②()f x 的定义域内存在区间[]a b ,,使得()f x 在[]a b ,上的值域为22a b ⎡⎤⎢⎥⎣⎦,.(1)判断()3g x x =是否属于M ,若是,求出所有满足②的区间[]a b ,,若不是,说明理由;(2)若()h x t M =∈,求实数t 的取值范围.26.已知a ∈R ,函数()2ln f x x a x =-. (1)若有极小值0,求a 的值;(2)若存在1x 、()20,1x ∈,使得不等式()()()12120x x f x f x -->⎡⎤⎣⎦成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将函数解析式变形为()22sin 11x xf x x +=++,求得()f x ',进而可求得所求代数式的值. 【详解】()()222221sin 12sin 2sin 1111x x x x x x x f x x x x ++++++===++++,所以,()()()()()2222020sin 202022020sin 202020202020222020120201f f ⨯-+-⨯++-=++=+-+, ()()()()()2222cos 122sin 1x x x x x f x x++-+'=+,函数()f x '的定义域为R ,()()()()()2222cos 122sin 1x x x x x f x x ⎡⎤⎡⎤⎡⎤+-⋅-++-+-⎣⎦⎣⎦⎣⎦-=⎡⎤-+⎣⎦'()()()()()2222cos 122sin 1x x x x x f x x ++-+'==+, 所以,函数()f x '为偶函数,因此,()()()()20202020201920192f f f f ''+-+--=. 故选:B. 【点睛】结论点睛:本题考查利用函数奇偶性求值,关于奇函数、偶函数的导函数的奇偶性,有如下结论:(1)可导的奇函数的导函数为偶函数; (2)可导的偶函数的导函数为奇函数. 在应用该结论时,首先应对此结论进行证明.2.D解析:D 【分析】设1(A x ,1)y ,2(B x ,2)y ,点A 在函数2y lnx x =-+的图象上,点B 在直线22260x y ln +--=上,则221212()()M x x y y =-+-的最小值转化为函数2y lnx x =-+的图象上的点与直线22260x y ln +--=上点距离最小值的平方,利用导数求出切点坐标,再由点到直线的距离公式求解.求出d 的最小值为两直线平行时的距离,即可得到M 的最小值,并可求出此时对应的2x 从而得解. 【详解】解:设1(A x ,1)y ,2(B x ,2)y ,点A 在函数2y lnx x =-+的图象上,点B 在直线24220x y ln +--=上,221212()()M x x y y =-+-的最小值转化为函数2y lnx x =-+的图象上的点与直线22260x y ln +--=上点距离最小值的平方.由2y lnx x =-+,得11y x'=-,与直线22260x y ln +--=平行的直线的斜率为12k =-.令1112x -=-,得2x =,则切点坐标为(2,2)ln , 切点(2,2)ln 到直线22260x y ln +--=的距离d == 即221212()()M x x y y =-+-的最小值为165. 又过(2,2)ln 且与22260x y ln +--=垂直的直线为22(2)y ln x -=-,即2420x y ln --+=,联立222602420x y ln x y ln +--=⎧⎨--+=⎩,解得145x =,即当M 最小时,2145x =. 故选:D . 【点睛】本题考查函数的最值及其几何意义,考查数学转化思想方法,训练了利用导数研究过曲线上某点处的切线方程,属于中档题.3.D解析:D 【分析】 根据条件()()12122f x f x x x ->-可变形为112212()2[()]20f x x f x x x x --->-,构造函数()21()2ln ()202g x f x x a x a x x =-=+>-,利用其为增函数即可求解. 【详解】根据1212()()2f x f x x x ->-可知112212()2[()]20f x x f x x x x --->-, 令()21()2ln ()202g x f x x a x a x x =-=+>- 由112212()2[()]20f x x f x x x x --->-知()g x 为增函数,所以()()'200,0ag x x x a x=+-≥>>恒成立, 分离参数得()2a x x ≥-,而当0x >时,()2x x -在1x =时有最大值为1, 故1a ≥. 故选:D 【点睛】关键点点睛:本题由条件()()12122f x f x x x ->-恒成立,转化为112212()2[()]20f x x f x x x x --->-恒成立是解题的关键,再根据此式知函数()21()2ln ()202g x f x x a x a x x =-=+>-为增函数,考查了推理分析能力,属于中档题. 4.D解析:D 【分析】首先求导,由题意转化为在[1,)x ∈+∞,220ax x a -+≥恒成立,即221xa x ≥+在[1,)+∞上恒成立.再利用基本不等式求出221xx +的最大值即可. 【详解】222()ax x af x x-+'=,(0)a > 因为()f x 在[1,)+∞上为单调递增,等价于220ax x a -+≥恒成立. 即221xa x ≥+在[1,)+∞上恒成立. 因为222111x x x x x x=≤=++,当1x =时,取“=”, 所以1a ≥,即a 的范围为[1,)+∞.故选:D 【点睛】本题主要考查利用导数的单调区间求参数的问题,同时考查了学生的转化思想,属于中档题.5.A解析:A 【分析】 根据f ′(x )>12,构造函数 ()()122x g x f x =-- ,又()()1111022=--=g f ,然后将不等式1()22x f x <+,转化为1()022--<x f x ,利用单调性的定义求解. 【详解】 因为f ′(x )>12,所以()102f x '-> 所以()()()()()110222x g x f x g x f x g x =--⇒=->⇒'' 在R 上递增, 又()()1111022=--=g f , 所以不等式1()22x f x <+,即为1()022--<x f x , 即为:()()1g x g <, 所以1x <, 故选:A 【点睛】本题主要考查函数的单调性与导数以及单调性的应用,还考查了构造转化求解问题的能力,属于中档题.6.A解析:A 【分析】利用函数的定义域和函数的值域排除BD ,通过函数的单调性排除C ,推出结果即可. 【详解】令()ln 1g x x x =--,则11()1x g x x x-'=-=, 由()0g x '>得1x >,即函数()g x 在(1,)+∞上单调递增, 由()0g x '<得01x <<,即函数()g x 在(0,1)上单调递减, 所以当1x =时,()()min 10g x g ==, 于是对任意(0,1)(1,)x ∈+∞,有()0g x >,则()0f x >,故排除BD ,因为函数()g x 在()0,1单调递减,则函数()f x 在()0,1递增,故排除C. 故选:A. 【点睛】本题考查利用导数对函数图象辨别,属于中档题.7.D解析:D 【分析】 构造函数()()x f x g x e=,用导数法得到()g x 在R 上递减,然后由()01f =,得到()01g =,再利用函数的单调性定义求解.【详解】令()()x f x g x e=,因为()()f x f x '<, 则()()()0xf x f xg x e'-'=<, 所以()g x 在R 上递减, 又()01f =,则()01g =, 不等式()xf x e >等价于()()10xf xg e>= , 所以0x <. 故选:D 【点睛】本题主要考查函导数与函数的单调性以及函数单调性解不等式,还考查了构造函数求解问题的能力,属于中档题.8.B解析:B 【分析】求出函数的导数,根据函数的零点判定定理求出函数的极值点的区间即可. 【详解】()262x f x x e '=-+,且()f x '为单调函数,∴()12620f e '=-+>,()0620f '=-+<, 由()()010f f ''<,故()f x 的极值点所在的区间为()0,1, 故选:B. 【点睛】本题主要考查了导数的应用,函数的极值点的意义,考查转化思想,属于中档题.9.D解析:D 【分析】求出函数的导数,利用函数的单调性,推出不等式,利用基本不等式求解函数的最值,即可得结果 【详解】 解:由()32114332f x x mx x =-+-,得'2()4f x x mx =-+, 因为函数()32114332f x x mx x =-+-在区间[]1,2上是增函数, 所以240x mx -+≥在[]1,2上恒成立,得4m x x≤+恒成立因为44x x +≥=,当且仅当4x x =,即2x =时取等号,所以4m ≤, 故选:D 【点睛】此题考查导数的应用,考查函数最值的求值,考查基本不等式应用,考查转化思想,属于中档题10.B解析:B 【分析】判断()f x 的单调性,求出()f x 的值域,根据()y f x =与(())y f f x =有相同的值域得出()f x 的最小值与极小值点的关系,得出a 的范围.【详解】()f x lnx '=,故而当1x >时,()0f x '>,当01x <<时,()0f x '<,()f x ∴在(0,1)上单调递减,在(1,)+∞上单调递增,()f x ∴的最小值为()121f a =+,且x →+∞时,()f x →+∞即()f x 的值域为[)21,a ++∞,函数()y f x =与(())y f f x =有相同的值域,且()f x 的定义域为(0,)+∞,0211a ∴<+≤,解得:102-<≤a .故选:B 【点睛】本题考查了导数研究函数的单调性,考查函数最值的计算,属于中档题.11.C解析:C 【分析】先判断出()f x 为R 上的偶函数,再利用当0x >时,()'0f x >得到函数的单调性,从而可解原不等式. 【详解】因为()()()()22()sin cos sin cos f x x x x x x x x x f x -=--+-+-=++=,所以()f x 为R上的偶函数,又1(ln )(ln )2(1)0f x f f x+-<等价于(ln )(ln )2(1)0f x f x f +--<即:(ln )(1)f x f <,()'()sin cos sin 22cos f x x x x x x x x =+-+=+,当0x >时,()'0f x >,故()f x 在()0,∞+为增函数,故(ln )(1)f x f <等价于ln 1x <即1ln 1x -<<即1x e e <<,故不等式的解集为1e e ⎛⎫⎪⎝⎭,,故选C.【点睛】对于偶函数()f x ,其单调性在两侧是相反的,并且()()()f x fx f x ==-,对于奇函数()g x ,其单调性在两侧是相同的.另外解函数不等式要利用函数的单调性去掉对应法则f .12.B解析:B 【解析】分析:根据题意,由()1xf x '>可得()()'1f x lnx x='>,构造函数()()g x f x lnx =-,可得()()()110xf x g x f x x x-=-=''>',故()g x 单调递增,根据单调性可得结论.详解:令()(),0g x f x lnx x =->,∴()()()11xf x g x f x x x=''-'-=,∵()1xf x '>, ∴()0g x '>,∴函数()g x 在()0,+∞上单调递增, ∴()()21g g >,即()()2211f ln f ln ->-, ∴()()21ln2f f ->. 故选B .点睛:本题考查对函数单调性的应用,考查学生的变形应用能力,解题的关键是根据题意构造函数()()g x f x lnx =-,通过判断函数的单调性得到函数值间的关系,从而达到求解的目的.二、填空题13.0或或【分析】设切点的坐标由求出切线方程把代入切线方程可求得切点坐标【详解】设的坐标为过点的切线方程为代入点的坐标有整理为解得或或故答案为:0或或【点睛】本题考查导数的几何意义求函数图象的切线方程要解析:0或1-或53【分析】设切点P 的坐标,由P 求出切线方程,把(1,0)代入切线方程可求得切点坐标. 【详解】设P 的坐标为()32,351m m m m +-+,2()9101f x x x +'=-,过点P 的切线方程为()()3223519101()m m m m x y m m +-+=+---,代入点()1,0的坐标有()()()32235191011mm m mm m --+-+=+--,整理为323250m m m --=,解得0m =或1m =-或53m =, 故答案为:0或1-或53. 【点睛】本题考查导数的几何意义.求函数图象的切线方程要分两种情况:(1)函数()y f x =图象在点00(,)P x y 处的切线方程,求出导函数,得出切线方程000()()y y f x x x '-=-;(2)函数()y f x =图象过点00(,)P x y 处的切线方程:设切线坐标11(,)x y ,求出切线方程为111()()y y f x x x '-=-,代入00(,)x y 求得11,x y ,从而得切线方程.14.【分析】令对其求导由时可知从而在上单调递减由的奇偶性可得是定义域上的偶函数从而可得出在上的单调性再结合可求出的解集【详解】由题意令则因为时则故在上单调递减又是定义在上的奇函数所以所以即是上的偶函数根 解析:()()1,00,1-【分析】 令()()f xg x x=,对其求导,由0x >时,()()xf x f x '<,可知()0g x '<,从而()g x 在()0,∞+上单调递减,由()f x 的奇偶性,可得()g x 是定义域上的偶函数,从而可得出()g x 在(),0-∞上的单调性,再结合()()110g g -==,可求出()0g x >的解集.【详解】 由题意,令()()f x g x x =,则()()()2xf x f x g x x'-'=, 因为0x >时,()()xf x f x '<,则()()()20xf x f x g x x'-'=<,故()g x 在()0,∞+上单调递减,又()f x 是定义在R 上的奇函数,所以()()f x f x -=-,所以()()()()()f x f x f x g x g x x x x---====--,即()g x 是()(),00,-∞⋃+∞上的偶函数,根据偶函数的对称性,可知()g x 在(),0-∞上单调递增,且()()()11101f g g -===,所以()()1,00,1x ∈-时,()0g x >.故答案为:()()1,00,1-.【点睛】关键点点睛:本题考查不等式的解集,解题关键是求出函数的单调性.本题通过构造函数()()f xg x x=,求导并结合当0x >时,()()xf x f x '<,可求出函数()g x 在()0,∞+上的单调性,再结合函数的奇偶性,可求出()g x 在定义域上的单调性.考查了学生的运算求解能力,逻辑推理能力,属于中档题.15.【分析】根据题意将问题转化为以在区间上恒成立再分类讨论即可得答案【详解】解:因为函数在上单调递增所以在区间上恒成立当时显然在区间上恒成立当时因为在区间上恒成立所以在区间上恒成立所以在区间上恒成立所以 解析:()[),01,-∞+∞【分析】根据题意将问题转化为以()22211'10ax f x ax ax-=-=≥在区间(),1-∞-上恒成立,再分类讨论即可得答案. 【详解】解:因为函数1()f x x ax=+在(),1-∞-上单调递增, 所以()22211'10ax f x ax ax-=-=≥在区间(),1-∞-上恒成立, 当0a <时,显然()22211'10ax f x ax ax -=-=≥在区间(),1-∞-上恒成立, 当0a >时,因为()22211'10ax f x ax ax-=-=≥在区间(),1-∞-上恒成立, 所以210ax -≥在区间(),1-∞-上恒成立, 所以21≥a x 在区间(),1-∞-上恒成立, 所以2max11a x ⎛⎫≥= ⎪⎝⎭ 综上实数a 的取值范围是()[),01,-∞+∞故答案为:()[),01,-∞+∞【点睛】本题考查根据函数在区间上单调求参数范围问题,考查化归转化思想与数学运算能力,是中档题.16.【分析】先根据极值列方程组解得值再代入验证即可确定结果【详解】解∵函数∴又∵函数当时有极值10∴∴或当时有不等的实根满足题意;当时有两个相等的实根不满足题意;∴【点睛】本题考查根据极值求参数考查基本 解析:7a b +=【分析】先根据极值列方程组解得a b ,值,再代入验证,即可确定结果. 【详解】解∵函数322()f x x ax bx a =--+∴2()32f x x ax b '=--,又∵函数322()f x x ax bx a =--+,当1x =时有极值10,∴2320110a b a b a --=⎧⎨--+=⎩,∴411a b =-⎧⎨=⎩或33a b =⎧⎨=-⎩当411a b =-⎧⎨=⎩时,2()32(1)(311)0f x x ax b x x '=--=-+=有不等的实根满足题意; 当33a b =⎧⎨=-⎩时,22()323(1)0f x x ax b x '=--=-=有两个相等的实根,不满足题意; ∴7a b += 【点睛】本题考查根据极值求参数,考查基本分析求解能力,属中档题.17.【分析】由求导根据得到由得到而然后令用导数法求解【详解】令则所以因为故所以因为故又令则当时为减函数故所以在上恒成立故在上为减函数所以即因此的取值范围是故答案为:【点睛】本题主要考查导数的几何意义导数 解析:(),1-∞-【分析】由()xx f x e =,()ln g x x =,求导,根据12l l ⊥,得到1121x x x e -=,由20x >,得到11x >.而112111x x x x x e --=-,然后令()1,1x x h x x x e-=->,用导数法求解.【详解】令()x x f x e =,()ln g x x =,则()1x xf x e -'=,()1g x x'=,所以1111x x k e -=,221k x =, 因为12l l ⊥,故112111x x e x -⨯=-,所以1121x x x e -=, 因为20x >,故11x >.又112111x x x x x e --=-,令()1,1x x h x x x e -=->,则()221xx xx x e h x e e---=-=', 当()1,x ∈+∞时,2xy x e =--为减函数,故12210x x e e --<--<,所以()0h x '<在()1,+∞上恒成立, 故()h x 在()1,+∞上为减函数,所以()()11h x h <=-,即211x x -<-. 因此,21x x -的取值范围是(),1-∞-. 故答案为:(),1-∞-. 【点睛】本题主要考查导数的几何意义,导数与函数的最值,还考查了运算求解的能力,属于中档题.18.43【分析】先求导数判断函数单调性和极值结合(为常数)在上有最小值3求出的值再根据单调性和极值求出函数的最大值【详解】令解得或当时单调递减当时单调递增当时单调递减所以在时有极小值也是上的最小值即函数解析:43. 【分析】先求导数,判断函数单调性和极值,结合32()26f x x x m =-++(m 为常数)在[]22-,上有最小值3,求出m 的值,再根据单调性和极值求出函数的最大值. 【详解】32()26f x x x m =-++, 2()6126(2)f x x x x x '∴=-+=--,令 ()0f x '=,解得 0x =或2x =,当20x -<<时,()0,()f x f x '<单调递减,当02x <<时,()0,()f x f x '>单调递增,当2x >时,()0,()f x f x '<单调递减,所以()f x 在0x =时有极小值,也是[]22-,上的最小值, 即(0)3f m ==,函数在[]22-,上的最大值在2x =-或2x =时取得, 3232(2)2(2)6(2)343;(2)2262311f f -=-⨯-+⨯-+==-⨯+⨯+=,∴函数在[]22-,上的最大值为43.故答案为:43 【点睛】本题主要考查了利用导数研究函数的单调性和极值,函数的最值,属于中档题.19.1【分析】由知为奇函数求导分析为增函数故利用可以算得的关系再利用基本不等式的方法求的最小值即可【详解】故为奇函数又所以为增函数又故所以当且仅当时取得最小值1故答案为1【点睛】本题主要考查函数的奇偶性解析:1 【分析】由()sin f x x x =+知()f x 为奇函数,求导分析()f x 为增函数,故利用()()490f a f b +-=可以算得,a b 的关系,再利用基本不等式的方法求11a b+的最小值即可. 【详解】()sin()sin ()f x x x x x f x -=-+-=--=-,故()f x 为奇函数,又()'1cos 0f x x =+≥,所以()f x 为增函数.又()()()()()490,499f a f b f a f b f b +-==--=-, 故49,49a b a b =-+=,所以()11111144599b a a b a b a b a b ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭1519⎛≥+= ⎝,当且仅当4b aa b =时取得最小值1. 故答案为1 【点睛】本题主要考查函数的奇偶性与单调性的运用以及基本不等式的用法,属于中等题型.20.-1【分析】根据题意由函数f (x )的解析式对其求导可得在其中令可得再令即可解可得f′(1)的值【详解】根据题意函数f(x)=lnx -f′()x2+3x -4其导数令令则即答案为-1【点睛】本题考查导数解析:-1 【分析】根据题意,由函数f (x )的解析式对其求导可得112'32f x xf x '=-+()() ,在其中令12x =可得12f ⎛⎫' ⎪⎝⎭,再令1x =即可解可得f′(1)的值, 【详解】根据题意,函数f (x )=ln x -f ′ (12)x 2+3x -4, 其导数112'32f x xf x '=-+()(),令12x =,1111152'3,,1222222f f f '=-⨯⨯+∴'=()()() 令1x =,则15213 1.12f x '=-⨯⨯+=-() 即答案为-1. 【点睛】本题考查导数的计算,注意12f ⎛⎫'⎪⎝⎭为常数. 三、解答题21.(1)210x y -+=;(2)4927. 【分析】(1)当2a =时,求得函数的导数2()32f x x x '=-+,得到(0)2f '=,即可求解曲线()y f x =在点()()0,0f 处的切线方程;(2)由函数在1x =处有极小值,求得2a =-,得到2()32f x x x '=--,根据导数的符号,求得函数的单调性,进而求得函数的最大值,得到答案. 【详解】(1)当2a =时,函数321()212f x x x x =-++, 可得2()32f x x x '=-+,可得(0)2f '=又由()01f =,所以曲线()y f x =在点()()0,0f 处的切线方程12(0)y x -=-,即210x y -+=.(2)由321()12f x x x ax =-++,可得2()3f x x x a '=-+, 因为函数在1x =处有极小值,可得(1)20f a '=+=,解得2a =-,此时321()212f x x x x =--+,且2()32f x x x '=--, 令()0f x '=,即2320x x --=,解得23x =-或1x =, 当23x <-或1x >时,()0f x '>,函数()f x 单调递增; 当213x -<<时,()0f x '<,函数()f x 单调递减, 所以函数()f x 在23(2,),(1,)32--上单调递增,在区间2(,1)3-上单调递减,所以()11,(2)52f f =--=-, 因为24931(),()32724f f -==, 所以函数()f x 的最大值为249()327f -=. 【点睛】解决函数极值、最值综合问题的策略:求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小;求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论; 函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值. 22.(1)11ln 222+;(2)1;(3)证明见解析. 【分析】(1)利用导数求出其单调性,即可得出函数()f x 的最小值;(2)利用导数的几何意义得出切线方程20000121ln y x x x x x ⎛⎫=--+- ⎪⎝⎭,再由2000012,1ln 0x k x x x -=-+-=求出k 的值; (3)将22111222ln ,ln x x kx x x kx -=-=两式相加相减化简得出2121212211ln 2ln x x x x x x x x x x ++=-,令211x t x =>,构造函数2(1)()ln (1)1t F t t t t -=->+,利用单调性证明2(1)ln 1t t t ->+,从而得出1212ln 22x x x x +>,再由令()ln 2G x x x =+的单调性得出12()(1)G x x G >,从而得出121x x >. 【详解】解:(1)∵2()ln f x x x =-,∴2121()2(0)x f x x x x x-'=-=>当0,2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '<,∴()f x在2⎛ ⎝⎭上单调递减;当,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0f x '>,∴()f x在⎫+∞⎪⎪⎝⎭上单调递增. 故函数()f x的最小值为211ln ln 222222f ⎛⎫⎛⎫=-=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(2)若()g x 是()f x 的切线,设切点为00(,())x f x 则过点00(,())x f x 的切线方程为000()()()y f x x x f x '=-+即20000012()ln y x x x x x x ⎛⎫=--+- ⎪⎝⎭,即20000121ln y x x x x x ⎛⎫=--+- ⎪⎝⎭ 由题意知2000012,1ln 0x k x x x -=-+-= 令2()1ln (0)h x x x x =-+->,则0x >时,1()20h x x x'=--< ∴2()1ln h x x x =-+-在(0,)+∞上单调递增,又(1)0h =∴2001ln 0x x -+-=有唯一的实根01x =,则0012211k x x =-=-=. (3)由题意知22111222ln ,ln x x kx x x kx -=-=两式相加得22121212ln ()x x x x k x x +-=+两式相减得22221211ln ()x x x k x x x --=-,即212121ln x x x x k x x +-=-∴22211212211221ln ln ()x x x x x x x x x x x x ⎛⎫ ⎪ ⎪+-=+-+-⎪ ⎪⎝⎭,即2121212211ln 2ln x x x x x x x x x x ++=- 不妨令120x x <<,记211x t x =>,则2121212211ln 2ln x x xx x x x x x x ++==-1ln 1t t t +- 令2(1)()ln (1)1t F t t t t -=->+,则2(1)()0(1)t F t t t -'=>+∴2l ())1n 1(t F t t t -=-+在(1,)+∞上单调递增,则2(1)()ln (1)01t F t t F t -=->=+ ∴2(1)ln 1t t t ->+,因而1212ln 2x x x x +=112(1)ln 2111t t t t t t t ++->⋅=--+ 令()ln 2G x x x =+,则0x >时,1()20G x x'=+>,∴()G x 在(0,)+∞上单调递增∵121212()ln 22(1)G x x x x x x G =+>=,∴121x x >. 【点睛】在处理极值点偏移问题时,关键是构造新函数,结合单调性解决极值点偏移问题. 23.(1)23y =;(2)31162e e -. 【分析】 (1)求导211'()ln 22f x x x =--,再分别求得(1)f ,'(1)f ,用点斜式写出切线方程.(2)根据()f x a <对1(,)x e e∈恒成立,则()max a f x >,再利用导数求解()max f x 即可. 【详解】(1)()f x 的定义域为(0,)+∞. 由已知得211'()ln 22f x x x =--,且2(1)3f =. 所以'(1)0f =.所以曲线()y f x =在点(1,(1)f )处的切线方程为23y =. (2)设()'()g x f x =,(1x e e<<) 则211'()x g x x x x-=-=. 令'()0g x =得1x =.当x 变化时,'()g x 符号变化如下表:x 1(,1)e1 (1,)e '()g x-+()g x极小则,即,当且仅当时,所以()f x 在1(,)e e上单调递增. 又311()62f e e e =-, 因为()f x a <对1(,)x e e∈恒成立, 所以31162a e e ≥-, 所以a 的最小值为为31162e e -. 【点睛】方法点睛:恒(能)成立问题的解法: 若()f x 在区间D 上有最值,则(1)恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)能成立:()()max ,00x D f x f x ∃∈>⇔>;()()min ,00x D f x f x ∃∈<⇔<. 若能分离常数,即将问题转化为:()a f x >(或()a f x <),则(1)恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<;(2)能成立:()()min a f x a f x >⇔>;()()max a f x a f x <⇔<;24.(1)54a =;(2)单调递减区间是()0,5,单调递增区间是()5,+∞. 【分析】(1)求导,使()12f '=-求解a 的值;(2)将(1)中所求a 的值代入,求解()0f x '>和()0f x '<的区间,从而得出函数()f x 的单调区间.【详解】(1)对()f x 求导得()2114a f x x x=--', 由()f x 在点()()1,1f 处的切线垂直于直线12y x =, 知()3124f a '=--=-,解得54a =. (2)由(1)知()()53ln 0442x f x x x x =+-->,则()22454x x f x x'--=, 令()0f x '=,解得1x =-或5x =,因为1x =-不在()f x 的定义域()0,∞+内,所以舍去.当()0,5x ∈时,()0f x '<,故()f x 在()0,5内单调递减;当()5,x ∈+∞时,()0f x '>,故()f x 在()5,+∞内单调递增.故()f x 的单调递减区间是(0,5),单调递增区间是()5,+∞.【点睛】本题考查导数的几何意义,考查函数单调区间的求解,难度一般.25.(1) ()g x 属于M ,且满足②的区间[a ,b ]为00⎡⎤⎡⎡⎢⎥⎢⎢⎣⎦⎣⎦⎣⎦,, ; (2) 102⎛⎤ ⎥⎝⎦, 【分析】(1)可以看出()g x 为增函数,满足条件①,而方程32x x =有三个不同的解,从而满足条件②,从而说明()g x 属于M ,且可写出所有满足②的区间[a ,b ];(2)()h x 属于M 2x t =至少有两个不同的实数根,从而得到12x x t -=-,两边平方并整理可得()221104x t x t -+++= 从而20t∆=>,得到t >0,而02x t -≥即2x t ≤恒成立,且1≥x ,从而又得到12t ≤,这样便可得出实数t 的取值范围.【详解】 (1)()3g x x =在R 上为增函数,满足性质①; 解32x x =得,x =0,或2x =± ; ∴()g x 属于M ,且满足②的区间[a ,b ]为2222002222⎡⎤⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,,,,,; (2)()1h x x t =-+在定义域内单调递增,满足①;∵h (x )∈M ;∴h (x )满足②;则方程12x x t -=-少有两个解; 即函数1y x =-与函数2x y t =-的图象有两个不同的交点. 如图当直线2x y t =-过点()1,0时,12t = 设直线2x y t =-与曲线1y x =-相切于点()00,A x y 由函数1y x =-的导函数为21'=-y x 所以01221k x ==-,所以02x =,则()2,1A 由()2,1A 在直线2x y t =-上,解得0t = 根据图象可得函数1y x =-与函数2x y t =-的图象有两个不同的交点,得102t <≤∴实数t 的取值范围为102⎛⎤ ⎥⎝⎦,.【点睛】考查函数单调性的定义,函数值域的定义,()f x 满足性质②便说明方程()2x f x =至少有两个不同解,即函数y =2x y t =-的图象有两个不同的交点,数形结合可得出答案,属于中档题.26.(1)2a e =;(2)(),2-∞.【分析】(1)求导,分类讨论得出()f x 的单调性及极值,让极小值为0,求出a 的值; (2)只需使函数()2ln f x x a x =-在()0,1x ∈上存在单调递增区间,然后求解a 的取值范围.【详解】解:(1)()f x 的定义域是()0,∞+,()22a x a f x x x-'=-=, 当0a ≤时,()0f x '>恒成立,()f x 在()0,∞+上单调递增,无极小值;当0a >时,令()0f x '<,解得02a x <<;令()0f x '>,解得2a x >, 则()f x 在0,2a ⎛⎫ ⎪⎝⎭上递减,在,2a ⎛⎫+∞ ⎪⎝⎭上递增, 故()f x 有极小值ln 022a a f a a ⎛⎫=-=⎪⎝⎭, ∴1ln 02a -=,∴2a e =; (2)不妨设12x x <,由()()()12120x x f x f x -->⎡⎤⎣⎦知,()()12f x f x <, ∴()f x 在()0,1存在增区间,①由(1)可知,当0a ≤时,()f x 在()0,∞+上为增函数,符合要求;②当0a >时,由(1),()f x 在0,2a ⎛⎫ ⎪⎝⎭上递减,在,2a ⎛⎫+∞ ⎪⎝⎭上递增, ∴只需102a >>,则有02a <<, 综上,实数a 的取值范围为(),2-∞.【点睛】本题考查利用导数研究函数的单调性,极值,考查分类讨论思想及运算求解能力,属于中档题.。
数学选修 2-2 第一章单元测试题一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f ( x) 的定义域为开区间 ( a,b) ,导函数f′(x) 在( a,b) 内的图像如图所示,则函数 f ( x)在开区间( a,b)内有极小值点()A.1 个B.2 个C.3 个D.4 个1 12.在区间[ 2,2] 上,函数 f ( x)=x2+px+q 与g( x)=2x+x2在1同一点处取得相同的最小值,那么f(x)在[2,2]上的最大值是()C.8D.423.点P在曲线y=x3-x+3上移动,设点P处的切线的倾斜角为α,则α 的取值范围是( )ππ3A.[0 ,2 ] B.[0 ,2 ] ∪[ 4π,π)3 π 3C.[ 4π,π ) D.[ 2,4π]14.已知函数f ( x) =2x4-2x3+3m,x∈R,若f ( x) +9≥0恒成立,则实数 m的取值范围是()3 3A.m≥2 B.m>23 3C.m≤2 D.m<2x2 25.函数f ( x) =cos x-2cos 2的一个单调增区间是 ()f x 0+3 -f x 06.设f ( x) 在x=x0 处可导,且lim Δx=1,Δx→0则 f ′(x0)等于( )A.1 B.0C.3x+97.经过原点且与曲线y=x+5相切的切线方程为()A.x+y=0B.x+25y=0C.x+y= 0 或x+25y=0D.以上皆非8.函数f ( x) =x3+ax2+bx+c,其中a,b,c为实数,当a2-3b<0 时,f ( x) 是()A.增函数B.减函数C.常数D.既不是增函数也不是减函数13 29.若a>2,则方程3x -ax +1=0 在(0,2) 上恰好有 ()A.0 个根B.1 个根C.2 个根D.3 个根1 10.一点沿直线运动,如果由始点起经过t s 后距离为s=4t 4-53t 3+2t 2,那么速度为零的时刻是( )A.1 s 末B.0 sC.4 s 末D.0,1,4 s 末x2,x∈[0,1],2f(x) d x 等于 () 11.设f ( x) =则2-x,x∈ 1,2] ,0D.不存在sin x sin x1 sin x2 12.若函数 f(x) =x,且 0<x1<x2 <1,设 a=x1 ,b=x2 ,则 a,b 的大小关系是 ( )A.a>b B.a<bC.a=b D.a、b的大小不能确定二、填空题 ( 本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上 )1 3 213.若 f(x) =3x -f ′(1)x +x+5,则 f ′(1) = ________.π π14.已知函数 f(x) 满足 f(x) =f( π-x) ,且当 x∈ -2,2 时,f(x) =x+sin x,设a=f(1) ,b=f(2) ,c=f(3) ,则a、b、c 的大小关系是 ________.15.已知函数f(x) 为一次函数,其图像经过点(2,4) ,且1f(x) d x=3,则函数f(x) 的解析式为________.16.(2010 ·江苏卷) 函数2y=x(x>0)的图像在点 2(a k,a k) 处的切线与x 轴的交点的横坐标为a k+1,其中k∈N*. 若a1=16,则a1+a3+a5的值是________.三、解答题 ( 本大题共 6 小题,共 70 分,解答应出写文字说明、证明过程或演算步骤 )17.(10 分) 如图,直线y=kx分抛物线y=x-x2与x轴所围成图形为面积相等的两部分,求k 的值.18.(12 分) 已知函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 上单调递增,在区间 [1,2) 上单调递减.(1)求 a 的值;(2)若点 A(x0,f(x0)) 在函数 f(x) 的图像上,求证:点 A关于直线x=1 的对称点 B 也在函数 f(x) 的图像上.19.(12 分) 设 x=- 2 与 x=4 是函数 f(x) =x3+ax2+bx 的两个极值点.(1)求常数 a,b;(2)试判断 x=- 2,x= 4 是函数 f(x) 的极大值还是极小值,并说明理由.20.(12 分) 已知 f(x) =ax3-6ax2+b,x∈[ -1,2] 的最大值为 3,最小值为- 29,求 a,b 的值.21.(12 分)(2010 ·重庆卷 ) 已知函数 f(x) =ax3+x2+ bx( 其中常数a,b∈R) ,g( x) =f ( x) +f′(x) 是奇函数.(1)求 f ( x)的表达式;(2)讨论 g( x)的单调性,并求 g( x)在区间[1,2]上的最大值与最小值.1-x22.(12 分) 已知函数f ( x) =ln( ax+1) +1+x,x≥0,其中a>0.(1)若 f ( x)在 x=1处取得极值,求 a 的值;(2)求 f ( x)的单调区间;(3)若 f ( x)的最小值为1,求 a 的取值范围.参考答案1.答案 A解析设极值点依次为 x1,x2,x3且 a<x1<x2<x3<b,则 f ( x) 在( a,x1) ,( x2,x3) 上递增,在 ( x1,x2) ,( x3,b) 上递减,因此,x1、x3是极大值点,只有x2是极小值点.2.答案 D3.答案 B4.答案 A1解析因为函数 f ( x)=2x4-2x3+3m,所以 f ′(x)=2x3-6x2.令 f ′(x)=0,得 x=0或 x=3,经检验知 x=3是函数的一个最27小值点,所以函数的最小值为 f (3)=3m-2.不等式 f ( x)+9≥0恒成27 3立,即 f ( x)≥-9恒成立,所以3m-2≥-9,解得 m≥2.5.答案 A解析 f ( x)=cos2x-cos x-1,∴f′(x)=-2sin x·cos x+sin x=sin x·(1-2cos x).令 f ′(x)>0,结合选项,选A.6. 答案 D7. 答案 D8. 答案 A9. 答案 B解析 1 3 2设 f ( x ) =3x -ax +1,则2f ′(x )=x -2ax =x ( x -2a ) ,当 x ∈(0,2) 时, f ′(x )<0,f ( x ) 在(0,2) 上为减函数,又 f (0) f (2) =8 111 3-4a +1 = 3 -4a <0,f ( x ) =0 在(0,2) 上恰好有一个根,故选 B.10. 答案 D11. 答案 C解析 数形结合,如图.2f(x) d x = 1x 2d x + 2(2 -x) d x0 11 3 11 22= 3x+ 2x -2x11 1= 3+(4 -2-2+2)5= 6,故选 C .12. 答案Af ′(x) =x cos x -sin x解析 x 2, 令 g(x) =x cos x -sin x ,则g ′(x) =- x sin x +cos x -cos x =- x sin x.∵0<x<1,∴ g ′(x)<0 ,即函数 g(x) 在 (0,1) 上是减函数,得 g(x)<g(0) =0,故 f ′(x)<0 ,函数 f(x) 在(0,1) 上是减函数,得 a>b ,故选A .213. 答案 32 2解析 f ′(x) = x -2f ′(1)x + 1,令 x=1,得 f ′(1) =3.14. 答案 c<a<b解析f(2) = f( π-2) , f(3) = f( π- 3) ,因为 f ′(x) = 1+π ππcos x≥0,故f(x)在-2,2上是增函数,∵2 >π-2>1>π-3>0,∴f( π-2)>f(1)>f( π-3) ,即 c<a<b.2815.答案 f(x) =3x+3解析设函数 f(x) =ax+b(a ≠0) ,因为函数 f(x) 的图像过点(2,4) ,所以有 b=4-2a.∴1 f(x) d x= 1 (ax +4-2a) d x0 01 2 1 1=[ ax +(4 -2a)x] | 0=a+4-2a=1.2 22 8 2 8∴a=3. ∴b=3. ∴f(x) =3x+3.16. 答案21解析2 2∵y′=2x,∴过点( a k,a k)处的切线方程为y-a k=2a k( x1-a k),又该切线与 x 轴的交点为( a k+1,0),所以 a k+1=2a k,即数列{ a k}1是等比数列,首项a1=16,其公比q=2,∴ a3=4,a5=1,∴ a1+a3 +a5=21.17. 解析抛物线 y =x -x 2 与 x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与 x 轴所围图形面积 S = 12) d x =x 2 x 3 11 (x -x 2 -3 0=2-1 13=6.y =x -x 2,又 由此可得抛物线 y =x -x 2 与 y =kx 两交点的横y =kx ,S- 2 x 3 -坐标 x 3= , 4= - ,所以 = 1-k (x - x 2 kx) d x =1 k x - 1k -0 x 1 k 2 02313=6(1 -k) .3又 S = ,所以 (1 -k) 3=1,∴ k =1- 4.622118. 解析 (1) 由函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 单调递增,在区间 [1,2) 单调递减,∴x =1 时,取得极大值,∴ f ′(1) = 0.又 f ′(x) = 4x3-12x2+2ax ,∴4-12+2a = 0? a = 4.(2) 点 A(x0,f(x0)) 关于直线 x =1 的对称点 B 的坐标为 (2 -x0, f(x0)) ,f(2 -x0) =(2 -x0)4 -4(2 -x0)3 +4(2 -x0)2 -1= (2 -x0)2[(2 -x0) -2]2 -1= x 40-4x30+ ax20- 1=f(x0) ,∴A 关于直线 x =1 的对称点 B 也在函数 f(x) 的图像上.19.解析 f ′(x) =3x2+2ax+b.(1) 由极值点的必要条件可知:12-4a+b=0,f ′( - 2) =f ′(4) = 0,即48+8a+b=0,解得 a=- 3,b=- 24.或f ′(x) = 3x2+2ax+b=3(x +2)(x -4)=3x2-6x-24,也可得 a=- 3,b=- 24.(2) 由 f ′(x) = 3(x +2)(x -4) .当 x<- 2 时, f ′(x) > 0,当- 2<x<4 时, f ′(x) < 0. ∴x=- 2 是极大值点,而当x>4 时, f ′(x) > 0,∴x=4 是极小值点.20.解析 a≠0( 否则 f(x) =b 与题设矛盾 ) ,由f ′(x) = 3ax2-12ax=0 及 x∈[ - 1,2] ,得 x=0. (1) 当 a>0 时,列表:x ( -1,0) 0 (0,2)f ′(x) +0 -f(x) 增极大值 b 减由上表知, f(x) 在[ - 1,0] 上是增函数,f(x) 在[0,2] 上是减函数.则当 x=0 时, f(x) 有最大值,从而b=3.又f( -1) =- 7a+3,f(2) =- 16a+3,∵a>0,∴ f( -1) >f(2) .从而 f(2) =- 16a+3=- 29,得a=2.(2)当 a<0 时,用类似的方法可判断当 x=0 时 f(x) 有最小值.当x=2 时, f(x) 有最大值.从而 f(0) =b=- 29, f(2)=-16a-29=3,得a=- 2.综上, a= 2,b=3 或 a=- 2,b=- 29.21.解析 (1) 由题意得f′(x) = 3ax2+2x+b. 因此g( x) =f ( x) +f′(x)=ax3+(3 a+1) x2+( b+2) x+b.因为函数 g( x)是奇函数,所以g(-x)=- g( x),即对任意实数x,有 a(- x)3+(3 a+1)(-x)2+( b +2)( -x) +b=- [ ax3+(3 a+1) x2+( b+2) x+b] ,从而 3a+1=0,b=0,解得a=-1,b=0,因此f ( x) 的解析式为f ( x) =-x3+x2. 331(2)由(1) 知g( x) =-1x3+2x,所以g′(x) =-x2+2. 3令g′(x)=0,解得x1=-2,x2=2,则当x<-2或x> 2时,g′(x)<0,从而 g( x)在区间(-∞,-2],[ 2,+∞)上是减函数;当- 2<x< 2时,g′(x)>0 ,从而g( x) 在[ - 2, 2] 上是增函数.由前面讨论知, g( x)在区间[1,2] 上的最大值与最小值只能在x=1,2,2 时取得,而g(1)5=3,g( 2) =4 23,g(2)4=3. 因此g( x)在区间 [1,2] 上的最大值为g( 2) =4 2,最小值为3g(2)4=3.22. 分析解答本题,应先正确求出函数 f ( x)的导数f ′(x),再利用导数与函数的单调性、导数与极值、导数与最值等知识求解,并注意在定义域范围内求解.a 2 ax2+a-2解析 (1) f′(x) =ax+1-1+x 2=ax+1 1+x 2,∵f ( x)在 x=1处取得极值,2∴f ′(1)=0,即 a·1+a-2=0,解得 a=1.(2) f′(x) =ax2+a-22,ax+1 1+x∵x≥0, a>0,∴ ax+1>0.①当 a≥2时,在区间[0,+∞)上, f ′(x)>0,∴f( x)的单调增区间为[0,+∞).②当 0<a<2 时,由 f ′(x)>0,解得 x> 2-a a.由 f ′(x)<0,解得 x< 2-a a.∴f ( x)的单调减区间为(0, 2-a 2-a a ) ,单调增区间为 ( a,+∞ ) .(3) 当a≥2时,由 (2) ①知,f ( x) 的最小值为f (0) =1;当 0<a<2,由 (2) ②知,f ( x) 在x=2-aa 处取得最小值,且2-af ( a )< f (0) =1.综上可知,若 f ( x)的最小值为1,则 a 的取值范围是[2,+∞).。
专题2.4 导数的应用(二)(测试时间:120分钟 满分:150分)一、选择题(共12小题,每题5分,共60分)1. 曲线x y ln =上一点P 和坐标原点O 的连线恰好是该曲线的切线,则点P 的横坐标为( )A .eC .e 2D .2 【答案】A考点:导数的几何意义2. 已知函数y =2x 3+ax 2+36x -24在x =2处有极值,则该函数的一个递增区间是 A.(2,3)B.(3,+∞)C.(2,+∞)D.(-∞,3)【答案】B【解析】本题考查常见函数的导数,可导函数f ′(x )=0与极值点的关系,以及用导数求函数的单调区间.y ′=6x 2+2ax +36.∵函数在x =2处有极值,∴y ′|x =2=24+4a +36=0,即-4a =60.∴a =-15. ∴y ′=6x 2-30x +36=6(x 2-5x +6)=6(x -2)(x -3). 由y ′=6(x -2)(x -3)>0,得x <2或x >3. 考点:导数与函数的单调性。
3. 如图是函数()32f x x bx cx d =+++的大致图象,则2212x x +=( )A .23 B .43 C .83 D .123【来源】【百强校】2015-2016学年四川南充高级中学高二下期期末理数学试卷(带解析) 【答案】C 【解析】考点:利用导数研究函数的极值;导数的几何意义.【方法点晴】本题主要考查了导数研究函数的单调性与极值、导数的几何意义的应用,充分体现导数在函数问题解答中的应用,本题的解答中根据函数的图象()0f x =的根为0,1,2,求出函数的解析式,再利用12,x x 是方程23620x x -+=的两根,结合一元二次方程的根与系数的关系是解答的关键,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用.4. 已知关于x 的不等式ln mx x <有唯一整数解,则实数m 的最小值为( ) A.1ln22 B. 1ln33 C. 1ln23 D. 1ln32【来源】【全国校级联考】吉林省百校联盟2018届高三九月联考数学(文)试题 【答案】A【解析】由ln mx x <,得: ln m x x <,令()ln g x x x =,∴()21l n g?xx x -=, ()g?0,x <得到减区间为()e ∞+,; ()g?0,x >得到增区间为()0e ,,∴()max 1g x e =, ()1g 2ln22=, ()1g 3ln33=,且()()g 2g 3<,∴要使不等式ln mx x <有唯一整数解,实数m 应满足11ln2m ln323≤<,∴实数m 的最小值为1ln22. 故选:A点睛:不等式ln mx x <有唯一整数解问题可以转化为两个图像的位置关系问题,观察y m =与()ln g xx x=的图象的高低关系,只要保证y m =上方只有一个整数满足ln m xx<即可. 5. 若函数()ln f x x x a =-有两个零点,则实数a 的取值范围为( ) A. 1,1e ⎛⎫- ⎪⎝⎭ B. 1,1e ⎛⎫ ⎪⎝⎭ C. 1,0e ⎛⎫- ⎪⎝⎭ D. 1,e ⎛⎫-+∞ ⎪⎝⎭【来源】【全国市级联考】2018黔东南州高考第一次模拟考试文科数学试题 【答案】C【解析】函数的定义域为0+∞(,),由()ln 0f x x x a =-=,得ln x x a =,故选C.点睛:本题主要考查函数零点的应用,构造函数求函数的导数,利用函数极值和导数之间的关系是解决本题的关键;根据函数零点的定义, ()ln 0f x x x a =-=,得ln x x a =,设函数()ln g x x x =,利用导数研究函数的极值即可得到结论.6.对任意x ∈R,函数f (x )的导数存在,若f′(x )>f(x)且 a >0,则以下正确的是( ▲)A .)0()(f e a f a ⋅>B .)0()(f e a f a ⋅<C .)0()(f a f >D .)0()(f a f < 【答案】A 【解析】试题分析:设()()x e x f x g =,那么()()()()02>-'='x xx ee xf e x f xg ,所以()x g 是单调递增函数,那么当0>a 时,()()0g a g >,即()()0f ea f a>,即)0()(f e a f a ⋅< 考点:根据函数的单调性比较大小7. 设f(x)是定义在R 上的奇函数,且f(2)=0,当x>0则不等式2()0x f x >的解集是A. (-2,0) ∪(2,+∞)B. (-2,0) ∪(0,2)C. (-∞,-2)∪(2,+∞) D . (-∞,-2)∪(0,2) 【答案】D 【解析】故选D考点:利用导数求不等式的解集。
第二章 导数与微分 单元测试题考试时间:120分钟 满分:100分 一、选择题(每小题2分,共40分)1.两曲线21y y ax b x ==+,在点1(2)2,处相切,则( ) A .13164a b =-=, B .11164a b ==,C .912a b =-=,D .712a b ==-,2.设(0)0f =,则()f x 在0x =可导的充要条件为( )A .201lim(1cos )h f h h →-存在 B .01lim (1)h h f e h→-存在 C .201lim (sin )h f h h h →-存在 D .[]01lim (2)()h f h f h h→-存在3.设函数()f x 在区间()δδ-,内有定义,若当()x δδ∈-,时恒有2()f x x ≤,则0x =必是()f x 的( )A .间断点B .连续而不可导的点C .可导的点,且(0)0f '=D .可导的点,且(0)0f '≠4.设函数()y f x =在0x 点处可导,x y ,分别为自变量和函数的增量,dy 为其微分且0()0f x '≠,则0limx dy yy→-=( )A .-1B .1C .0D .∞5.设()f x 具有任意阶导数,且[]2()()f x f x '=,则()()n f x =( )A .[]1()n n f x + B .[]1!()n n f x + C .[]1(1)()n n f x ++ D .[]1(1)!()n n f x ++6.已知函数 0() 0x x f x a b x x x ≤⎧⎪=⎨>⎪⎩+cos 在0x =处可导,则( )A .22a b =-=,B .22a b ==-,C .11a b =-=,D .11a b ==-,7.设函数32()3f x x x x =+,则使()(0)n f不存在的最小正整数n 必为( )A .1B .2C .3D .4 8.若()f x 是奇函数且(0)f '存在,则0x =是函数()()f x F x x=的( )A .无穷型间断点B .可去间断点C .连续点D .振荡间断点 9.设周期函数()f x 在()-∞+∞,内可导,周期为4,又0(1)(1)lim12x f f x x→--=-,则曲线()y f x =在点(5(5))f ,处的切线的斜率为( )A .12B .0C .1-D .2- 10.设()f x 处处可导,则( )A .当lim ()x f x →-∞=-∞时,必有lim ()x f x →-∞'=-∞B .当lim ()x f x →-∞'=-∞时,必有lim ()x f x →-∞=-∞C .当lim ()x f x →+∞=+∞时,必有lim ()x f x →+∞'=+∞D .当lim ()x f x →+∞'=+∞时,必有lim ()x f x →+∞=+∞11.若()sin f x x x =,则( )A .(0)f ''存在B .(0)0f ''=C .(0)f ''=∞D .(0)f π''=12.若2()max{2},(04)f x x x x =∈,,,且知()f a '不存在,(04)a ∈,,则必有( )A .1a =B .2a =C .3a =D .12a =13.若函数sin 2 0() 10xx x f x x x ⎧+≠⎪=⎨⎪=⎩,, 则使()f x '在点0x =处( )A .存在但不连续B .不存在C .不仅存在而且连续D .无穷大14.设n1cos 0() 0 0x x f x xx ⎧≠⎪=⎨⎪=⎩ 则使()f x '在点0x =点处连续的最小自然数为( )A .1n =B .2n =C .3n =D .4n =15.若函数()f x 对任意实数x 1,x 2均满足关系式1212()()()f x x f x f x +=,且(0)2f '=,则必有( )A .(0)0f =B .(0)2f =C .(0)1f =D . (0)1f =- 16.若()f x 是在()-∞+∞,内可导的以l 为周期的周期函数,则()f ax b '+(0a a b≠,、为常数)的周期为( )A .lB .l b -C .laD . l a17.函数23()(2)f x x x x x =-- -不可导的点的个数为( ) A .3 B .2 C .1 D . 018.设220()()0x x f x x g x x ⎧>= ≤⎩ 其中()g x 是有界函数,则()f x 在0x =处( ) A .极限不存在 B .极限存在但不连续 C .连续但不可导 D .可导 19.设()f x 在0x =的一个领域内有定义,且(0)0f =,若21cos 1lim()2(1)x x x f x x e →-=-,则()f x 在0x =处( )A .不连续B .连续但不可导C .可导且(0)0f '=D .可导且(0)1f '=20.设()()()f x f x x =--∈-∞+∞,,,且在(0)+∞,内()0()0f x f x '''><,,则在(0)-∞,内( )A .()0()0f x f x '''>>,B .()0()0f x f x '''><,C .()0()0f x f x '''<>,D .()0()0f x f x '''<<,二、填空题(每小题3分,共60分)1.设 1() 1ax b x f x x x 2+≤⎧=⎨ >⎩ 在1x =处可导,则a =____________,b =____________。
2010-2011学年高二数学《导数及其应用》达标练习题一、理解导数的概念——了解实际意义,知道代数意义,理解几何意义。
(5分)1.如果说某物体作直线运动的时间与距离满足()2()21s t t =-,则其在 1.2t =时的瞬时速度为( D ) A .4 B .4- C .4.8 D .0.82、曲线221y x =+在()1,3P -处的切线方程是 4x+y+1=03、函数1y x =-在1,22⎛⎫- ⎪⎝⎭处的切线方程是 4x-y-4=04、(2010全国卷2文数)若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则a = 1 , b= 15.抛物线y =4x =的点处的切线方程为( C )A .4180x y --=B .440x y ++=C .440x y -+=D .4180x y +-=6、函数()ln (0)f x x x x =>在))1(,1(f 的切线方程是 y=x-17.曲线sin y x =在点1,62π⎛⎫⎪⎝⎭处的切线方程是063123=-+-πy x 8、xx x f cos )(=在))(,(ππf 处的切线方程是 022=--ππy x 二、会进行导数的运算——会根据定义、公式、法则求简单函数的导数(与其他综合,一般不单独命题) 1.下列求导运算正确的是( B )A .(x +211)1xx +=' B .(log 2x )′=2ln 1x C .(3x )′=3x log 3e D .(x 2cos x )′=-2x sin x2.已知函数2()f x x =,若'()()f x f x =,则x = 0或23、函数1y x x=+在1x =处的导数是__0___. 4 .若x x y cos sin =,则/y =x2cos 1 三、掌握导数的理论的简单应用——求不超过3次的多项式函数的单调区间;极大值、极小值;给定区间的最大值、最小值。
重庆柏梓中学高三数学复习资料 函数及导数单元能力测试命题人 蒋红伟一、选择题(每题5分,共50分)1.函数)1lg(-=x y 的定义域是( )A .[2,+∞)B .[1,+∞)C .(1,+∞)D .(2,+∞)2.设b a 、为实数,集合{}x x f a N a b M 2:,0,,1,→=⎭⎬⎫⎩⎨⎧=,表示把集合M 中的x 映射到集合N 中为x 2,则=+b a ( )A .2-B .0C .2D .2±3.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4 D .54.定义域为R 的函数)(x f y =的值域为[]b a ,,则函数)(a x f y +=的值域为( ) A .[]b a a +,2 B .[]a b -,0 C .[]b a , D .[]b a a +-,5.已知函数2,0()1,0x x f x x x ⎧>=⎨+≤⎩,若()(1)0f a f +=,则实数a 的值等于( )A .3-B .1-C .1D .36.函数x xx f -=1)(的图象关于( ) A .y 轴对称 B .直线x y -=对称 C .坐标原点对称 D .直线x y =对称7.设11333124log ,log ,log ,,,233a b c a b c ===则的大小关系是( )A .a b c <<B .c b a <<C .b a c <<D .b c a <<8.定义在R 上的函数()f x 在[)+∞-,3上为增函数,且(3)y f x =-为偶函数,则( ) A .(8)(4)f f -<- B .(5)(1)f f ->-C .(6)(2)f f -<D .(6)(1)f f -<-9.已知2)(357++-=cx bx ax x f 且m f =-)5(,则)5()5(-+f f 的值为( )A .4B .0C .m 2D .4+-m10.若函数c bx x x f ++=2)(的图象的顶点在第四象限,则函数)(x f '的图象是( )二、填空题(每题5分,共25分)11.已知函数f (x )=4x +m ·2x +1有且只有一个零点,则实数m 的值为_______12.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨 13.函数20.5log (2)y x x =-单调递减区间为14.已知奇函数()f x 满足(2)()f x f x +=-,且当(0,1)x ∈时()2x f x =,则(3.5)f 的值为 15.已知)(x f 是定义在R 上的奇函数,当0≤x 时,22)(x x x f +=,则当0>x 时=)(x f三、解答题(16-19题各13分、19-21题各12分)16.已知函数x x x f 21)(++= (1)求函数)(x f 的定义域 (2)求)(x f 的值域17.已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.18.某农工贸集团开发的养殖业和养殖加工业的年利润分别为(万元)和Q P ,这两项生产与投入的资金310,3aQ a P a ==(万元)的关系是,该集团今年计划对这两项生产投入资金共60万元,为获得最大利润,对养殖业与养殖加工业生产每项各投入多少万元?最大利润可获多少万元?19.已知函数12)(+=x xx f 与函数)(x g y =的图象关于直线2=x 对称, (1)求)(x g 的表达式 (2)若)(1)2(x x Φ=+Φ,当)0,2(-∈x 时,)()(x g x =Φ,求)2005(Φ的值20.已知函数c bx ax x x f +++=23)(在32-=x 与1=x 时都取得极值 (1)求b a 、的值与函数)(x f 的单调区间(2)若对[]2,1-∈x ,不等式2)(c x f <恒成立,求c 的取值范围21.已知定义在(-∞,0)∪(0,+∞)上的函数f (x )满足:①对任意的x ,y ∈(-∞,0)∪(0,+∞),有f (xy )=f (x )+f (y );②当x >1时,f (x )>0,且f (2)=1. (1)试判断函数f (x )的奇偶性;(2)判断函数f (x )在(0,+∞)上的单调性;(3)求函数f (x )在区间[-4,0)∪(0,4]上的最大值; (4)求不等式f (3x -2)+f (x )≥4的解集.函数与导数单元能力测试(二)参考答案CCDCA CBCAA 11.2- 12.20 13.(]1,0 14.2-15.22x x -16.(1)⎪⎭⎫⎢⎣⎡+∞-,21 (2)⎪⎭⎫⎢⎣⎡+∞-,2117.(1)5,4,2=-==c b a (2)2795)(,13)(min max ==x f x f 18.310360xx y +-=养殖业35万,养殖加工业25万,最大利润385万 19.(1))5(582)(≠--=x x x x g (2)53)2005(=Φ 20.解:(1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b ,当x =1时,切线l 的斜率为3,可得2a +b =0.① 当x =23时,y =f (x )有极值,则f ′⎝⎛⎭⎫23=0,可得4a +3b +4=0.② 由①②解得a =2,b =-4.由于切点的横坐标为x =1,∴f (1)=4, ∴1+a +b +c =4,∴c =5. ∴a =2,b =-4,c =5.(2)由(1)可得f (x )=x 3+2x 2-4x +5, ∴f ′(x )=3x 2+4x -4,令f ′(x )=0,得x 1=-2,x 2=23.当x 变化时,y 、y ′的取值及变化如下表:∴y =f (x )在[-3,1]上的最大值为13,最小值为9527.21. (1)令x =y =1,则f (1×1)=f (1)+f (1),得f (1)=0;再令x =y =-1,则f [(-1)·(-1)]=f (-1)+f (-1),得f (-1)=0.对于条件f (x ·y )=f (x )+f (y ),令y =-1,则f (-x )=f (x )+f (-1),所以f (-x )=f (x ).又函数f (x )的定义域关于原点对称,所以函数f (x )为偶函数.(2)任取x 1,x 2∈(0,+∞),且x 1<x 2,则有x 2x 1>1.又∵当x >1时,f (x )>0,∴f ⎝⎛⎭⎫x 2x 1>0.又f (x 2)=f ⎝⎛⎭⎫x 1·x 2x 1=f (x 1)+f ⎝⎛⎭⎫x 2x 1>f (x 1),∴函数f (x )在(0,+∞)上是增函数.(3)∵f (4)=f (2×2)=f (2)+f (2),又f (2)=1,∴f (4)=2.又由(1)(2)知函数f (x )在区间[-4,0)∪(0,4]上是偶函数且在(0,4]上是增函数,∴函数f (x )在区间[-4,0)∪(0,4]上的最大值为f (4)=f (-4)=2.(4)∵f (3x -2)+f (x )=f [x (3x -2)],4=2+2=f (4)+f (4)=f (16),∴原不等式等价于f [x (3x -2)]≥f (16).又函数f (x )为偶函数,且函数f (x )在(0,+∞)上是增函数,∴原不等式又等价于|x (3x -2)|≥16,即x (3x -2)≥16或x (3x -2)≤-16,解得x ≤-2或x ≥83,∴不等式f (3x -2)+f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-2或x ≥83.。
单元综合测试三(第三章)时间:90分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.已知f (x )=(x +a )2,且f ′(12)=-3,则a 的值为( ) A .-1 B .-2 C .1D .2解析:f (x )=(x +a )2,∴f ′(x )=2(x +a ). 又f ′(12)=-3,∴1+2a =-3,解得a =-2. 答案:B2.函数y =sin x (cos x +1)的导数是( ) A .y ′=cos2x -cos x B .y ′=cos2x +sin x C .y ′=cos2x +cos xD .y ′=cos 2x +cos x解析:y ′=(sin x )′(cos x +1)+sin x (cos x +1)′=cos 2x +cos x -sin 2x =cos2x +cos x .答案:C3.函数y =3x -x 3的单调递增区间是( ) A .(0,+∞) B .(-∞,-1) C .(-1,1)D .(1,+∞)解析:f ′(x )=3-3x 2>0⇒x ∈(-1,1).答案:C4.某汽车启动阶段的路程函数为s (t )=2t 3-5t 2+2,则t =2秒时,汽车的加速度是( )A .14B .4C .10D .6解析:依题意v (t )=s ′(t )=6t 2-10t ,所以a (t )=v ′(t )=12t -10,故汽车在t =2秒时的加速度为a (2)=24-10=14.答案:A5.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 的值为( )A .-2B .-1C .1D .2解析:f ′(x )=x cos x +sin x ,f ′(π2)=1, ∴k =-a2=-1,a =2. 答案:D6.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( )A .1B .3C .-4D .-8解析:如图所示,由已知可设P (4,y 1),Q (-2,y 2), ∵点P ,Q 在抛物线x 2=2y 上,∴⎩⎨⎧42=2y 1, ①(-2)2=2y 2, ②∴⎩⎨⎧y 1=8,y 2=2,∴P (4,8),Q (-2,2).又∵抛物线可化为y =12x 2,∴y ′=x . ∴过点P 的切线斜率为y ′|x =4=4,∴过点P 的切线为y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为y ′|x =-2=-2.∴过点Q 的切线为y -2=-2(x +2),即y =-2x -2.联立⎩⎨⎧y =4x -8,y =-2x -2,解得x =1,y =-4.∴点A的纵坐标为-4. 答案:C7.若函数y=a(x3-x)的递增区间是(-∞,-33),(33,+∞),则a的取值范围是()A.a>0 B.-1<a<0 C.a>1 D.0<a<1解析:依题意y′=a(3x2-1)>0的解集为(-∞,-33),(33,+∞),故a>0.答案:A8.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是()A.0≤a≤21 B.a=0或a=7C.a<0或a>21 D.a=0或a=21解析:f′(x)=3x2+2ax+7a,当Δ=4a2-84a≤0,即0≤a≤21时,f′(x)≥0恒成立,函数f(x)不存在极值点.故选A.答案:A9.已知函数f(x)=x3-3x,若对于区间[-3,2]上任意的x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是()A.0 B.10C.18 D.20解析:f′(x)=3x2-3,令f′(x)=0,解得x=±1,所以1,-1为函数f(x)的极值点,因为f(-3)=-18,f(-1)=2,f(1)=-2,f(2)=2,所以在区间[-3,2]上,f(x)max=2,f(x)min=-18,所以对于区间[-3,2]上任意的x1,x2,|f(x1)-f(x2)|≤20,所以t≥20,从而t的最小值为20.答案:D10.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点解析:取函数f(x)=x3-x,则x=-33为f(x)的极大值点,但f(3)>f(-33),∴排除A.取函数f(x)=-(x-1)2,则x=1是f(x)的极大值点,f(-x)=-(x+1)2,-1不是f(-x)的极小值点,∴排除B;-f(x)=(x-1)2,-1不是-f(x)的极小值点,∴排除C.故选D.答案:D11.若函数y=f(x)满足xf′(x)>-f(x)在R上恒成立,且a>b,则()A.af(b)>bf(a) B.af(a)>bf(b)C.af(a)<bf(b) D.af(b)<bf(a)解析:设g(x)=xf(x),则g′(x)=xf′(x)+f(x)>0,∴g(x)在R上是增函数,又a>b,∴g(a)>g(b)即af(a)>bf(b).答案:B12.设函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e 28,则x >0时,f (x )( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值解析:由题意知f ′(x )=e x x 3-2f (x )x =e x -2x 2f (x )x3.令g (x )=e x-2x 2f (x ),则g ′(x )=e x -2x 2f ′(x )-4xf (x )=e x -2(x 2f ′(x )+2xf (x ))=e x -2e xx =e x ⎝ ⎛⎭⎪⎫1-2x .由g ′(x )=0得x =2,当x =2时,g (x )min =e 2-2×22×e 28=0,即g (x )≥0,则当x >0时,f ′(x )=g (x )x 3≥0,故f (x )在(0,+∞)上单调递增,既无极大值也无极小值.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若抛物线y =x 2-x +c 上一点P 的横坐标为-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________.解析:∵y ′=2x -1,∴y ′|x =-2=-5. 又P (-2,6+c ),∴6+c-2=-5.∴c =4. 答案:414.如果函数f (x )=x 3-6bx +3b 在区间(0,1)内存在与x 轴平行的切线,则实数b 的取值范围是________.解析:存在与x 轴平行的切线,即f ′(x )=3x 2-6b =0有解,∵x ∈(0,1),∴b =x 22∈(0,12).答案:{b |0<b <12}15.已知a ≤4x 3+4x 2+1对任意x ∈[-1,1]都成立,则实数a 的取值范围是________.解析:设f (x )=4x 3+4x 2+1,则f ′(x )=12x 2+8x =4x (3x +2),令f ′(x )=0,解得x 1=0,x 2=-23.又f (-1)=1, f (-23)=4327,f (0)=1,f (1)=9,故f (x )在[-1,1]上的最小值为1,故a ≤1.答案:(-∞,1]16.设二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x ),f ′(0)>0,若∀x ∈R ,恒有f (x )≥0,则f (1)f ′(0)的最小值是________.解析:二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x )=2ax +b ,由f ′(0)>0,得b >0,又对∀x ∈R ,恒有f (x )≥0,则a >0, 且Δ=b 2-4ac ≤0,故c >0,所以f (1)f ′(0)=a +b +c b =a b +c b +1≥2acb 2+1≥2ac4ac +1=2,所以f (1)f ′(0)的最小值为2.答案:2三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知函数f (x )=ln(2x +a )+x 2,且f ′(0)=23.(1)求f (x )的解析式;(2)求曲线f (x )在x =-1处的切线方程. 解:(1)∵f (x )=ln(2x +a )+x 2,∴f ′(x )=12x +a ·(2x +a )′+2x =22x +a +2x .又∵f ′(0)=23,∴2a =23,解得a =3. 故f (x )=ln(2x +3)+x 2.(2)由(1)知f ′(x )=22x +3+2x =4x 2+6x +22x +3,且f (-1)=ln(-2+3)+(-1)2=1, f ′(-1)=4×(-1)2+6×(-1)+22(-1)+3=0,因此曲线f (x )在(-1,1)处的切线方程是y -1=0(x +1),即y =1.18.(12分)已知函数f (x )=13x 3+ax +b (a ,b ∈R )在x =2处取得极小值-43.(1)求函数f (x )的增区间;(2)若f (x )≤m 2+m +103对x ∈[-4,3]恒成立,求实数m 的取值范围.解:(1)由已知得f (2)=-43,f ′(2)=0,又f ′(x )=x 2+a ,所以83+2a +b =-43,4+a =0,所以a =-4,b =4,则f (x )=13x 3-4x +4,令f ′(x )=x 2-4>0,得x <-2或x >2,所以增区间为(-∞,-2),(2,+∞).(2)f (-4)=-43,f (-2)=283,f (2)=-43,f (3)=1,则当x ∈[-4,3]时,f (x )的最大值为283,故要使f (x )≤m 2+m +103对∈[-4,3]恒成立,只要283≤m 2+m +103,所以实数m 的取值范围是m ≥2或m ≤-3.19.(12分)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b -4=4,所以a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x(x +2)-2x -4=4(x +2)(e x-12).令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x =-2时,函数f (x )取得极大值, 极大值为f (-2)=4(1-e -2).20.(12分)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程. (2)求函数f (x )的极值.解:函数f (x )的定义域为(0,+∞),f ′(x )=1-ax . (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),所以f (1)=1,f ′(1)=-1,所以y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax ,x >0可知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a;因为x∈(0,a)时,f′(x)<0,x∈(a,+∞)时,f′(x)>0,所以f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.综上:当a≤0时,函数f(x)无极值,当a>0时,函数f(x)在x=a处取得极小值a-a ln a,无极大值.21.(12分)某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定给这种食品生产厂家提供政府补贴,设这种食品的市场价格为x 元/千克,政府补贴为t 元/千克,根据市场调查,当16≤x ≤24时,这种食品日供应量p 万千克,日需量q 万千克近似地满足关系:p =2(x +4t -14)(t >0),q =24+8ln 20x .当p =q 时的市场价格称为市场平衡价格.(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域;(2)为使市场平衡价格不高于20元/千克,政府补贴至少为多少元/千克?解:(1)由p =q 得2(x +4t -14) =24+8ln 20x (16≤x ≤24,t >0), 即t =132-14x +ln 20x (16≤x ≤24). ∵t ′=-14-1x <0,∴t 是x 的减函数. ∴t min =132-14×24+ln 2024=12+ln 2024=12+ln 56; t max =132-14×16+ln 2016=52+ln 54, ∴值域为⎣⎢⎡⎦⎥⎤12+ln 56,52+ln 54.(2)由(1)知t =132-14x +ln 20x (16≤x ≤24).而当x =20时,t =132-14×20+ln 2020=1.5(元/千克),∵t 是x 的减函数,∴欲使x ≤20,必须t ≥1.5(元/千克). 要使市场平衡价格不高于20元/千克,政府补贴至少为1.5元/千克.22.(12分)已知函数f (x )=ln x -12ax 2-2x .(1)若函数f (x )在x =2处取得极值,求实数a 的值. (2)若函数f (x )在定义域内单调递增,求实数a 的取值范围. (3)当a =-12时,关于x 的方程f (x )=-12x +b 在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.解:(1)由题意,得f ′(x )=-ax 2+2x -1x(x >0), 因为x =2时,函数f (x )取得极值,所以f ′(2)=0,解得a =-34,经检验,符合题意.(2)函数f (x )的定义域为(0,+∞),依题意,f ′(x )≥0在x >0时恒成立,即ax 2+2x -1≤0在x >0时恒成立,则a ≤1-2x x 2=⎝ ⎛⎭⎪⎫1x -12-1在x >0时恒成立,即a ≤⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫1x -12-1min (x >0),当x =1时,⎝⎛⎭⎪⎫1x -12-1取最小值-1,所以a 的取值范围是(-∞,-1].(3)当a =-12时,f (x )=-12x +b , 即14x 2-32x +ln x -b =0.设g (x )=14x 2-32x +ln x -b (x >0), 则g ′(x )=(x -2)(x -1)2x, 当x 变化时,g ′(x ),g (x )的变化情况如下表:x (0,1) 1 (1,2) 2 (2,4) g ′(x ) + 0 - 0 + g (x )极大极小所以g (x )极小值=g (2)=ln2-b -2, g (x )极大值=g (1)=-b -54, 又g (4)=2ln2-b -2,因为方程g (x )=0在[1,4]上恰有两个不相等的实数根, 则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (4)≥0,解得ln2-2<b ≤-54,所以实数b 的取值范围是(ln2-2,-54).。
高二数学下册(必修三)导数 单元测试卷及答案解析一 、单选题(本大题共8小题,共40分)1.(5分)函数f(x)在x =4处的切线方程为y =3x +5,则f(4)+f ′(4)=( )A. 10B. 20C. 30D. 402.(5分)设a 为实数,函数f (x )=x 3+ax 2+(a −2)x 的导函数是f ′(x),且f ′(x)是偶函数,则曲线y =f (x )在原点处的切线方程为( )A. y =−2xB. y =3xC. y =−3xD. y =−4x3.(5分)若函数f(x)=x 2+lnx 的图像在(a,f(a))处的切线与直线2x +6y −5=0垂直,则a 的值为( )A. 1B. 2或14C. 2D. 1或124.(5分)已知函数f (x )={&ln (x +1),−1<x ⩽14 x 2+14,x >14 ,且关于x 的方程f (x )−kx =0恰有2个实数解,则实数k 的取值范围是( )A. [1,54] B. [54,+∞)C. [4ln 54,1]D. [4ln 54,1]⋃[54,+∞)5.(5分)曲线y =13x 3 在x =1处切线的倾斜角为( )A. 1B. −π4C. π4D.5π46.(5分) 若曲线f(x)=x 4−4x 在点A 处的切线平行于x 轴,则点A 的坐标为( )A. (-1,2)B. (1,-3)C. (1,0)D. (1,5)7.(5分)曲线f(x)=e x lnx 在x =1处的切线与坐标轴围成的三角形面积为( )A. e4B. e2C. eD. 2e8.(5分)曲线f(x)=x 2+3x 在点A(1,4)处的切线斜率为( )A. 2B. 5C. 6D. 11二 、多选题(本大题共5小题,共25分) 9.(5分)下列命题中是真命题有()A. 若f′(x0)=0,则x0是函数f(x)的极值点B. 函数y=f(x)的切线与函数可以有两个公共点C. 函数y=f(x)在x=1处的切线方程为2x−y=0,则f′(1)=2D. 若函数f(x)的导数f′(x)<1,且f(1)=2,则不等式f(x)>x+1的解集是(−∞,1)10.(5分)若函数y=f(x)的图象上存在两点,使得函数图象在这两点处的切线互相垂直,则称函数y=f(x)具有“T性质”.则下列函数中具有“T性质”的是()A. y=xe x B. y=cosx+1 C. y=1x3D. y=ln2log2x11.(5分)已知函数f(x)=x+√2x图象上的一条切线与g(x)=x的图象交于点M,与直线x=0交于点N,则下列结论不正确的有()A. 函数f(x)的最小值为2√2B. 函数的值域为(−∞,−2√24]C. |MN|2的最小值为16−8√2D. 函数f(x)图象上任一点的切线倾斜角的所在范围为[0,π4]12.(5分)已知曲线上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a可能的取值()A. 196B. 3 C. 103D. 9213.(5分)设函数f(x)=x−ln|x|x,则下列选项中正确的是()A. f(x)为奇函数B. 函数y=f(x)−1有两个零点C. 函数y=f(x)+f(2x)的图象关于点(0,2)对称D. 过原点与函数f(x)相切的直线有且只有一条三、填空题(本大题共5小题,共25分)14.(5分)已知倾斜角为45°的直线l与曲线y=lnx−2x+1相切,则直线l的方程是 ______.15.(5分)已知曲线C:y=x3−3x2+2x,直线l过(0,0)与曲线C相切,则直线l的方程是______ .16.(5分)函数f(x)={1−2x,x⩾012x2+2x,x<0,函数g(x)=k(x−2),若方程f(x)=g(x)恰有三个实数解,则实数k的取值范围为__________.17.(5分)函数f(x)=√4x+1,则函数f(x)在x=2处切线的斜率为 ______.18.(5分)某物体作直线运动,其位移S与时间t的运动规律为S=t+2√t(t的单位为秒,S的单位为米),则它在第4秒末的瞬时速度应该为______米/秒.四、解答题(本大题共5小题,共60分)19.(12分)已知函数f(x)=x3+x−16.(1)求曲线y=f(x)在点(2,−6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.20.(12分)在抛物线C:y=ax2(a>0)上取两点A(m1,n1),B(m2,n2),且m2−m1=4,过点A,B分别作抛物线C的切线,两切线交于点P(1,−3).(1)求抛物线C的方程;(2)设直线l交抛物线C于M,N两点,记直线OM,ON(其中O为坐标原点)的斜率分别为k OM,k ON,且k OM.k ON=−2,若ΔOMN的面积为2√3,求直线l的方程.21.(12分)已知函数f(x)=(x+a)lnx,g(x)=x 2e x.已知曲线y=f(x)在点(1,f(1))处的切线与直线2x−y=0平行.(1)求a的值;(2)证明:方程f(x)=g(x)在(1,2)内有且只有一个实根.22.(12分)设f(x)=ae x+1ae x+b(a>0)(I)设曲线y=f(x)在点(2,f(2))的切线方程为y=32x;求a,b的值.(II)求f(x)在[0,+∞)上的最小值.23.(12分)已知曲线y=13x3+43,(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.参考答案与解析1.【答案】B;【解析】解:∵函数f(x)在x=4处的切线方程为y=3x+5,∴f′(4)=3,又f(4)=3×4+5=17,∴f(4)+f′(4)=17+3=20.故选:B.由已知可得f′(4),在切线方程中取x=4求得f(4),则答案可求.此题主要考查对数的几何意义及其应用,是基础题.2.【答案】A;【解析】此题主要考查导数的几何意义,函数的奇偶性,直线的点斜式方程,属于基础题.求导函数f′(x),由f′(x)是偶函数求出a的值,然后根据导数的几何意义求切线方程.解:由f(x)=x3+ax2+(a−2)x,得,f′(x)=3x2+2ax+(a−2),又∵f′(x)是偶函数,∴2a=0,即a=0,∴f′(x)=3x2−2,∴曲线y=f(x)在原点处的切线斜率为−2,曲线y=f(x)在原点处的切线方程为y=−2x,故选A.3.【答案】D;【解析】解:函数f(x)=x2+lnx的导数为f′(x)=2x+1x,在(a,f(a))处的切线的斜率为2a+1a,由切线与直线2x+6y−5=0垂直,可得−13(2a+1a)=−1,解得a=1或12,故选:D.求得f(x)的导数,由导数的几何意义可得切线的斜率,再由两直线垂直的条件,解方程可得所求值.此题主要考查导数的运用:求切线的斜率,以及两直线垂直的条件,考查方程思想和运算能力,属于基础题.4.【答案】C;【解析】此题主要考查了方程的根与函数的图象之间的关系应用及学生的作图能力,同时考查了导数的几何意义的应用,属于中档题.方程f(x)=kx恰有两个不同实数根,等价于y=f(x)与y=kx有2个交点,又k表示直线y= kx的斜率,求出k的取值范围.解:画出函数f(x)图象,可求得函数f(x)=ln(x+1)(−1<x⩽14)图象在点O(0,0)处的切线方程为y=x,过点O(0,0)且与函数f(x)=x2+14(x>14)图象相切的直线方程也为y=x,即得直线y=x为函数f(x)图象的切线,且有两个切点,切点为O(0,0)和A(12,12 ),关于x的方程f(x)−kx=0恰有2个实数解当且仅当直线y=kx函数f(x)图象有两个公共点,由图可知当且仅当k OB⩽k⩽k OA时符合题意,又k OA=1,k OB=ln(14+1)14=4ln54,则求得4ln54⩽k⩽1.故选C.5.【答案】C;【解析】解:∵y =13x 3,∴y ′=x 2,设曲线y =13x 3 在x =1处切线的倾斜角为α,根据导数的几何意义可知,切线的斜率k =y ′|x=1=12=1=tan α, ∴α=π4,即倾斜角为π4. 故选C .欲求在x =1处的切线倾斜角,先根据导数的几何意义可知k =y ′|x=1,再结合正切函数的值求出角α的值即可.该题考查了导数的几何意义,以及利用正切函数的性质可求倾斜角,本题属于容易题.6.【答案】B;【解析】解:f(x)=x 4−4x 的导数为f ′(x)=4x 3−4, 设切点为A(m,n),则n =m 4−4m , 可得切线的斜率为k =4m 3−4=0, 解得m =1,n =−3.即A(1,−3). 故选:B .求得函数的导数,设出切点A(m,n),代入函数式,求得切线的斜率,令它为0,解得m ,n ,进而得到切点A 的坐标.该题考查导数的运用:求切线的斜率,考查导数的几何意义,设出切点和正确求导是解答该题的关键,属于基础题.7.【答案】B; 【解析】此题主要考查导数的几何意义及三角形面积公式,属于基础题,先求出曲线f(x)=e x lnx 在x =1处的切线方程,再其求与坐标轴的交点即可求得三角形面积;解:f ′(x)=e xlnx +e x x,则f ′(1)=e ,f(1)=0,∴曲线f(x)=e x lnx 在x =1处的切线方程为y =e(x −1),令x=0,得y=−e,令y=0,得x=1,∴切线与坐标轴围成的三角形面积为S=12×e×1=e2.故选B.8.【答案】B;【解析】解:函数的导数为f′(x)=2x+3,所以函数在A(1,4)处的切线斜率k=f′(1)=2+3=5.故选:B.求曲线在点处得切线的斜率,就是求曲线在该点处得导数值.该题考查了导数的几何意义.导数的几何意义是指函数y=f(x)在点x0处的导数是曲线y= f(x)在点P(x0,y0)处的切线的斜率.它把函数的导数与曲线的切线联系在一起,使导数成为函数知识与解析几何知识交汇的一个重要载体.9.【答案】BCD;【解析】此题主要考查极值的概念,导数的几何意义,利用导数研究函数的单调性,利用单调性求解不等式,属于中档题.由题意结合知识点,逐个选项分析即可.解:选项A,若f′(x0)=0,x0不一定是函数f(x)的极值点,例如函数f(x)=x3,f′(0)=0,但x=0不是极值点,故错误;选项B,函数y=f(x)的切线与函数可以有两个公共点,例如函数f(x)=x3−3x,在x=1处的切线为y=−2与函数还有一个公共点为(−2,−2),故正确;选项C,因为函数y=f(x)在x=1处的切线方程为2x−y=0,所以f′(1)=2,故正确. 选项D,令g(x)=f(x)−x−1,因为函数f(x)的导数f′(x)<1,则g′(x)=f′(x)−1<0,所以函数g(x)=f(x)−x−1在R上单调递减,又g(1)=f(1)−2=0,由不等式f(x) > x+1得g(x) > 0=g(1),得x 1,所以不等式f(x) > x+1的解集是(−∞,1),故正确.故选BCD.10.【答案】AB;【解析】解:由题意,可知若函数y =f(x)具有“T 性质”,则存在两点, 使得函数在这两点处的导数值的乘积为−1, 对于A ,(xe x )′=1−x e x,满足条件;对于B ,(cosx +1)′=−sinx ,满足条件;对于C ,(1x 3)′=−3x 4<0恒成立,负数乘以负数不可能得到−1,不满足条件;对于D ,(ln2log 2x)′=ln2.1xln2=1x >0恒成立,正数乘以正数不可能得到−1,不满足条件. 故选:AB.分别求出四个选项中函数的导函数,看是否满足存在两点,使得函数在这两点处的导数值的乘积为−1即可.此题主要考查导数的几何意义及应用,考查化归与转化思想,关键是熟记基本初等函数的导函数,是中档题.11.【答案】ABD; 【解析】此题主要考查导数的运算和几何意义以及基本不等式求最值,属于中档题. 由题意和导数的运算结合基本不等式,逐个选项验证正误即可. 解:已知f(x)=x +√2x,当x >0时,f(x)=x +√2x⩾2√24,当x <0时,f(x)=x +√2x⩽−2√24,故选项A 、B 不正确;设直线l 与函数f(x)的图象相切于点(x 0,x 02+√2x 0),函数f(x)的导函数为f ′(x)=1−√2x 2=x 2−√2x 2,则直线l 的方程为y −x 02+√2x 0=x 02−√2x 02(x −x 0),即y =x 02−√2x 02x +2√2x 0,直线l 与g(x)=x 的交点为M(2x 0,2x 0),与x =0的交点为N(0,2√2x 0), 所以|MN|2=4x 02+(2x 0−2√2x 0)2=8x 02+8x 02−8√2⩾16−8√2,当且仅当x 02=1时取等号,故选项C 正确; f ′(x)=1−√2x 2=x 2−√2x 2⩽1,可知切线斜率可为负值,即倾斜角可以为钝角,故选项D 不正确.故选ABD.12.【答案】AC;【解析】此题主要考查导数的几何意义和二次方程的实根的分布,考查运算能力,属于中档题.求出导数,由题意可得2x2−2x+a=3有两个不相等的正根,由此列出不等式组即可得到a 的取值范围,进而可得a的可能取值.解:f(x)=23x3−x2+ax−1的导数为f′(x)=2x2−2x+a,由题意可得2x2−2x+a=3有两个不相等的正根,则{Δ=28−8a>0a−32>0,解得3<a<72,故选:AC.13.【答案】BCD;【解析】解:函数f(x)=x−ln|x|x的定义域为{ x|x≠0},f(−x)+f(x)=1−ln|−x|−x +1−ln|x|x=2≠0,所以f(x)不为奇函数,故A错误;由f(x)=1,可得ln|x|x=0,解得x=±1,故y=f(x)−1有两个零点,故B正确;由f(−x)+f(−2x)+f(x)+f(2x)=[f(−x)+f(x)]+[f(−2x)+f(2x)]=2+2=4,则函数y=f(x)+f(2x)的图象关于点(0,2)对称,故C正确;当x>0时,f(x)=1−lnxx ,f′(x)=−1−lnxx2,设过原点与f(x)相切的切点为(m,n),则切线的方程为y−n=lnm−1m2(x−m),即y−1+lnmm =lnm−1m2(x−m),代入(0,0),可得1+m=2lnm,设g(m)=2lnm−1−m,g′(m)=2m−1,当0<m<2时,g(m)递增,m>2时,g(m)递减,则g(m)的最大值为g(2)=2ln2−3<0,所以x>0时,不存在过原点的切线;当x<0时,f(x)=1−ln(−x)x ,f′(x)=−1−ln(−x)x2,设过原点与f(x)相切的切点为(s,t)(s<0),则切线的方程为y−t=ln(−s)−1s2(x−s),即y−1+ln(−s)s =ln(−s)−1s2(x−s),代入(0,0),可得1+s=2ln(−s),设g(s)=2ln(−s)−1−s,g′(m)=2s−1<0,所以g(s)递减,则g(s)只有一个零点,所以x<0时,只存在一条过原点的切线.综上可得存在一条过原点的切线,故D正确.故选:BCD.由函数的奇偶性和零点、对称性、导数的几何意义,可得结论.此题主要考查导数的运用:求切线的方程,考查方程思想和运算能力、推理能力,属于中档题.14.【答案】x−y+ln2−2=0;【解析】由直线的倾斜角求得直线的斜率,求出原函数的导函数,由导函数值为1求解切点坐标,再由直线方程的点斜式得答案.此题主要考查利用导数研究过曲线上某点处的切线方程,熟记基本初等函数的导函数是关键,是基础题.解:直线的倾斜角为45°,则直线的斜率为tan45°=1,由y=lnx−2x +1,得y′=1x+2x2,由y′=1x +2x2=1,解得x=−1(舍去)或x=2.∴切点坐标为(2,ln2),则直线l的方程为y−ln2=1×(x−2),即x−y+ln2−2=0.故答案为:x−y+ln2−2=0.15.【答案】y=−x或y=−14x或y=2x;【解析】求出函数的导数,结合直线关系即可得到结论.这道题主要考查函数的切线的求解,根据函数导数的几何意义是解决本题的关键.注意要进行分类讨论.解:函数的导数为f ′(x)=3x 2−6x +2, 设切点为(a,b),则k =f ′(a)=3a 2−6a +2,b =a 3−3a 2+2a , 则切线的方程y −b =(3a 2−6a +2)(x −a), 即y =(3a 2−6a +2)x −2a 3+9a 2−4a , ∵直线l 过点(0,0), ∴−2a 3+9a 2−4a =0, 即2a 3−9a 2+4a =0, 则a(a −4)(2a −1)=0, 解得a =0或a =4或a =12,当a =1时,对应的直线方程为y =−x , 当a =12时,对应的直线方程为y =−14x , 当a =0时,对应的直线方程为y =2x , 故答案为:y =−x 或y =−14x 或y =2x16.【答案】(0,4-2√3) ; 【解析】此题主要考查函数的零点与方程的根之间的关系,函数的导数求解切线方程,考查数形结合以及计算能力,是难题.画f(x)={1−2x ,x ⩾012x 2+2x,x <0,的图象,结合直线g(x)=k(x −2)过定点(2,0),函数g(x)的图象与f(x)=12x 2+2x ,x <0的图象相切时,函数f(x),g(x)的图象恰有两个交点.设切点为P(x 0,y 0),由f ˈ(x)=x +2,x <0,求出切线的斜率,利用函数的图象的交点个数与函数的零点个数,推出k 的范围即可.解:依题意,画出f(x)={1−2x,x⩾012x2+2x,x<0的图象如图:因为直线g(x)=k(x−2)过定点(2,0),由图象可知,当函数g(x)的图象与f(x)=12x2+2x,x<0的图象相切时,函数f(x),g(x)的图象恰有两个交点.下面利用导数法求该切线的斜率.设切点为P(x0,y0),由fˈ(x)=x+2,x<0,则k=f′(x0)=x0+2=12x02+2x0x0-2,解得x0=2+2√3(舍去)或x0=2-2√3,则k=4−2√3,要使方程f(x)=g(x)恰有三个实数解,则函数f(x),g(x)的图象恰有三个交点,结合图象可的实数k的取值范围为(0,4-2√3),故答案为(0,4-2√3).17.【答案】23;【解析】解:由f(x)=√4x+1,得f′(x)=2(4x+1)−1 2,所以函数f(x)在x=2处切线的斜率k=f′(2)=23.故答案为:23.对f(x)求导,根据导数的几何意义,得到f(x)在x=2处的切线斜率.此题主要考查了利用导数研究函数的切线方程和导数的几何意义,属基础题.18.【答案】32;【解析】解:S=t+2√t,∴S′=1+√t,∴它在4秒末的瞬时速度为1+√4=32,故答案为:32.物理中的瞬时速度常用导数来求,故求出S的导数,代入4求值.该题考查变化的快慢与变化率,解答本题关键是理解导数的物理意义,由此转化为求导数的问题.19.【答案】解:(1)∵f′(x)=(x3+x−16)′=3x2+1,∴在点(2,−6)处的切线的斜率k=f′(2)=3×22+1=13,∴切线的方程为y=13x−32.(2)设切点为(x0,y0),则直线l的斜率为f′(x0)=3x02+1,∴直线l的方程为y=(3x02+1)(x−x0)+x03+x0−16.又∵直线l过点(0,0),∴0=(3x02+1)(−x0)+x03+x0−16,整理,得x03=−8,∴x0=−2,∴y0=(−2)3+(−2)−16=−26,直线l的斜率k=3×(−2)2+1=13,∴直线l的方程为y=13x,切点坐标为(−2,−26).;【解析】(1)先求出函数的导函数,再求出函数在(2,−6)处的导数即斜率,易求切线方程.(2)设切点为(x0,y0),则直线l的斜率为f′(x0)=3x02+1,从而求得直线l的方程,有条件直线1过原点可求解切点坐标,进而可得直线1的方程.此题主要考查直线的点斜式方程,属基础题型,较为简单.20.【答案】解:(1)由y=ax2(a>0)得y′=2ax(a>0),则曲线在点A处的切线斜率为2am1,曲线在点A处的切线方程为y−am12=2am1(x−m1),曲线在点A处的切线过点P(1,−3),故am12−2am1−3=0①,同理可得曲线y=ax2(a>0)在点B处的切线方程为y−am22=2am2(x−m2),∴am12−2am1−3=0②,①−②得m1+m2=2,m2−m1=4,∵m2−m1=4,∴m1=−1,m2=3,将m1=−1代入①,可得a=1,故抛物线方程为x2=y;(2)由题意知直线l的斜率存在,设直线l的方程为y=kx+b,与抛物线C的交点为M(x1,x12),N(x2,x22),联立得{y=kx+bx2=y,得x2−kx−b=0,∴x1+x2=k,x1.x2=−b,∴k OM.k ON=x12x1.x22x2=x1x2=−2,可得b=2,∴直线l经过点(0,2),∴SΔ=12×|OP|×|x1−x2|=2√3,∴|x1−x2|=2√3,∴k2=4,∴k=±2,经检验k=±2,b=2符合题意,∴直线l的方程为y=2x+2或y=2x−2.;【解析】此题主要考查了直线与抛物线涉及到利用导数求曲线的切线方程、抛物线的几何性质、直线方程的求法等知识,综合性较强.(1)利用导数,可以求出曲线在点A,B处的切线斜率为2am1,2am2,从而求出切线方程,得到关于m1,m2的关系式,可以求出m的值,从而求出切线方程;(2)设直线l的方程为y=kx+b,与抛物线C的交点为M(x1,x12),N(x2,x22),联立得{y=kx+bx2=y,得x1+x2=k,x1.x2=−b,求出b=2,根据题意列方程求出k的值,从而求出直线方程.21.【答案】(本题满分为12分)解:(1)f′(x)=lnx+ax+1,由题意知,曲线y=f(x)在点(1,f(1))处的切线斜率为2,则f'(1)=2,所以a+1=2,解得a=1.…(4分)(2)令ˈ(x)=f(x)−g(x)=(x+1)lnx−x 2e x,x∈(1,2),则ˈ(1)=−1e <0,ˈ(2)=3ln2−4e2>0,所以h(1)h(2)<0,所以函数h(x)在(1,2)内一定有零点,…(8分)可得ˈ′(x)=lnx+x+1x −2x−x2e x(e x)2=lnx+1x+1−−(x−1)2+1e x>1−1e>0,∴h(x)在(1,2)上单调递增,所以函数h(x)在(1,2)内有且只有一个零点,即方程f(x)=g(x)在(1,2)内有且只有一个实根.…(12分);【解析】(1)求得f(x)的导数,可得x=1处切线的斜率,由两直线平行的条件:斜率相等,解方程即可得到所求值.(2)令ˈ(x)=f(x)−g(x)=(x+1)lnx−x2e x ,x∈(1,2),由ˈ(1)=−1e<0,ˈ(2)=3ln2−4e2>0,可得函数ˈ(x)在(1,2)内一定有零点,进而证明ˈ′(x)>0,可得ˈ(x)在(1,2)上单调递增,即可得证.此题主要考查导数的运用:求切线的斜率,考查两直线平行的条件:斜率相等,考查函数的零点判定定理,正确求导是解答该题的关键,属于中档题.22.【答案】解:(I )由题意得,f(x)=ae x +1aex+b ,则f ′(x)=ae x −1ae x,因为在点(2,f (2))的切线方程为y=32x ,所以{(f(2)=3f ′(2)=32), 即{(ae 2+1ae 2+b =3ae 2−1ae 2=32),解得{(a =2e 2b =12)…(6分)(Ⅱ)设t=e x (t ≥1),则原函数化为:y =at +1at +b , 所以y ′=a −1at 2=a 2t 2−1at 2,令y ′=0,解得t=±1a ,(1)当a ≥1时,则y ′>0在[1,+∞)上成立, 所以函数y =at +1at +b 在[1,+∞)上是增函数, 则当t=1(x=0)时,函数f (x )取到最小值是a +1a +b ; (2)当0<a <1时,y =at +1at +b ≥2+b ,当且仅当at=1(t=e x =1a >1,则x=-lna )时,取等号, 此时函数f (x )取到最小值是b+2,综上可得,当a ≥1时,函数f (x )的最小值是a +1a +b ; 当0<a <1时,函数f (x )的最小值是b+2.…(12分); 【解析】(Ⅰ)由求导公式和法则求出f ′(x),根据导数的几何意义和条件列出方程组,求出a 、b 的值; (Ⅱ)设t =e x (t ⩾1),代入原函数化简并求出导数,根据临界点和区间对a 进行分类讨论,利用导数与单调性、基本不等式求出函数的最小值.此题主要考查求导公式和法则,导数的几何意义,以及导数与函数单调性、基本不等式求函数的最值问题,属于中档题.23.【答案】解:(1)∵P(2,4)在曲线y =13x 3+43上,且y ′=x 2 ∴在点P(2,4)处的切线的斜率k =y ′|x=2=4;∴曲线在点P(2,4)处的切线方程为y −4=4(x −2),即4x −y −4=0.(2)设曲线y =13x 3+43与过点P(2,4)的切线相切于点A(x 0,13x 03+43),则切线的斜率k=y′|x=x=x02,∴切线方程为y−(13x03+43)=x02(x−x0),即y=x02.x−23x03+43∵点P(2,4)在切线上,∴4=2x02−23x03+43,即x03−3x02+4=0,∴x03+x02−4x02+4=0,∴(x0+1)(x0−2)2=0解得x0=−1或x0=2故所求的切线方程为4x−y−4=0或x−y+2=0.(3)设切点为(x0,y0)则切线的斜率为k=x02=4,x0=±2.切点为(2,4),(−2,−43)∴切线方程为y−4=4(x−2)和y+43=4(x+2)即4x−y−4=0和12x−3y+20=0.;【解析】该题考查学生会利用导数研究曲线上某点的切线方程,是一道综合题.学生在解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”;同时解决“过某点的切线”问题,一般是设出切点坐标解决.(1)根据曲线的解析式求出导函数,把P的横坐标代入导函数中即可求出切线的斜率,根据P的坐标和求出的斜率写出切线的方程即可;(2)设出曲线过点P切线方程的切点坐标,把切点的横坐标代入到(1)求出的导函数中即可表示出切线的斜率,根据切点坐标和表示出的斜率,写出切线的方程,把P的坐标代入切线方程即可得到关于切点横坐标的方程,求出方程的解即可得到切点横坐标的值,分别代入所设的切线方程即可;(3)设出切点坐标,由切线的斜率为4,把切点的横坐标代入导函数中求出的函数值等于4列出关于切点横坐标的方程,求出方程的解即可得到切点的横坐标,代入曲线方程即可求出相应的纵坐标,根据切点坐标和斜率分别写出切线方程即可.。
《导数及其应用》单元教学设计一、教学目标:1.知识与技能:(1)了解导数的定义和基本性质;(2)掌握导数的计算方法;(3)掌握导数在几何、物理、经济等领域中的应用。
2.过程与方法:(1)通过思维导图、案例分析等活动,培养学生的归纳、推理和解决问题的能力;(2)通过探究、实验等活动,培养学生的实验观察和动手能力;(3)通过小组合作、展示等活动,培养学生的团队合作和表达能力。
3.情感态度和价值观:(1)培养学生用数学思维解决实际问题的兴趣和意识;(2)培养学生负责任、团队合作的精神。
二、教学重点:1.导数的定义和基本性质;2.导数的计算方法;3.导数在几何、物理、经济等领域中的应用。
三、教学难点:1.如何正确计算导数;2.如何将导数应用到实际问题中。
四、教学过程:1.导入(5分钟)通过提问和展示实例,激发学生对导数的兴趣,引入导数的概念。
2.导数的定义和基本性质(25分钟)(1)引导学生通过观察一个物体运动的图像,思考在不同点的瞬时速度是否相同,并引出导数的定义;(2)通过数学符号和公式的方式,给出导数的定义和基本性质;(3)引导学生用导数的定义和基本性质解决一些实际问题,如求函数的增减区间、极值、拐点等。
3.导数的计算方法(20分钟)(1)介绍常用函数的导数的计算公式,如幂函数、指数函数、对数函数、三角函数等;(2)给学生练习计算简单函数的导数,并引导学生归纳出计算导数的一般方法;(3)通过练习和讨论,确保学生掌握计算导数的方法。
4.导数在几何、物理、经济等领域中的应用(30分钟)(1)通过案例分析和实例展示,引导学生认识导数在几何、物理、经济等领域中的应用;(2)给学生提供一些实际问题,让他们尝试用导数解决问题,并展示解决过程和结果;(3)通过小组合作和展示,让学生分享彼此的解决方法和经验。
5.总结与拓展(20分钟)(1)引导学生总结导数的定义、基本性质、计算方法和应用;(2)给学生提供一些拓展问题,让他们进一步思考导数的更多应用,并引导他们提出自己的问题和研究方向;(3)鼓励学生积极参与数学竞赛和科学研究,提高他们在数学领域的综合能力。
第三章 导数第2节 导数的应用题型37 利用导函数研究函数的极值与最值1(2013湖北文10).已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( ).A .(,0)-∞B .10,2⎛⎫⎪⎝⎭C .(0,1)D .(0,)+∞1.分析 由已知得()0f x '=有两个正实数根()1212,x x x x <,即()f x '的图象与x 轴有两个交点,从而得a 的取值范围.解析 ()l n 12f x x a x'=+-,依题意ln 120x ax +-=有两个正实数根()1212,x x x x <. 设()ln 12g x x ax =+-,函数()ln 12g x x ax =+-有两个零点,显然当0a ≤时不合题意, 必有0a >;()12g x a x '=-,令()0g x '=,得12x a =,于是()g x 在10,2a ⎛⎫⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞⎪⎝⎭上单调递减,所以()g x 在12x a =处取得极大值,即111ln 0,1222f a a ⎛⎫'=>> ⎪⎝⎭,所以102a <<.故选B.2.(2013福建文12)设函数()f x 的定义域为R ,()()000x x f x ≠是的极大值点,以下结 论一定正确的是( ).A .()()0,x f x f x ∀∈R …B .0x -是 ()f x -的极小值点C .0x -是 ()f x -的极小值点D .0x -是 ()f x --的极小值点2.分析 不妨取函数()33f x x x =-,则()()()311f x x x '=-+,易判断01x =-为()f x的极大值点,但显然()0f x 不是最大值,故排除A.解析 因为()()()()33,311f x x x f x x x '-=-+-=-+-,易知,01x -=为()f x -的极大值点,故排除B ;又()()()()33,311f x x x f x x x '-=-+-=-+-⎡⎤⎣⎦,易知,01x -=为()f x --的极大值点,故排除C ;因为()f x --的图象与()f x 的图象关于原点对称,由函数图象的对称性可得0x -应为函数()f x --的极小值点.故D 正确.3. (2013安徽文20)设函数()()221f x cx a x =-+,其中>0a ,区间(){}>0I x f x da =. (1)求I 的长度(注:区间()αβ,的长度定义为βα-); (2)给定常数()01k ∈,,当11k a k -+≤≤时,求I 长度的最小值. 3.解 同理科卷17题.4.(2013江西文21)设函数错误!未指定书签。
a 为常数且()0,1a ∈. (1)当12a =时,求13f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; (2)若0x 满足()()0ff x x =但()0f x x≠,则称0x 为()f x 的二阶周期点,证明函数()f x 有且仅有两个二阶周期点,并求二阶周期点1x ,2x ;(3)对于(2)中1x ,2x ,设()()()11,A x ff x ,()()()22,B x f f x ,()2,0C a ,记ABC△的面积为()S a ,求()S a 在区间11,32⎡⎤⎢⎥⎣⎦上的最大值和最小值.4.分析 (1)根据自变量的取值求出相应的函数值;(2)根据自变量的取值和二阶周期点 的定义解方程求出题目中的二阶周期点;(3)根据(2)的结果用参数a 表示出三角形的面 积,通过导数求最值的方法得出最值. 解析 (1)当12a =时,1233f ⎛⎫= ⎪⎝⎭,1222213333f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.(2)()()()()()()()()2222221,0,1,,11,1,111,1 1.1x x a a a x a x a a a f f x x a a x a a a x a a x a a ⎧⎪⎪⎪-<⎪-⎪=⎨⎪-<<-+⎪-⎪⎪--+⎪-⎩≤≤≤≤≤当20x a ≤≤时,由21x x a =,解得20x =,因为()00f =,故0x =不是()f x 的二阶周期点;当2a x a <≤时,由()()11a x x a a -=-解得()22,1a x a a a a =∈-++. 因为2222111111a a a f a a a a a a a a a ⎛⎫=⋅=≠ ⎪-++-++-++-++⎝⎭, 故21ax a a =-++为()f x 的二阶周期点;当21a x a a <<-+时,由()()211x a x a -=-解得()21,12x a a a a=∈-+-. 因为111112122f a a a a ⎛⎫⎛⎫=⋅-=⎪ ⎪----⎝⎭⎝⎭, 故12x a=-不是()f x 的二阶周期点;当211a a x -+≤≤时,由()()111x x a a -=-解得()2211,11x a a a a =∈-+-++. 因为221111111f a a a a a ⎛⎫⎛⎫=⋅- ⎪ ⎪-++--++⎝⎭⎝⎭22111a a a a a =≠-++-++, 故211x a a =-++为()f x 的二阶周期点.因此,函数()f x 有且仅有两个二阶周期点,12221,11a x x a a a a ==-++-++. (3)由(2)得22,11a a A a a a a ⎛⎫ ⎪-++-++⎝⎭,2211,11B a a a a ⎛⎫⎪-++-++⎝⎭,则()()221121a a S a a a -=⋅-++,()()()3222222121a a a a S a a a --+'=⋅-++, 因为11,32a ⎡⎤∈⎢⎥⎣⎦,有21a a +<,所以()()()3222222121a a a a S a a a --+'=⋅-++()()()()22221111021a a a a a a a ⎡⎤+-+--⎣⎦=⋅>-++(或令()32222g a a a a =--+,()2342g a a a '=--3a a ⎛= ⎝,因为()()0,1,0a g a '∈< 则()g a 在区间11,32⎡⎤⎢⎥⎣⎦上的最小值为15028g ⎛⎫=> ⎪⎝⎭,故对于任意()3211,,222032a g a a a a ⎡⎤∈=--+>⎢⎥⎣⎦,()()()32222221021a a a a S a a a --+'=⋅>-++.) 则()S a 在区间11,32⎡⎤⎢⎥⎣⎦上单调递增,故()S a 在区间11,32⎡⎤⎢⎥⎣⎦上的最小值为11333S ⎛⎫= ⎪⎝⎭,最大值为11220S ⎛⎫= ⎪⎝⎭.5. (2013江苏20)设函数ax x x f -=ln )(,()e x g x ax =-,其中a 为实数.(1)若)(x f 在),1(+∞上是单调减函数,且)(x g 在),1(+∞上有最小值,求a 的取值范围; (2)若)(x g 在),1(+∞-上是单调增函数,试求)(x f 的零点个数,并证明你的结论. 5.分析(1)通过()0f x '≤在()1,+∞上恒成立,()0g x '=在()1,+∞有解求得a 的取值范围;(2)由()0g x '≥在()1,-+∞上恒成立得出a 的取值范围,然后对a 进行讨论,研究()f x 的零点.解析 解:(1)令()110axf x a x x-'=-=<,考虑到()f x 的定义域为()0,+∞,故0a >, 进而解得1x a ->,即()f x 在()1,a -+∞上是单调减函数.同理,()f x 在()10,a-上是单调增函数.由于()f x 在()1,+∞上是单调减增函数,故()()11,,a -+∞⊆+∞,从而11a -≤,即1a ≥.令()e 0x g x a '=-=,得ln x a =.当ln x a <时,()0g x '<;当ln x a >时,()0g x '>.又()g x 在()1,+∞上有最小值. 所以ln 1a >,即e a >.综上可知,()e,a ∈+∞.(2)当0a ≤时,()g x 必为单调增函数;当0a >时,令()e 0x g x a '=->,解得e x a <,即ln x a >.因为()g x 在()1,-+∞上是单调增函数,类似(1)有ln 1a -≤,即10e a -≤<. 结合上述两种情况,得1e a -≤. ①当0a =时,由()10f =以及()1f x x'=>0,得()f x 存在唯一的零点; ②当0a <时,由于()eeaaf a a =-=()()1e 0,10a a f a -=-<>,且函数()f x 在e ,1a ⎡⎤⎣⎦上的图象连续,所以()f x 在()e ,1a 上存在零点. 另外,当0x >时,()1f x a x'=->0,故()f x 在()0,+∞上是单调增函数,所以()f x 只有一个零点.③当10e a -≤<时,令()1f x a x'=-=0,解得1x a -=.当10x a -<<时,()0f x '>;当1x a ->时,()0f x '<,所以,1x a -=是()f x 的最大值点,且最大值为()1ln 1f a a -=--.a.当ln 0a a --=,即1e a -=时,()f x 有一个零点e x =.b.当ln 10a -->,即10e a -<<时,()f x 有两个零点.实际上,对于10e a -<<,由于()11e 1e 0f a --=--<.()10f a ->,且函数()f x 在11e ,a --⎡⎤⎣⎦上的图象连续,所以()f x 在()11e ,a--上存在零点. 另外,当()10,x a-∈时,()10f x a x'=->,故()f x 在()10,a -上是单调增函数,所以()f x 在()10,a -上只有一个零点.下面考虑()f x 在()1,a -+∞上的情况.先证()()112e e 0aaf a a ---=-<.为此,我们要证明:当e x >时,2e xx >.设()2e x h x x =-,则()e 2x h x x '=-,再设()()e 2x l x h x x '==-,则()e 2x l x '=-. 当1x >时,()e 2e 20x l x '=-->>,所以()()l x h x '=在()1,+∞上是单调增函数.当2x >时,()()e 22e 40x x h x x h ''=-=->>,从而()h x 在()2,+∞上是单调增函数,进而当e x >时,()()2e 2e e e e 0x h x x h =-=->>,即当e x >时,2e x x >. 当10e a -<<,即1e a ->时,()()11112e e e 0a a af a a =a a -----=--<.又()10f a ->,且函数()f x 在11,e a a--⎡⎤⎣⎦上的图象连续,所以()f x 在()11,e a a --上存在零点.又当1x a ->时,()10f x a x'=-<,故()f x 在()1,a -+∞上是单调减函数, 所以()f x 在()1,a -+∞上只有一个零点.综合①②③可知,当0a ≤或1e a -=时,()f x 的零点个数为1,当10e a -<<时,()f x 的零点个数为2.6. (2013浙江文21)已知a ∈R ,函数()()322316f x x a x ax =-++.(1)若1a =,求曲线()y f x =在点()()22f ,处的切线方程; (2)若1a >,求()f x 在闭区间[]0|2|a ,上的最小值.6.分析 (1)切点处的导数即为切线的斜率,求导后算出斜率,写出切线方程即可.(2)要 确定()f x 的最小值,因为()f x 的最值是由其单调性决定的,所以要先利用导数确定()f x 的单调性,再确定极值和区间端点的函数值.由于所给区间中含有绝对值,因此要分类讨论.解析 (1)当1a =时,()26126f x x x '=-+,所以()26f '=.又因为()24f =,所以切线方程为()462y x -=-,即680x y --=.(2)记()g a 为()f x 在闭区间0,2a ⎡⎤⎣⎦上的最小值.()()26616f x x a x a '=-++ ()()61x x a =--.令()0f x '=,得121,x x a ==.当1a >时,比较()00f =和()()23f a a a =-的大小可得()()20,13,3, 3.a g a a a a ⎧⎪=⎨-⎪⎩≤<>当1a -<时,得()31g a a =-.综上所述,()f x 在闭区间0,2a ⎡⎤⎣⎦上的最小值为()()231,1,0,13,3, 3.a a g a a a a a ⎧--⎪=⎨⎪-⎩≤<<> 7.(2015重庆文19(1))已知函数()()32f x ax x a =+∈R 在43x =-处取得极值. 确定a 的值;7. 解析 求导得()232f x ax x '=+,因为()f x 在43x =-处取得极值,所以403f ⎛⎫'-= ⎪⎝⎭,即1641683209333a a ⎛⎫⨯+⨯-=-= ⎪⎝⎭,解得12a =.经检验,43x =-是()f x 的极大值点. 8.(2015安徽文21(2))已知函数)0,0()()(2>>+=r a r x axx f .若400=r a ,求)(x f 在()0,+∞内的极值.8. 分析 由(1)可知()f x 在()0,+∞内的极大值为()210044ar a f r r r===,且()f x 在()0,+∞内无极小值.解析 因为0r>,由(1)可知()f x 在()0,+∞内的极大值为()210044ar a f r r r===, ()f x 在()0,+∞内无极小值.故()f x 在()0,+∞内极大值为100,无极小值.9.(2015北京文19(1))设函数()2ln ,02x f x k x k =->.求()f x 的单调区间和极值; 9. 解析 函数()f x 的定义域为()0,+∞,()()2,0k x kf x x k x x-'=-=>,令()0f x '=,得x =当(x ∈时,()0f x '<,函数()f x 在(上单调递减;当)x ∈+∞时,()0f x '>,函数()f x 在)+∞上单调递增.当x =()f x 取得极小值ln 222k k k kf k =-=-. 10.(2015湖南文21(1))函数()()2e cos [0,)f x a x x =∈+∞,记n x 为()f x 的从小到大的第n ()*n ∈N 个极值点.证明:数列(){}nf x 是等比数列;10. 解析 ()π'e cos e sin e cos 4x x xf x a x a x x ⎛⎫=-=+ ⎪⎝⎭令()'0f x =,由0x …,得πππ42x m +=-,即*3ππ4x m m =-∈N , 而对于πcos 4x ⎛⎫+⎪⎝⎭,当k ∈Z 时, 若πππ2π2π242k x k -<+<+,即3ππ2π2π44k x k -<<+,则πcos 04x ⎛⎫+> ⎪⎝⎭; 若ππ3π2π2π242k x k +<+<+,即π5π2π2π44k x k +<<+,则πcos 04x ⎛⎫+< ⎪⎝⎭. 因此,在区间()3π1π,π4m m ⎛⎫-- ⎪⎝⎭与3πππ,π44m m ⎛⎫-+ ⎪⎝⎭上,()'f x 的符号总相反,于是当*3ππ4x m m =-∈N 时,()f x 取得极值,所以*3ππ,4n n x n =-∈N ,此时,()()3π3πππ1443πecos π1e 4n n n n f x a n --+⎛⎫=-=- ⎪⎝⎭,易知()0n f x ≠,而()()()()3π1π241π1e e n n n n f x f x +-++-==-是常数, 故数列(){}nf x 是首项为()π41e 2f x a =,公比为πe -的等比数列.11.(2015新课标2卷文21(2))已知函数()()=ln +1f x x a x -.当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.11. 分析 由(1)知当0a …时,()f x 在()0+∞,上无最大值;当0a >时,()f x 最大值为1ln 1f a a a ⎛⎫=-+- ⎪⎝⎭,因此122f a a ⎛⎫>- ⎪⎝⎭,故ln 10a a +-<.令()ln 1g a a a =+-,则()g a 在()0+∞,上是增函数. 当01a <<时,()0g a >;当1a >时,()0g a >.因此a 的取值范围是()01,.解析 由(1)知,当0a …时,()f x 在()0+∞,上无最大值;当0a >时,()f x 在1x a=处取得最大值,最大值为111ln 1ln 1f a a a a a a ⎛⎫⎛⎫⎛⎫=+-=-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 因此122f a a ⎛⎫>-⎪⎝⎭等价于ln 10a a +-<. 令()ln 1g a a a =+-,则()g a 在()0+∞,上单调递增,又()10g =. 于是,当01a <<时,()0g a <;当1a >时,()0g a >.因此,a 的取值范围是()01,.评注 高考中对函数与导数的考查,主要体现用导数的工具性来解决函数性质问题,函数的性质是函数的终极内容,学习导数以后用导数这一工具可使求解更直接简单,特别要注意函数的定义域和对参数进行讨论.12.(2015山东文20 (3))设函数()()ln f x x a x =+,2()e x x g x =. 已知曲线()y f x =在点(1(1))f ,处的切线与直线20x y -=平行.设函数()min{()()}m x f x g x =,(min{}p q ,表示p q ,中的较小值),求()m x 的最大值.12.解析 由(2)知,方程()()f x g x =在()1,2内存在唯一的根0x ,且(]00,x x ∈时,()()f x g x …,()0,x x ∈+∞时,()()f x g x >,所以()()(]()0201ln ,0,,,ex x x x x m x x x x ⎧+∈⎪=⎨∈+∞⎪⎩. 当(]00,x x ∈时,若(]0,1x ∈,()0m x …; 若(]01,x x ∈,由()1ln 10m x x x'=++>,可知()()00m x m x <….故()()0m x m x …. 当()0,x x ∈+∞时,由()()22ex x m x -'=,可得(]0,2x x ∈时,()0m x '…,()m x 单调递增;()2,x ∈+∞时,()0m x '<,()m x 单调递减;故()()242e m x m =…. 又()()02m x m <,所以函数()m x 的最大值为24e. 13.已知a 是函数3()12f x x x =-的极小值点,则a =( ).A. 4-B. 2-C.4D.213.D 解析 2()3123(2)(2).f x x x x '=-=+-令()0f x '=得,2x =-或2x =,易知()f x 在()2,2-上单调递减,在()2+∞,上单调递增,故()f x 极小值为(2)f ,由已知得2a =.故选D14.(2016山东文20)设()()2ln 21f x x x ax a x =-+-,a ∈R .(1)令()()'g x f x =,求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值,求实数a 的取值范围.14. 解析 (1)由()ln 22f x x ax a '=-+,可得()()ln 22,0,g x x ax a x =-+∈+∞, 则()1122axg x a x x-'=-=, 当0a …时,()0,x ∈+∞时,()0g x '>,函数()g x 单调递增;当0a >时,10,2x a ⎛⎫∈ ⎪⎝⎭时,()0g x '>,函数()g x 单调递增;1,2x a ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<,函数()g x 单调递减.综上所述,当0a …时,函数()g x 单调递增区间为()0,+∞; 当0a >时,函数()g x 单调递增区间为10,2a ⎛⎫ ⎪⎝⎭,单调递减区间为1,2a ⎛⎫+∞ ⎪⎝⎭. (2)由(1)知,()10f '=. ①当0a …时, ()f x '单调递增.所以当()0,1x ∈时,()'0f x <,()f x 单调递减.当()1,x ∈+∞时,()0f x '>,()f x 单调递增.所以()f x 在1x =处取得极小值,不合题意. ②当102a <<时,112a >,由(1)知()f x '在10,2a ⎛⎫⎪⎝⎭内单调递增, 可得当()0,1x ∈时,()0f x '<,11,2x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>, 所以()f x 在()0,1内单调递减,在11,2a ⎛⎫⎪⎝⎭内单调递增,所以()f x 在1x =处取得极小值,不合题意. ③当12a =时,即112a=时,()'f x 在()0,1内单调递增,在 ()1,+∞内单调递减, 所以当()0,x ∈+∞时,()0f x '…, ()f x 单调递减,不合题意. ④当12a >时,即1012a << ,当1,12x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增, 当()1,x ∈+∞时,()0f x '<,()f x 单调递减, 所以()f x 在1x =处取得极大值,合题意. 综上可知,实数a 的取值范围为12a >. 15.(2016天津文20)设函数b ax x x f --=3)(,x ∈R ,其中R a b ∈,. (1)求)(x f 的单调区间;(2)若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:0201=+x x ;(3)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间[11]-,上的最大值不小于...41.15.解析 (1)由3()f x x ax b =--,可得2()3f x x a '=-,下面分两种情况讨论: ①当0a …时,有2()30f x x a '=-…恒成立,所以()f x 在R 上单调递增.②当0a >时,令()0f x '=,解得x =或x =. 当x 变化时,()f x ',()f x 的变化情况如表所示.所以()f x 的单调递减区间为⎛⎝⎭,单调递增区间为,⎛-∞ ⎝⎭,⎫+∞⎪⎪⎝⎭. (2)证明:因为()f x 存在极值点,所以由(1)知0a >且00x ≠.由题意得200()30f x x a '=-=,即203a x =,所以300002()3a f x x ax b x b =--=--. 又3000000082(2)822()33a a f x x axb x ax b x b f x -=-+-=-+-=--=,且002x x -≠,由题意及(1)知,存在唯一实数1x 满足10()()f x f x =,且10x x ≠,因此102x x =-,所以10+2=0x x .(3)证明:设()g x 在区间[1,1]-上的最大值为M ,max{,}x y 表示x ,y 两数的最大值,下面分三种情况讨论:①当3a …时,11-<剟由()1知()f x 在区间[]1,1-上单调递减, 所以()f x 在区间[]1,1-上的取值范围为[](1),(1)f f -,因此()(){}{}max 1,1max 1,1M f f a b a b =-=---+-={}max 1,1a b a b -+--1,01,0a b b a b b -+⎧=⎨--<⎩…, 所以1 2.M a b =-+…②当334a <…时,113333--<<<剟, 由(1)和(2)知(1)f f f ⎛-= ⎝⎭⎝⎭…,(1)f f f ⎛= ⎝⎭⎝⎭…, 所以()f x 在区间[1,1]-上的取值范围为,ff ⎡⎤⎛⎢⎥ ⎢⎥⎝⎭⎝⎭⎣⎦,所以max ,M f f ⎧⎫⎫⎛⎫⎪⎪==⎪ ⎪⎨⎬⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭max b b ⎧⎫=⎨⎬⎩⎭231max ||944b b b ⎫=⨯=⎬⎭….③当304a <<时,113333-<-<-<<<, 由(1)和(2)知,(1),f f f ⎛-<= ⎝⎭⎝⎭(1)f f f ⎛>= ⎝⎭⎝⎭, 所以()f x 在区间[]1,1-上的取值范围为()()1,1f f -⎡⎤⎣⎦,因此()(){}=max 1,1M f f -={}max 1,1a b a b ---+-={}1max 1,114a b a b a b ---+=-+>. 综上所述,当0a >时,()g x 在区间[]1,1-上的最大值不小于14. 16.(2017北京文20)已知函数()e cos xf x x x =-.(1)求曲线()y f x =在点()()0,0f 处的切线方程; (2)求函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.16.解析 ()e c o s e s i n 1,xxf x xx x '=--∈R .(1)(0)0f '=,(0)1f =,则曲线()y f x =在点(0,(0))f 处的切线方程为1y =. (2)()2e sin xf x x ''=-.因为0,2x π⎡⎤∀∈⎢⎥⎣⎦,()2e sin 0xf x x ''=-…恒成立,所以()f x '在0,2π⎡⎤⎢⎥⎣⎦上单调递减,且(0)0f '=,所以()()00f x f ''=…,所以()f x 在0,2π⎡⎤⎢⎥⎣⎦上单调递减,所以()()max 01f x f ==,()min 22f x f ππ⎛⎫==- ⎪⎝⎭.17.(2017山东文20)已知函数()3211,32f x x ax a =-∈R . (1)当2a =时,求曲线()y f x =在点()()3,3f 处的切线方程;(2)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.解析 (1)由题意,()2f x x ax '=-.(1)当2a =时,(3)0f =,()22f x x x '=-,所以()33f '=,因此,曲线()y f x =在点()()3,3f 处的切线方程是()33y x =-,即390x y --=. (2)因为()()() cos sin g x f x x a x x =+--,所以()()()()()()()cos sin cos sin sin g x x x a x x x x a x a x x a x x f x '=+---=----'=-.令()sin h x x x =-,则 ()1cos 0h x x '=-…,所以()h x 在R 上单调递增. 因为()00h =,所以当0x >时,()0h x >;当0x <时,()0h x <. ①当0a <时,()()()sin g x x a x x '=--,当(),x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(),0x a ∈时,0x a ->,()0g x '<,()g x 单调递减; 当()0,x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以,当x a =时,()g x 取到极大值,极大值是()31sin 6g a a a =--,当0x =时,()g x 取到极小值,极小值是()0g a =-. ②当0a =时,()()sin g x x x x '=-.当(,)x ∈-∞+∞时,()0g x '…,()g x 单调递增.所以,()g x 在(),-∞+∞上单调递增,()g x 无极大值也无极小值. ③当0a >时,()()()sin g x x a x x '=--.当(),0x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当()0,x a ∈时,0x a -<,()0g x '<,()g x 单调递减; 当(),x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以,当0x =时,()g x 取到极大值,极大值是()0g a =-; 当x a =时,()g x 取到极小值,极小值是()31sin 6g a a a =--. 综上所述,当0a <时,函数()g x 在(),a -∞和()0,+∞上单调递增,在(),0a 上单调递减,函数既有极大值,又有极小值,极大值是()31sin 6g a a a =--,极小值是()0g a =-; 当0a =时,函数()g x 在(),-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(),0-∞和(),a +∞上单调递增,在()0,a 上单调递减,函数既有极大值,又有极小值,极大值是()0g a =-,极小值是()31sin 6g a a a =--. 18.(2017浙江20) 已知函数()(1e 2xf x x x -⎛⎫= ⎪⎝⎭…. (1)求()f x 的导函数;(2)求()f x 在区间1+2⎡⎫∞⎪⎢⎣⎭,上的取值范围. 18.解析 (1)因为(1x '=,()e e x x --'=-, 所以()(()12e 11e e 2x x xx f x x x ----⎛⎫'=->⎪ ⎭⎝=.(2)由()()12e 0x x f x --'==,解得1x =或52x =. 当x 变化时,()f x ,()f x '的变化情况如下表所示.又())211e 02xf x -=…,152211e e 22-->,所以()f x 在区间1,2⎡⎫+∞⎪⎢⎣⎭上的取值范围是1210,e 2-⎡⎤⎢⎥⎣⎦.19.(2017江苏20)已知函数()321f x x ax bx =+++()0,a b >∈R 有极值,且导函数()f x '的极值点是()f x 的零点(极值点是指函数取极值时对应的自变量的值).(1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围. 19.解析 (1)由()321f x x ax bx =+++,得()232f x x ax b =++',当3a x =-时,()f x '有极小值为23a b -.因为()f x '的极值点是()f x 的零点,所以331032793a a a ab f ⎛⎫-=-+-+= ⎪⎝⎭,又0a >,故2239a b a =+. 当()22120a b ∆=-…时,()2320f x x ax b =++'…恒成立,即()f x 单调递增, 所以此时()f x 不存在极值,不合题意.因此24120a b ∆=->,即232223192730933a a a a a a a ⎛⎫--+=-=> ⎪⎝⎭,所以3a >.()=0f x '有两个相异的实根1x ,2x . 列表如下故()f x 的极值点是12,x x ,从而3a >.所以b 关于a 的函数关系式为2239a b a=+,定义域为()3,+∞.(2)解法一:由(1)知,即证明222339a a a ⎛⎫+> ⎪⎝⎭,即424439138a a a a ++>, 因为0a >,所以问题等价于6341357290a a -+>,不妨设3t a =,则()27,t ∈+∞,不妨设()24135729g t t t =-+,易知()g t 在135,8⎛⎫+∞⎪⎝⎭上单调递增,且135278<, 从而()()227427135277290g t g >=⨯-⨯+=,即6341357290a a -+>得证. 因此23b a >.解法二(考试院提供):由(1+设()23=9t g t t +,则()22223227=99t g t t t --='.当t ⎫∈+∞⎪⎝⎭时,()0g t '>,从而()g t 在⎫+∞⎪⎝⎭上单调递增.因为3a >,所以>((g g >=因此23b a >.(3)由(1)设()2320f x x ax b =++='的两个实根为12,x x ,且设12x x <,且有12123123x x a x x b⎧+=-⎪⎪⎨⎪=⎪⎩,因此22212469a b x x -+=.而()f x 的情况如下表所示:所以()f x 的极值点是12,x x ,从而()()32321211122211=f x f x x ax bx x ax bx +=+++++++()()()()222212112212121232322=3333x x x ax b x ax b a x x b x x ++++++++++ ()()221212122=33a x x b x x ++++3423227a ab -+324223202739a a a a ⎛⎫=-++= ⎪⎝⎭. 记()f x ,()f x '所有极值之和为()h a ,因为()f x '的极值为221339a b a a-=-+,所以()2139h a a a =-+,3a >.处理方法一:因为()223=09h a a a'--<,于是()h a 在()3,+∞上单调递减. 因为()76=2h -,由()()6h a h …,故6a …. 处理方法二:所以()213792h a a a =-+-…,整理得3263540a a --…(必然可以猜测零点),()()2621290a a a -++…,因此6a ….因此a 的取值范围为(]3,6.评注 ①此题第(2)问考查的是数值大小的比较,常见的有作差法、作商法、两边平方比较法,此题采用作商(考试院解法二)化简函数达到简化效果,可见对于压轴问题,方法的选择是非常关键的.②第(3)问实际考查的是函数零点的应用,下面提供此前我们做过的两个类似习题供参考.案例1:已知函数()2ln f x ax x x =--,若函数()f x 存在极值,且所有极值之和小于5ln 2+,则实数a 的取值范围是 .解析 因为()12f x a x x =--'221x ax x-+-=()0x >, 设()221g x x ax =-+-,当280a ∆=-…时,()0g x …恒成立, 所以()f x 单调递减,故不存在极值;所以280a ∆=->,设()2210g x x ax =-+-=的两根为12,x x (不妨设12x x <),从而12102x x =>,因此12,x x 同号, 所以问题等价于()2210g x x ax =-+-=在()0,+∞上有两个不相等的实数根12,x x ,因此212128002102a x x x x a ∆=⎧⎪⎪⎪+=>⎨>->⎪⎪=⎪⎩,从而a >.所以()f x 的所有极值之和为()()12f x f x +22111222ln l =n ax x x ax x x =--+--()()2121212122ln a x x x x x x x x +-++-2211ln 5ln 2242a a =-+-<+,因此216a <,解得44a -<<,又a >a的取值范围是(). ④另外,如果熟悉三次函数对称中心,此题还可以作如下考虑:即()321f x x ax bx =+++,()232f x x ax b =++',()62f x x a '+'=, 令()620f x x a '=+=',则3a x =-,所以该三次函数的对称中心为,33a a f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.因此有()()1223a f x f x f ⎛⎫+=- ⎪⎝⎭3233321=a a a a b ⎡⎤=++⎛⎫⎛⎫⎛⎫+--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎢⎣⎭⎥⎥⎦⎝3221273a a b ⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦232232102739a a a a ⎡⎤⎛⎫⎛⎫=-++=⎢⎥ ⎪⎪⎝⎭⎝⎭⎣⎦. 这里可以采用假算的思想,即写出简单过程,省去中间过于复杂的运算过程,直接写出结果即可,这需要平时积累一些有价值的素材.案例2:(徐州15-16高二下学期期末文20)已知函数()24ln f x x x a x =-+(),0a a ∈≠R ,()f x '为函数()f x 的导函数.(1)若1a =,求曲线()y f x =在点()()1,1f 处的切线方程; (2)求函数()f x 的单调区间;(3)若存在实数12,x x ,且12x x <,使得()()120f x f x ''==,求证:()24f x >-.解析 (1)若1a =,则()24ln f x x x x =-+,()124f x x x'=-+, 所以切线斜率为()11f '=-,又(1)3f =-,所以()y f x =在点()()1,1f 处的切线方程为20x y ++=.(2)()22424a x x af x x x x='-+=-+,0x >.①当2a …时,()0f x '…恒成立,所以()f x 的单调增区间为()0,+∞;②当02a <<时,令()0f x '>,得0x <<或x >所以()f x的单调增区间为⎛ ⎝⎭和⎫+∞⎪⎝⎭,同理()f x的单调减区间为⎝⎭; ③当0a <时,令()0f x '>,得22x +>.所以()f x 的单调增区间为⎫+∞⎪⎝⎭,同理()f x 的单调减区间为⎛ ⎝⎭.(3)由题意可知,12,x x 是方程2240x x a -+=()02a <<的两根,则()21,2x =,22242a x x =-, 所以()222224ln f x x x a x =-+()2222222442ln x x x x x =-+-.令()()22442ln g x x x x x x =-+-,()1,2x ∈.则()()41ln 0g x x x '=-<恒成立,所以()g x 在()1,2上单调递减, 所以()()24g x g >=-,即()24f x >-.题型38 利用导函数研究函数的图像1.(2017浙江7)函数()y f x =的导函数()y f x '=的图像如图所示,则函数()y f x =的图像可能是( ).1.解析 导数大于零,原函数单调递增,导数小于零,原函数单调递减,对照导函数图像和原函数图像.故选D .题型39 恒成立与存在性问题1. (2013辽宁文21)(1)证明:当[]01x ∈,时,sin 2x x x ≤≤; (2)若不等式()3222cos 42x ax x x x ++++≤对[]01x ∈,恒成立,求实数a 的取值范围.1.分析 利用构造法,分别判断x sin 与x 22,x sin 与x 的大小关系;利用比较法或构造函数,通过导数求解范围.解析 (1)证明:记()x x x F 22sin -=,则()cos 2F x x '=-C.当π0,4x ⎛⎫∈ ⎪⎝⎭时,()0F x '>,()x F 在π0,4⎡⎤⎢⎥⎣⎦上是增函数; 当π,14x ⎛⎫∈⎪⎝⎭时,()0F x '<,()x F 在π,14⎡⎤⎢⎥⎣⎦上是减函数.又()00=F ,()01>F ,所以当[]1,0∈x 时,()0F x ≥,即sin 2x x ≥. 记()x x x H -=sin ,则当[]1,0∈x 时,()01cos '<-=x x H ,所以()x H 在[]1,0上是减函数,则()()00H x H =≤,即sin x x ≤.综上,sin 2x x x ≤≤,[]1,0∈x . (2)解法一:因为当[]1,0∈x 时,()3222cos 42x ax x x x ++++-()()322242sin 22x xa x x x =+++-+()()()232242224xa x x x x a x ⎫+++-+=+⎪⎪⎝⎭≤,所以,当2a ≤-时,不等式()3222cos 42x ax x x x ++++≤对[]1,0∈x 恒成立.下面证明,当2->a 时,不等式()2222cos 42x ax x x x ++++≤对[]1,0∈x 不恒成立.因为当[]0,1x ∈时,()2222cos 42x ax x x x ++++-()()322242sin 22x xa x x x =+++-+()()23224222x x a x x x ⎛⎫+++-+ ⎪⎝⎭≥()3222x a x x =+--()()233222223a x x x x a ⎡⎤+-=--+⎢⎥⎣⎦≥,所以存在()00,1x ∈02132a x +⎛⎫⎪⎝⎭例如取和中的较小值 满足()32000022cos 402x ax x x x ++++->,即当1a >-时,不等式()3222cos 402x ax x x x ++++-≤对[]0,1x ∈不恒成立.综上,实数a 的取值范围是(],2-∞-.解法二:记()()322242x f x ax x x =++++-,则()()2322cos 22sin 2x f x a x x x x '=+++-+.记()()G x f x '=,则()()234sin 22cos G x x x x x '=+--+.当()0,1x ∈时,1cos 2x >,因此()'234G x x x '<+-()(220x x -+=-<. 于是()f x '在[]0,1上是减函数,因此,当[]0,1x ∈时,()()02f x f a ''<=+,故当2a -≤时,()0f x '<,从而()f x 在[]0,1上是减函数,所以()()00f x f =≤,即当2a -≤时,不等式()3222cos 42x ax x x ++++≤对[]0,1x ∈恒成立.下面证明,当2a >-时,不等式()3222cos 42x ax x x x ++++≥对[]0,1x ∈不恒成立.当76sin12cos12a --≥时,()10f '≥,所以当()0,1x ∈时,()0f x '>, 因此()f x 在[]0,1上是增函数,故()()100f f >=; 当726sin 2cos12a a -<<--时,()0f x '<. 又()00f '>,故存在()00,1x ∈使()00f x '=,则当00x x <<时,()()00f x f x ''>=,所以()f x 在[]00,x 上是增函数,所以当()00,x x ∈时,()()00f x f >=.所以当2a >-时,不等式()3222cos 42x ax x x x ++++≤,对[]0,1x ∈不恒成立.综上,实数a 的取值范围是(),2-∞-. 2.(2014福建文22)(本小题满分12分) 已知函数()e x f x ax =-(a 为常数)的图像与y 轴交于点A ,曲线()y f x =在点A处的切线斜率为1-. (1)求a 的值及函数()f x 的极值;(2)求证:当0x >时,2e x x <(3)求证:对任意给定的正数c ,总存在0x ,使得当0(,)x x ∈+∞时,恒有e x x c < 3. (2014广东文21)(本小题满分14分)已知函数()()32113f x x x ax a =+++∈R . (1) 求函数()f x 的单调区间;(2) 当0a <时,试讨论是否存在0110,,122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,使得()012f x f ⎛⎫= ⎪⎝⎭. 4.(2014江苏23)(本小题满分10 分) 已知函数()0sin x f x x=()0x >,设()n f x 为()1n f x -的导数,*n ∈N.(1)求122222f f πππ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭的值;(2)求证:对任意的*n ∈N ,等式1444n n nf f -πππ⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭都成立. 5.(2014辽宁文21)(本小题满分12分)已知函数()(cos )2sin 2f x x x x =π---,2()(1xg x x =-π-π.求证:(1)存在唯一00,2x π⎛⎫∈ ⎪⎝⎭,使0()0f x =; (2)存在唯一1,2x π⎛⎫∈π ⎪⎝⎭,使1()0g x =,且对(1)中的0x ,有01x x +>π.6.(2014天津文19)(本小题满分14分)已知函数()()2320,3f x x ax a x =->∈R .(1)求()f x 的单调区间和极值;(2)若对于任意的()12,x ∈+∞,都存在()21,x ∈+∞,使得()()121f x f x ⋅=,求a 的取值范围.7. (2014浙江文21)函数()()330f x x x a a =+->,若()f x 在[]1,1-上的最小值记为()g a .(1)求()g a ;(2)求证:当[]1,1x ∈-时,恒有()()4f x g a +…. 8.(2014陕西文21)(本小题满分14分) 设函数()ln mf x x m x=+∈R ,. (1)当e m =(e 为自然对数的底数)时,求()f x 的极小值; (2)讨论函数()()3xg x f x '=-零点的个数; (3)若对任意0b a >>,()()1f b f a b a-<-恒成立,求m 的取值范围.9.(2015福建文12)“对任意π0,2x ⎛⎫∈ ⎪⎝⎭,sin cos k x x x <”是“1k <”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 9. 解析 当1k <时,sin cos sin 22k k x x x =,构造函数()sin 22k f x x x =-,π0,2x ⎡⎤∈⎢⎥⎣⎦. 则()cos210f x k x '=-<,故()f x 在π0,2x ⎛⎫∈ ⎪⎝⎭上单调递减, 故()ππ022f x f ⎛⎫<=-<⎪⎝⎭,则sin cos k x x x <; 当1k =时,不等式sin cos k x x x <等价于1sin 22x x <, 构造函数()1sin 22g x x x =-,则()cos210g x x '=-<, 故()g x 在π0,2x ⎛⎫∈ ⎪⎝⎭上单调递减,故()ππ022g x g ⎛⎫<=-< ⎪⎝⎭,则sin cos x x x <.综上所述,“对任意π0,2x ⎛⎫∈ ⎪⎝⎭,sin cos k x x x <”是“1k <”的必要不充分条件.故选B. 10.(2015福建文22(3))已知函数()()21ln 2x f x x -=-.确定实数k 的所有可能取值,使得存在01x >,当()01,x x ∈时,恒有()()1f x k x >-.10. 分析 由(2)知,当1k =时,不存在01x >满足题意;当1k >时,对于1x >, 有()()11f x x k x <-<-,则()(1)f x k x <-,从而不存在01x >满足题意;当1k <时,构造函数()()()1G x f x k x =--,()0,x ∈+∞,利用导数研究函数()G x 的形状,只要存在01x >,当()01,x x ∈时,()0G x >即可.解析 由(2)知,当1k =时,不存在01x >满足题意;当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-, 从而不存在01x >满足题意.当1k <时,令()()()1G x f x k x =--,()0,x ∈+∞,则有()()21111x k x G x x k x x-+-+'=-+-=.由()0G x '=得,()2110x k x -+-+=.解得10x =<(舍),21x =>.当()21,x x ∈时,()0G x '>,故()G x 在[)21,x 上单调递增. 从而当()21,x x ∈时,()()10G x G >=,即()()1f x k x >-. 综上,k 的取值范围是(),1-∞. 11.(2015湖南文21(2))函数()()2e cos [0,)f x a x x =∈+∞,记n x 为()f x 的从小到大的第n ()*n ∈N 个极值点.若对一切()*,n n n x f x ∈N …恒成立,求a 的取值范围.11. 解析 对一切*n ∈N 恒成立,即3ππ43ππe 42n n a --…恒成立,3ππ4e 3ππ4n n --恒成立(0a >), 设()()e 0tg t t t =>,则()()2e 1't t g t t-=,令()'0g t =得1t =, 当01t <<时,()'0g t <,所以()g t 在区间()0,1上单调递减; 当1t >时,()'0g t >,所以()g t 在区间()1,+∞上单调递增;因为()0,1n x ∈,且当2n …时,()11,,n n n x x x +∈+∞<, 所以()()(){}12minπ5πmin ,min ,44n g x g x g x g g ⎧⎫⎛⎫⎛⎫==⎡⎤⎨⎬ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎩⎭π4π4e 4πg ⎛⎫== ⎪⎝⎭,因此()*,n n n x f x ∈N 刦π44e π,解得π4a -,故实数a的取值范围是π4e ,4-⎫+∞⎪⎪⎣⎭. 12.(2015四川文21(2))已知函数()222ln 2f x x x x ax a =-+-+,其中0a >. 求证:存在()0,1a ∈,使得()0f x …恒成立,并且()00f =在区间()1,+∞内有唯一解. 12. 解析 由()()21ln 0f x x x a '=---=,解得1ln a x x =--,令()()()()2222ln 21ln 1ln 1ln 2ln x x x x x x x x x x x ϕ=-+---+--=+-.则()110ϕ=>,()()e 22e 0ϕ=-<,所以存在()01,e x ∈,使得()00x ϕ=. 令()00001ln a x x u x =--=,其中()()1ln 1u x x x x =--…. 由()110u x x'=-…,可知函数()u x 在区间()1,+∞上单调递增. 故()()()0001e e 21u a u x u =<=<=-<,即()00,1a ∈. 当0a a =时,有()00f x '=,()()000f x x ϕ==, 再由(1)可知,()f x '在区间()1,+∞上单调递增. 当()01,x x ∈时,()0f x '<,所以()()00f x f x >=;当()0,x x ∈+∞时,()0f x '>,所以()()00f x f x >=.又当()0,1x ∈时,()()202ln 0f x x a x x =-->,故()0,x ∈+∞时,()0f x …. 综上所述,存在()0,1a ∈,使得()0f x …恒成立,且()0f x =在区间()1,+∞内有唯一解. 13.(2016全国甲文20)已知函数()()()1ln 1f x x x a x =+--. (1)当4a =时,求曲线()y f x =在()()1,1f 处的切线方程; (2)若当()1,x ∈+∞时,()0f x >,求a 的取值范围.13. 解析 (1)当4a =时,()()()1ln 41f x x x x =+--,因此()10f =,()1ln 4x f x x x+'=+-,()12f '=-,所以曲线()y f x =在点()()1,1f 处的切线方程为 ()()()111y f f x '-=-,即()021y x -=--,得220x y +-=.(2)解法一:从必要条件做起.因为()10f =,对于()1,x ∀∈+∞,()()10f x f >=,又()1ln x f x x a x+'=+-,则()120f a '=-…,得2a …. 当2a …时,()1ln x f x x a x+'=+-,()10f '…, 又()221110x f x x x x-''=-=>,因此()y f x '=在()1,+∞上单调递增,所以()()10f x f ''>=,即函数()f x 在()1,+∞上单调递增, 所以()()10f x f >=,证毕. 综上所述,a 的取值范围是(],2-∞.解法二(目标前提法):若对于()1,x ∀∈+∞,()()01f x f >=,显然不等式恒成立的前提条件是,()f x 在()1,+∞上单调递增,即()0f x '…在()1,+∞上恒成立,即1ln 0x x a x ++-…对()1,x ∀∈+∞恒成立,得1ln x a x x++…. 设()1ln x g x x x +=+()1x >,则()221110x g x x x x -'=-=>,所以函数()g x 在()1,+∞上单调递增,则()()12g x g >=,所以2a …. 再证当2a >时,不等式不恒成立.因为()1ln x f x x a x +'=+-,()221110x f x x x x-''=-=>,所以函数()f x '在()1,+∞上单调递增.又()120f a '=-<,令()00f x '=,则()01,x x ∃∈,使得()0f x '<,函数()f x 在()01,x 上单调递减.又()10f =,所以对于()01,x x ∈,()0f x <与题意中对于()1,x ∀∈+∞,()0f x >不恒成立,故舍去.综上所述,a 的取值范围是(],2-∞. 解法三:直接从最值的角度转化.本题对于()1,x ∀∈+∞,()()01f x f >=,则只须对于()1,x ∀∈+∞,()min 0f x >. 因为()()()1ln 1f x x x a x =+--,()1ln x f x x a x +'=+-,()210x f x x-''=>,所以函数()y f x '=在()1,+∞上单调递增. 又()12f a '=-.若20a -…,即2a …,()0f x '>,函数()f x 在()1,+∞上单调递增,()()10f x f >=,满足题意.若20a -<,即2a >,令()00f x '=,则函数()f x 在()01,x 上单调递减, 则()()min 10f x f <=,不满足题意. 综上所述,a 的取值范围是(],2-∞.14.(2016四川文21)设函数()2ln f x ax a x =--,()1eex g x x =-,其中a ∈R ,e 2.718=⋅⋅⋅为自然对数的底数.(1)讨论()f x 的单调性;(2)求证:当1x >时,()0g x >;(3)确定a 的所有可能取值,使得()()f x g x >在区间()1+∞,内恒成立.14.解析 (1)函数的定义域为()0+∞,,()2121()20ax f x ax x x x-'=-=>.当0a …时,()0f x '<,()f x 在()0+∞,内单调递减.。