练一练3_用一元一次方程解决问题
- 格式:ppt
- 大小:878.00 KB
- 文档页数:4
完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。
问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。
变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。
请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。
2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。
变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。
变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。
如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。
1用一元一次方程解决问题1、一张桌子有一张桌面和四条桌腿,做一张桌面需要木料0.03 m3,做一条桌腿需要木料0.002 m3.用3.8 m3木材可做多少张这样的桌子(不计木材加工时的损耗)?2、有某种三色冰淇淋45g ,咖啡色、红色和白色配料比为1:2:6 ,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少?3、某商店今年共销售21英寸(54 cm)、25英寸(64 cm)、29英寸(74 cm) 3种彩电360台,它们的销售数量的比是1︰7︰4.这3种彩电各销售了多少台?4、某学生寄了2封信和一些明信片,一共花了5.6元。
已知每封信的邮费为1.2元,每张明信片的邮费为0.8元。
他寄了多少张明信片?5、一本书封面的周长为68 cm ,长比宽多6 cm .这本书封面的长和宽分别是多少?6、某人从甲地到乙地,全程的21乘车,全程的31乘船,最后又步行4km 到达乙地.甲、乙两地的路程是多少?7、我校排球队参加区排球联赛,赛场规定:胜一场得2分,负一场得1分。
该队赛了12场,共得20分。
该队胜了多少场?8、小丽在水果店花18元买了苹果和橘子共6kg ,已知苹果每千克3.2元,橘子每千克2.6元,小丽买了苹果和橘子各多少?29、在一场篮球比赛中,小明投中的两分球、三分球共得28分,且他投中的两分球比三分球多4个,小明投中的两分球、三分球各几个?10、某班学生分两组参加植树活动,甲组有17人,乙组有25人,后来由于需要,又从甲组抽调了部分学生去乙组,结果乙组人数是甲组的2倍。
问从甲组抽调了多少学生去乙组?11、某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个。
问:小组成员共有多少名?他们计划做多少个中国结?12、将一堆糖果分给幼儿园某班的小朋友,如果每人2颗,那么就多8颗,如果每人3颗,那么就少12颗,这个班共有多少名小朋友?13、汽车对运送一批货物,每辆汽车装4吨还剩下8吨未装,每辆汽车装4.5吨就恰好装完,该车队运送货物的汽车共有多少辆?14、某班同学分组参加活动,原来每组8人,后来重新编组,每组六人,这样比原来增加了2组,这个班共有多少学生?15、某班举行了一次集邮展览,展出的邮票张数比每人4张多14张, 比每人5张少26张,问:(1)这个班共有多少名学生? (2)展出的邮票共有多少张?16、运动场环形跑道400m,小红跑步的速度是爷爷的35倍,他们从同一起点沿跑道的同一方向同时发,5min后小红第一次与爷爷相遇.小红和爷爷跑步速度各是多少?17、一队学生从学校步行去博物馆,他们以5km/h的速度行进24min后,一名教师骑自行车以15km/h 的速度按原路追赶学生队伍,这名教师从出发到途中与学生队伍会合共用了多长时间?18、某人沿着相同的路径上山下山共用了2h.如果上山的速度为3km/h,下山的速度为5km/h.那么这条山路长是多少?19、将一批资料录入电脑,甲单独做需要18h完成,乙单独做需要12 h完成,现在先由甲单独做8h,剩下部分甲、乙两人合作完成,甲、乙两人合作的时间是多少?20、某下水道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成,如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完成?21、整理一批图书,甲、乙两人单独做分别需要天4h、6h完成,现在先由甲单独1h,然后两人合作完成,甲、乙两人合作整理这批图书用了多少时间?22、一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?23、一件商品按成本价提高20%,然后又以9折销售,售价为270元,则这件商品的成本价是多少元?24、某件家具的标价为1320元,如果以9折出售,那么售价比进货价高10%。
初一数学一元一次方程解决问题专项练习初一数学一元一次方程解决问题专项练工程问题1.甲单独完成一项工程需要10天,乙单独完成需要15天。
甲先单独工作了5天,然后甲乙合作完成这项工程,问还需要多少天?2.食堂存煤若干吨,原来每天烧煤4吨,用去15吨后,改进设备,耗煤量改为原来的一半,结果多烧了10天。
求原存煤量。
3.甲单独完成一项工程需要10天,乙单独完成需要12天,丙单独完成需要15天。
甲丙先做3天后,甲因事离去,乙参与工作,问还需要几天完成?4.一水池,单开进水管3小时可将水池注满,单开出水管4小时可将满池水放完。
现对空水池先打开进水管2小时,然后打开出水管,使进水管和出水管一起开放,问再过几个小时可将水池注满?5.某车间有16名工人,每人每天可加工甲种零件5个或者乙种零件4个。
在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件。
已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元。
若此车间一共获利1440元,求这一天有几个工人加工甲种零件?行程问题6.一轮船在甲乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为每小时2千米。
求甲乙两个码头之间的距离。
7.甲乙两地之间的路程为180千米,一人骑自行车从甲地出发每小时行驶15千米,另一人骑摩托车从乙地出发,已知摩托车的速度是自行车速度的3倍,若两人同时出发,相向而行,问,经过多长时间两人相遇?8.甲乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为每分钟100米,乙的速度是甲速度的二分之三倍,问(1)经过多长时间后两人首次相遇?(2)第二次相遇呢?9.一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以每分18米的速度从队头至队尾又返回,已知队伍的行进速度为每分钟14米。
问(1)若已知队长320米,则通讯员几分钟返回?(2)若已知通讯员用了25分钟,则队长多少米?10.甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时。
⼈教版七年级上册第3章《⼀元⼀次⽅程》应⽤题分类练习(三)《⼀元⼀次⽅程》应⽤题分类练习(三)⼀.销售问题1.某服装店购进A,B两种新式服装,按标价售出后可获得利润1600元,已知购进B种服装的数量是A种服装数量的2倍,这两种服装的进价、标价如表所⽰:A型B型进价(元/件)60 100标价(元/件)100 160(1)这两种服装各购进了多少件?(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店的利润⽐按标价出售少收⼊多少元?2.华联超市第⼀次⽤7000元购进甲、⼄两种商品,其中甲商品的件数是⼄商品件数的2倍,甲、⼄两种商品的进价和售价如表:(注:获利=售价﹣进价)甲⼄进价(元/件)20 30售价(元/件)25 40 (1)该超市购进甲、⼄两种商品各多少件?(2)该超市将第⼀次购进的甲、⼄两种商品全部卖完后⼀共可获得多少利润?(3)该超市第⼆次以第⼀次的进价⼜购进甲、⼄两种商品,其中甲商品的件数不变,⼄商品的件数是第⼀次的3倍:甲商品按原价销售,⼄商品打折销售,第⼆次两种商品都售完以后获得的总利润⽐第⼀次获得的总利润多800元,求第⼆次⼄商品是按原价打⼏折销售?3.列⽅程解应⽤题:某⽔果店计划购进A、B两种⽔果下表是A、B这两种⽔果的进货价格:⽔果品种A B进货价格(元/kg)10 15(1)若该⽔果店要花费600元同时购进两种⽔果共50kg,则购进A、B两种⽔果各为多少?(2)若⽔果店将A种⽔果的售价定为14元/kg,要使购进的这批⽔果在完全售出后达到50%的利润率,B种⽔果的售价应该定为多少?4.武汉⼤洋百货经销甲、⼄两种服装,甲种服装每件进价500元,售价800元;⼄种服装商品每件售价1200元,可盈利50%.(1)每件甲种服装利润率为,⼄种服装每件进价为元;(2)若该商场同时购进甲、⼄两种服装共40件,恰好总进价⽤去27500元,求商场销售完这批服装,共盈利多少?(3)在元旦当天,武汉⼤洋百货实⾏“满1000元减500元的优惠”(⽐如:某顾客购物1200元,他只需付款700元).到了晚上⼋点后,⼜推出“先打折”,再参与“满1000元减500元”的活动.张先⽣买了⼀件标价为3200元的⽻绒服,张先⽣发现竟然⽐没打折前多付了20元钱问⼤洋百货商场晚上⼋点后推出的活动是先打多少折之后再参加活动?5.⼀种商品按销售量分三部分制定销售单价,如下表:销售量单价不超过100件部分 2.6元/件超过100件不超过300件部分 2.2元/件超过300件部分2元/件(1)若买100件花元,买300件花元;买380件花元;(2)⼩明买这种商品花了568元,列⽅程求购买这种商品多少件?(3)若⼩明花了n元(n>260),恰好购买0.45n件这种商品,求n的值.⼆.配套问题6.列⽅程解应⽤题:油桶制造⼚的某车间主要负责⽣产制造油桶⽤的圆形铁⽚和长⽅形铁⽚,该车间有⼯⼈42⼈,每个⼯⼈平均每⼩时可以⽣产圆形铁⽚120⽚或者长⽅形铁⽚80⽚.如图,⼀个油桶由两个圆形铁⽚和⼀个长⽅形铁⽚相配套.⽣产圆形铁⽚和长⽅形铁⽚的⼯⼈各为多少⼈时,才能使⽣产的铁⽚恰好配套?7.星光服装⼚接受⽣产⼀些某种型号的学⽣服的订单,已知每3m长的某种布料可做上⾐2件或裤⼦3条,⼀件上⾐和⼀条裤⼦为⼀套,计划⽤750m长的这种布料⽣产学⽣服,应分别⽤多少布料⽣产上⾐和裤⼦才能恰好配套?共能⽣产多少套?8.⾜球表⾯是由若⼲个⿊⾊五边形和⽩⾊六边形⽪块围成的,⿊、⽩⽪块数⽬⽐为3:5,⼀个⾜球表⾯⼀共有32个⽪块,⿊⾊⽪块和⽩⾊⽪块各有多少个?9.包装⼚有⼯⼈42⼈,每个⼯⼈平均每⼩时可以⽣产圆形铁⽚120⽚,或长⽅形铁⽚80⽚,两张圆形铁⽚与⼀张长⽅形铁⽚可配套成⼀个密封圆桶,问每天如何安排⼯⼈⽣产圆形和长⽅形铁⽚能合理地将铁⽚配套?10.⽤铝⽚做听装易拉饮料瓶,每张铝⽚可制瓶⾝16个或瓶底43个,⼀个瓶⾝配两个瓶底.现有150张铝⽚,⽤多少张制瓶⾝,多少张制瓶底,可以正好制成成套的饮料瓶?三.相遇与追击问题11.甲、⼄两⼈同时从A地出发去25km远的B地,甲骑车,⼄步⾏,甲的速度是⼄的速度的3倍,甲到达B地停留40min,然后从B地返回A地,在途中遇见⼄,这时距他们出发的时间恰好为3h.(1)若设⼄的速度为xkm/h,则甲的速度为km/h,甲遇见⼄时,⼄⾛的路程可以表⽰为km,甲⾛的路程可以表⽰为km.(2)两⼈的速度分别是多少?(请⽤⽅程来解决问题)12.“五?⼀”长假⽇,弟弟和妈妈从家⾥出发⼀同去外婆家,他们⾛了1⼩时后,哥哥发现带给外婆的礼品忘在家⾥,便⽴刻带上礼品以每⼩时6千⽶的速度去追,如果弟弟和妈妈每⼩时⾏2千⽶,他们从家⾥到外婆家需要1⼩时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?13.甲、⼄两站相距275千⽶,⼀辆慢车以每⼩时50千⽶的速度从甲站出发开往⼄站.1⼩时后,⼀辆快车以每⼩时75千⽶的速度从⼄站开往甲站.那么快车开出后⼏⼩时与慢车相遇?14.已知甲⼄两⼈在⼀个200⽶的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4⽶,⼄平均每秒跑6⽶,若甲⼄两⼈分别从A、C两处同时相向出发(如图),则:(1)⼏秒后两⼈⾸次相遇?请说出此时他们在跑道上的具体位置;(2)⾸次相遇后,⼜经过多少时间他们再次相遇?(3)他们第100次相遇时,在哪⼀条段跑道上?15.⼩刚和⼩强从A、B两地同时出发,⼩刚骑⾃⾏车,⼩强步⾏,沿同⼀条路线相向匀速⽽⾏,出发后2h两⼈相遇,相遇时⼩刚⽐⼩强多⾏进24km,相遇后0.5h⼩刚到达B 地,两⼈的⾏进速度分别是多少?相遇后经过多少时间⼩强到达A地?四.年龄问题16.古希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:“他⽣命的六分之⼀是幸福的童年;再活了他⽣命的⼗⼆分之⼀,两颊长起了细细的胡须;他结了婚,⼜度过了⼀⽣的七分之⼀;再过五年,他有了⼉⼦,感到很幸福;可是⼉⼦只活了他⽗亲全部年龄的⼀半;⼉⼦死后,他在极度悲痛中度过了四年,也与世长辞了.”根据以上信息,请你算出:(1)丢番图的寿命;(2)丢番图开始当爸爸时的年龄;(3)⼉⼦死时丢番图的年龄.17.今年⼩李的年龄是他爷爷年龄的五分之⼀,⼩李发现:12年之后,他的年龄变成爷爷的年龄三分之⼀.求⼩李爷爷今年的年龄.参考答案1.解:(1)设A种服装购进x件,则B种服装购进2x件,(100﹣60)x+2x(160﹣100)=1600,解得:x=10,∴2x=20,答:A种服装购进10件,B种服装购进20件;(2)打折后利润为:10×(100×0.8﹣60)+20×(160×0.7﹣100)=200+240=440(元),少收⼊⾦额为:1600﹣440=1160(元),答:服装店的利润⽐按标价出售少收⼊1160元.2.解:(1)设第⼀次购进⼄种商品x件,则购进甲种商品2x件,根据题意得:20×2x+30x=7000,解得:x=100,∴2x=200件,答:该超市第⼀次购进甲种商品200件,⼄种商品100件.(2)(25﹣20)×200+(40﹣30)×100=2000(元)答:该超市将第⼀次购进的甲、⼄两种商品全部卖完后⼀共可获得利润2000元.(3)⽅法⼀:设第⼆次⼄种商品是按原价打y折销售根据题意得:(25﹣20)×200+(40×﹣30)×100×3=2000+800,解得:y=9答:第⼆次⼄商品是按原价打9折销售.⽅法⼆:设第⼆次⼄种商品每件售价为y元,根据题意得:(25﹣20)×200+(y﹣30)×100×3=2000+800,解得:y=36×100%=90%答:第⼆次⼄商品是按原价打9折销售.⽅法三:2000+800﹣100×3=1800元∴=6,∴×100%=90%,答:第⼆次⼄商品是按原价打9折销售.3.解:(1)设购进A⽔果x千克,则购进B⽔果(50﹣x)千克,依题意有10x+15(50﹣x)=600,解得:x=30,50﹣x=20.故购进A⽔果30千克,购进B⽔果20千克;(2)设B种⽔果的售价应该定为y元/千克,依题意有(14﹣10)×30+(y﹣15)×20=600×50%,解得:y=24.故B种⽔果的售价应该定为24元/千克.4.解:(1)∵甲种服装每件进价500元,售价800元,∴每件甲种服装利润率为=60%.∵⼄种服装商品每件售价1200元,可盈利50%.∴⼄种服装每件进价为=800(元),故答案为:60%,800;(2)设甲种服装进了x件,则⼄种服装进了(40﹣x)件,由题意得,500x+800(40﹣x)=27500,解得:x=15.商场销售完这批服装,共盈利15×(800﹣500)+25×(1200﹣800)=14500(元).答:商场销售完这批服装,共盈利14500元.(3)设打了y折之后再参加活动.①打折后价格满2000元少于3000元=3200﹣3×500+20.解得:y=8.5.②打折后价格满1000元少于2000元,解得y=6.9(不合题意,舍去).③打折后价格不满1000元3200×,解得y=5.3(不合题意,舍去).答:先打⼋五折再参加活动.5.解:(1)买100件花:2.6×100=260(元)买300件花:2.6×100+2.2×200=700(元)买380件花:2.6×100+2.2×200+2×80=860(元)故答案为:260,700,860(2)设购买这种商品x件因为花费568<700,所以购买的件数少于300件.260+2.2(x﹣100)=568解得:x=240答:购买这种商品240件(3)①当260<n≤700时260+2.2(0.45n﹣100)=n解得:n=4000(不符合题意,舍去)②当n>700时700+2(0.45n﹣300)=n解得:n=1000综上所述:n的值为10006.解:设⽣产圆形铁⽚的⼯⼈为x⼈,则⽣产长⽅形铁⽚的⼯⼈为42﹣x⼈,根据题意可列⽅程:120x=2×80(42﹣x),解得:x=24,则42﹣x=18.答:⽣产圆形铁⽚的有24⼈,⽣产长⽅形铁⽚的有18⼈.7.解:设做上⾐需要xm,则做裤⼦为(750﹣x)m,故可做上⾐×2,做裤⼦×3,由题意得,=750﹣x,解得:x=450,答:⽤450m做上⾐,300m做裤⼦恰好配套.=300(套),因此共做300套.8.解:设⿊⾊⽪块有3x个,则⽩⾊⽪块有5x 个,根据题意列⽅程:3x+5x=32,解得:x=4,则⿊⾊⽪块有:3x=12个,⽩⾊⽪块有:5x=20个.答:⿊⾊⽪块有12个,⽩⾊⽪块有20个.9.解:设安排x⼈⽣产长⽅形铁⽚,则⽣产圆形铁⽚的⼈数为(42﹣x)⼈,由题意得:120(42﹣x)=2×80x,去括号,得5040﹣120x=160x,移项、合并得280x=5040,系数化为1,得x=18,42﹣18=24(⼈);答:安排24⼈⽣产圆形铁⽚,18⼈⽣产长⽅形铁⽚能合理地将铁⽚配套.10.解:设⽤x张铝⽚做瓶⾝,则⽤(150﹣x)张铝⽚做瓶底,根据题意得:2×16x=43×(150﹣x),解得:x=86,则⽤150﹣86=64张铝⽚做瓶底.答:⽤86张铝⽚做瓶⾝,则⽤64张铝⽚做瓶底.11.解:(1)若设⼄的速度为xkm/h,则甲的速度为3xkm/h,甲遇见⼄时,⼄⾛的路程可以表⽰为3xkm,甲⾛的路程可以表⽰为(3﹣)×3x=7xkm.(2)7x+3x=25×2,10x=50,x=5,3x=15.答:甲的速度是15千⽶/⼩时,⼄的速度是5千⽶/⼩时.故答案为:3x,3x,7x.12.解:设哥哥追上弟弟需要x⼩时.由题意得:6x=2+2x,解这个⽅程得:.∴弟弟⾏⾛了=1⼩时30分<1⼩时45分,未到外婆家,答:哥哥能够追上.13.解:设快车开出后x⼩时与慢车相遇.由题意得:50(1+x)+75x=275,解得:.答:快车开出后⼩时与慢车相遇.14.解:(1)设x秒后两⼈⾸次相遇,依题意得到⽅程4x+6x=100.解得x=10.甲跑的路程=4×10=40⽶,答:10秒后两⼈⾸次相遇,此时他们在直道AB上,且离B点10⽶的位置;(2)设y秒后两⼈再次相遇,依题意得到⽅程4y+6y=200.解得y=20.答:20秒后两⼈再次相遇;(3)第1次相遇,总⽤时10秒,第2次相遇,总⽤时10+20×1,即30秒,第3次相遇,总⽤时10+20×2,即50秒,第100次相遇,总⽤时10+20×99,即1990秒,则此时甲跑的圈数为1990×4÷200=39.8,200×0.8=160⽶,此时甲在AD弯道上.15.解:设⼩刚的速度为xkm/h,则相遇时⼩刚⾛了2xkm,⼩强⾛了(2x﹣24)km,由题意得,2x﹣24=0.5x,解得:x=16,则⼩强的速度为:(2×16﹣24)÷2=4(km/h),2×16÷4=8(h).答:两⼈的⾏进速度分别是16km/h,4km/h,相遇后经过8h⼩强到达A地.16.解:设丢番图的寿命为x岁,由题意得:x+x+x+5+x+4=x,解得:x=84,⽽×84+×84+×84+5=38,即他38岁时有了⼉⼦.他⼉⼦活了x=42岁.84﹣4=80岁.答:丢番图的寿命是84岁;丢番图开始当爸爸时的年龄是38;⼉⼦死时丢番图的年龄是80岁.17.解:设爷爷今年的年龄是x岁,则今年⼩李的年龄是x岁,依题意,得:x+12=(x+12),解得:x=60.答:爷爷今年60岁.。
1.(2021七上·民勤期末)某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,一个螺栓配两个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?2.(2020七上·罗湖期末)一列匀速前进的火车,通过列车隧道.(1)如果通过一个长300米的隧道AB,从车头进入隧道到车尾离开隧道,共用15秒的时间(如图1),又知其间在隧道顶部的一盏固定的灯发出的一束光垂直照射火车2.5秒,求这列火车的长度;图一(2)如果火车以相同的速度通过了另一个隧道CD,从火车车尾全部进入隧道到火车车头刚好到达隧道出口(如图2),其间共用20秒时间,求这个隧道CD的长.图二3.(2020七上·南海期末)两个圆柱体容器如图所示,容器1的半径是4cm,高是20cm;容器2的半径是6cm, 高是8cm,我们先在容器2中倒满水,然后将里面的水全部倒入容器1中,问:倒完以后,容器1中的水面离容器口有多少厘米?4.(2019·北京模拟)现在,某商场进行元旦促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果该商场还能盈利25%,那么这台冰箱的进价是多少元?5.若一个角的余角与这个角的补角之比是2:7,求这个角的邻补角.6.(2021七上·大名期中)一辆快车和一辆慢车同时从甲、乙两地相对开出,3小时后在距离中点48千米处相遇,已知慢车速度是快车的57,求甲、乙两地相距多少千米?7.(2021七上·大名期中)实验学校组织秋游,如果用45座的客车若干辆,则15人没有座位;如果用同样数量的60座客车,则多出一辆,且其余全部坐满.参加秋游的学生一共有多少名?8.(2021七上·哈尔滨月考)某果蔬基地现有草莓18吨,若在市场上直接销售鲜草莓,每吨可获利润500元;若对草莓进行粗加工,每吨可获利润1200元;若对草莓进行精加工,每吨可获利润2000元.该工厂的生产能力是如果对草莓进行粗加工,每天可加工3吨;精加工,每天可加工1吨,受人员限制,两种加工方式不能同时进行;受气候限制,这批草莓必须在8天内全部销售或加工完毕,为此,该厂设计了两种方案。
用方程解决问题练习(1)1、 某种三色冰淇淋54 g ,咖啡色、红色和白色配料的比为1︰2︰6,这种三色冰淇淋中咖啡色、 红色和白色配料分别是多少?2、用68 cm 长的铁丝做一个长方形的教具,要使长比宽多6 cm .这个教具的长和宽分别是多少?3、某人从甲地到乙地,全程的21乘车,全程的31乘船,最后又步行4 km 到达乙地.甲、乙两地的路程是多少?4、在一场篮球比赛中,小林一人独得28分(不含罚球得分),已知他投中的两分球比三分球 多4个,他一共投中了多少个两分球?多少个三分球?5、美国篮球巨星乔丹在一场比赛中24投14中,拿下28分,其中三分球三投全中,那么乔丹两分球投中多少球?罚球投中多少球?(罚球投中一个一分)6、小明用50元购买了面值为1元和2元的邮票共30张.他买了多少张面值为1元的邮票?7、在第二届中国邮票文化节上,冰冰买了60分和80分的邮票共20枚,一共用去13元6角, 试问冰冰买了两种邮票各多少枚?8、小丽和她爸爸一起玩投篮球游戏.两人商定规则为:小丽投中1个得3分,爸爸投中1个得1分,结果两人一共投中了20个,得分刚好相等.问小丽投中了几个?1、⑴吉姆同学在某月的日历上圈出2×2个数,正方形的方框内的四个数的和是32,那么这四个数是___________________.⑵玛丽也在上面的日历上圈出2×2个数,斜框内的四个数的和是42,则它们分别是________________. ⑶莉莉也在日历上圈出5个数,呈十字框形,它们的和是50,则中间的数是______________________.⑷某月有5个星期日的和是75,则这个月中最后一个星期日是 _______号.⑸若干个偶数按每行8个数排成下图:① 图中方框内的9个数的和与中间的数有什么关系?②汤姆所画的斜框内9个数的和为360,则斜框的中间一个数是________.③托马斯也画了一个斜框,斜框内9个数的和为270,则斜框的中间一个数是___________.2、某校组织学生暑期夏令营活动5天,这5天中每天的日期之和为75,问学生________号从学校出发,_________号回到学校.第⑸题图① 第⑸题图②3、甲、乙两个仓库共有20吨货物,从甲仓库调出101到乙仓库后,甲仓库中的货物比乙仓库中的货物多16吨.问甲、乙两仓库中原来各有多少吨货物?4、在甲处劳动的有31人,在乙处劳动的有20人,现调来18人支援,要使甲处劳动的人是 乙处劳动的人数的2倍,应往甲、乙两处各调去多少人?5、某课外活动小组的女学生人数占全组人数的一半,如果再增加6个女学生, 那么女学生人数就占全组人数的32.求这个课外活动小组的人数.第⑴题图 第⑵题图 第⑶题图1、为了奖励兴趣小组的同学,张老师花92元钱购买了《智力大挑战》和《数学趣题》两种书共9本.已知《智力大挑战》每本18元.《数学趣题》每本8元,问《智力大挑战》和《数学趣题》各买了多少本?2、汶川大地震发生后,各地人民纷纷捐款捐物支援灾区.我市某企业向灾区捐助价值94万元的A,B两种帐篷共600顶.已知A种帐篷每顶1700元,B种帐篷每顶1300元,问A,B两种帐篷各多少顶?3、丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10吨前去参展,用6辆汽车装运,每辆汽车规定满载,且只能装这一种产品,因包装限制,每辆汽车满载时能装运香菇1.5吨或茶叶2吨.问装运香菇、茶叶的汽车各需多少辆?4、某制衣厂计划若干天完成一批服装的订货任务.每天生产20套服装,就比订货任务少生产100套;每天生产23套服装,就可超过订货任务20套.问这批服装的订货任务是多少套?原计划多少天完成?5、有几名同学在砖厂义务劳动,如果每人搬2块砖,那么还有6块剩余;如果每人搬4块,正好搬完,你知道有多少名同学吗?6、某校住校生分配宿舍,如果每间住5人,则有2人无处住;如果每间住6人,则可以多住8人.问该校有多少住校生?有多少间宿舍?1、甲、乙两站的路程为360千米,一列快车从乙站开出,每小时行驶72千米;一列慢车从甲站开出,每小时行驶48千米,两列火车同时开出,相向而行,经过多少小时相遇?2、甲、乙两站相距510千米,一列慢车从甲站开往乙站,速度为每小时45千米。
一元一次方程应用题专题练习一元一次方程应用题专题练1.年龄问题XXX今年6岁,他爷爷今年72岁,问多少年之后小明年龄是他爷爷年龄的1/4倍?解:设x年后XXX的年龄是爷爷的1/4倍,根据题意得方程为:6+x=72+1/4x2.数字问题一个两位数它的个位数字比十位数字大3,那么这个两位数可以表示为什么?如果把个位数字和十位数字对调,新的两位数可以表示为什么?(填表格并完成解答过程)解:设这个数的十位数字是x,个位数字是x+3,根据题意得原数为10x+x+3,对调后的新数为10(x+3)+(x)=11x+30.解方程得:原数为42,对调后的新数为93.3.两个连续奇数的和为156,求这两个奇数,设最小的数为x,列方程得x+(x+2)=156,解得x=77,因此这两个奇数为77和79.4.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。
设原数为abcde,根据题意得方程为:a+bcde=3(abcde+),解得a=2,因此原数为+b+cde。
5.将连续的奇数1,3,5,7,9…,排成如下的数表:1)十字框中的五个数的平均数与15有什么关系?2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.解:(1)十字框中的五个数的平均数为5,与15的关系是它们都是这些连续奇数的中位数。
2)这五个数的和为35,无法等于315,因为315是连续奇数的和,而这些数不在同一个连续奇数序列中。
6.日历时钟问题你能在日历中圈出2×2的一个正方形,使得圈出的4个数之和是77吗?如果能,求出这四天分别是几号?如果不能,请说明理由。
解:无法圈出这样的正方形,因为任何一个正方形的四个角上的数相加都不小于13,而77不是13的倍数。
7.在6点和7点间,时钟分针和时针重合?解:在6点和7点间,时针和分针之间的夹角为30度,每分钟时针和分针的夹角增加5.5度,因此重合需要30÷(5.5)=5.45分钟,即在6点5分左右。
一元一次方程的应用题用方程解决问题〔1〕---------比例问题与日历问题1、甲、乙、丙三种货物共有167吨,甲种货物比乙种货物的2倍少5吨,丙种货物比甲种货物的多3吨,求甲、乙、丙三种货物各多少吨?2、有蔬菜地975公顷,种植青菜、西红柿和芹菜,其中青菜和西红柿的面积比是3∶2,种西红柿和芹菜的面积比是5∶7,三种蔬菜各种的面积是多少公顷?3、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资之比是5:2:3。
问他们应各投资多少万元?4、建筑工人在施工中,使用一中混凝土,是由水、水泥、黄沙、碎石搅拌而成的,这四种原料的重量的比是:1:2:,搅拌这种混凝土2100千克,分别需要水、水泥、黄沙、碎石多少千克?5、小名出去旅游四天,四天日期之和为65,求这四天分别是哪几日?6、小华在日历上任意找出一个数,发现它连同上、下、左、右的共为85,请求出小华找的数。
5个数的和7日历上同一竖列上3日,日期之和为75,第一个日期是几号?用方程解决问题〔2〕---------调配问题1、甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?2、某班女生人数比男生的还少2人,如果女生增加3人,男生减少3人,那么女生人数等于男生人数的,那问男、女生各多少人?3、某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10人,又知二个大齿轮和三个小齿轮配套一套,问应如何安排劳力使生产的产品刚好成套?4、某同学做数学题,如果每小时做5题,就可以在预定时间完成,当他做完10题后,解题效率提高了60%,因而不但提前3小时完成,而还多做了6道,问原方案做几题?几小时完成?5、小丽在水果店花18元,买了苹果和橘子共6千克,苹果每千克元,橘子每千克元,小丽买了苹果和橘子各多少千克?6、甲仓库有煤200吨,乙仓库有煤80吨,如果甲仓库每天运出15吨,乙仓库每天运进25吨,问多少天后两仓库存煤相等?7、两个水池共贮有水50吨,甲池用去水5吨,乙池注进水8吨后,这时甲池的水比乙池的水少3吨,甲、乙水池原来各有水多少吨?8、某队有55人,每人每天平均挖土方或运土3方,为合理安排劳力,使挖出的土及时运走,应如何分配挖土和运土人数?用方程解决问题〔3〕---------盈亏问题工作量与折扣问题1.用化肥假设干千克给一块麦田施肥,每亩用千克,还多3千克,这块麦田有多少亩?6千克,还差17千克;每亩用5(2.毕业生在礼堂入座,1条长凳坐3人,有25人坐不下;1条长凳坐4人,正好空出4条长凳,那么共有多少名毕业生?长凳有多少条?(3.将一批货物装入一批箱子中,如果每箱装 10件,还剩下6件;如果每箱装(13件,那么有一只箱子只装1件,这批货物和箱子各有多少?(4.有一次数学竞赛共 20题,规定做对一题得5分,做错或不做的题每题扣2(分,小景得了86分,问小景对了几题?(5.修一条路,A队单独修完要20天,B队单独修完要12天。
初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式 x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解 D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3 B.a= ,b=-3C.a≠,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t 分钟后第一次相遇,t等于().A.10分 B.15分 C.20分 D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减 D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( •)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组 B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个 B.4个 C.5个 D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-1 20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米) 1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数 1~50人 51~100人 100人以上票价 5元 4.5元 4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程 x-1=- ,得x= )4. x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则 =5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x( + )=1,解得x=4] 二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=3 21.解:设卡片的长度为x厘米,根据图意和题意,得 5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得 =0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.36,2837,28545454654544121dhgghsaqy数学题要细心,慢慢做,要做对。
一元一次方程解应用题-行程问题专项练习一、单选题1.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( ).A .31 2.5 1.5x x -=⨯B .31 2.5 1.5x x +=⨯C .31150 1.5x x -=⨯D .1801150 1.5x x +=⨯ 2.小明每天早晨在8时前赶到离家1km 的学校上学.一天,小明以80m/min 的速度从家出发去学校,5min 后,小明爸爸发现小明的语文书落在家里,于是,立即以180m/min 的速度去追赶.则小明爸爸追上小明所用的时间为( )A .2 minB .3minC .4minD .5min3.一货轮往返于上、下游两个码头,逆流而上38个小时,顺流而下需用32个小时,若水流速度为8千米/时,则下列求两码头距离x 的方程正确的是( )A .883238x x -+= B .883238x x -=+ C .832382x x -= D .21323823238x x x ⎛⎫=+ ⎪+⎝⎭ 4.如图所示,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边( )上.A .AB B .BC C .CD D .DA5.A ,B 两地相距600km ,甲车以60km/h 的速度从A 地驶向B 地,当甲车行驶100km 后,乙车以100km/h 的速度沿着相同的道路从A 地驶向B 地.设乙车出发h x 后追上甲车,根据题意可列方程为( )A .60100100x x +=B .60100100x x -=C .60100600x x +=D .60100100600x x ++= 6.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安,几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列 方程( )A .7512x x +=+B .2175x x ++=C .2175x x +-=D .275x x += 7.甲、乙两车分别从A 、B 两地同时出发,相向而行,若快车甲的速度为60/km h ,慢车乙的速度比快车甲慢4/km h ,A 、B 两地相距80km ,求两车从出发到相遇所行时间,如果设xh 后两车相遇,则根据题意列出方程为( )A .4608080x x -+=B .()480x x -=C .()6060480x x +-=D .()6060480x x +-= 8.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需( )A .20天B .21天C .22天D .23天9.2020年12月30日,连云港市图书馆新馆正式开馆.小明同学从家步行去图书馆,他以5km/h 的速度行进24min 后,爸爸骑自行车以15km/h 的速度按原路追赶小明.设爸爸出发xh 后与小明会合,那么所列方程正确的是( )A .245()1560x x +=B .()52415x x +=C .()51524x x =+D .24515()60x x =+ 10.某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4.5千米.一列火车以每小时120千米的速度迎面开来,测得从火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒.如果队伍长150米,那么火车长( )A .150 米B .215米C .265 米D .310米11.《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作,全书分为九章,在第七章“均衡”中有一题:“今有凫起南海,七日至北海;雁起北海,九日至南悔.今凫雁俱起,问何日相逢?”愈思是:今有野鸭从南海起飞.7天到北海;大雁从北海起飞,9天到南海.现野鸭大雁同时起飞,问经过多少天相逢.利用方程思想解决这一问题时,设经过x 天相遇,根据题意列出的方程是( )A .()971x -=B .()971x +=C .11179x ⎛⎫+= ⎪⎝⎭D .11179x ⎛⎫-= ⎪⎝⎭12.一天早上,小宇从家出发去上学.小宇在离家800米时,突然想起班级今天要进行建党100周年合唱彩排,表演的衣服忘了,于是小宇立即打电话通知妈妈送来,自己则一直保持原来的速度继续赶往学校,妈妈接到电话后,马上拿起衣服以180米/分的速度沿相同的路线追赶小宇,10分钟后追上了小宇,把衣服给小宇后又立即以原速原路返回,小宇拿到衣服后继续原速赶往学校(打接电话、拿取衣服等时间都忽略不计).当小宇妈妈回到家中时,恰好小宇也刚好到学校.则小宇家离学校的距离为()A.1800米B.2000米C.2800米D.3200米二、填空题13.一艘轮船在水中由A地开往B地,顺水航行用了4小时,由B地开往A地,逆水航行比顺水航行多用了1小时,已知此船在静水中速度是18千米/时,水流速度为___________千米/小时.14.一列长150米的火车,以每秒15米的速度通过长600米的桥洞,从列车进入桥洞口算起,这列火车完全通过桥洞所需时间是____秒.15.甲乙两车在南北方向的笔直公路上相距90千米,相向而行.甲出发30分钟后,乙再出发,甲的速度为60千米/时,乙的速度为40千米/时.则甲出发________小时后甲乙相距10千米.16.有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.若求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为________.17.小明与小美家相距1.8千米.有一天,小明与小美同时从各自家里出发,向对方家走去,小明家的狗和小明一起出发,小狗先跑去和小美相遇,又立刻回头跑向小明,又立刻跑向小美……一直在小明与小美之间跑动.已知小明速度为50米/分,小美速度为40米/分,小明家的狗速度为150米分,则小明与小美相遇时,小狗一共跑了__________米.三、解答题18.列方程解应用题:甲、乙两人从相距60千米的两地同时出发,相向而行2小时后相遇,甲每小时比乙少走4千米,求甲、乙两人的速度.19.小明在国庆节期间和父母外出旅游,他们先从宾馆出发去景点A参观游览,在景点A停留1.5h 后,又去景点B,再停留0.5h后返回宾馆.去时的速度是5km/h,回来时的速度是4km/h,来回(包括停留时间在内)一共用去7h,如果回来时的路程比去时多2km,求去时的路程.20.甲、乙两人分别后,沿着铁轨反向而行.此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15s;然后在乙身旁开过,用了17s.已知两人的步行速度都是3.6km/h,这列火车有多长?21.如图,在数轴上,点A、点B所表示的数分别是a和b,点A在原点右边,点B在原点左边,它们相距24个单位长度,且点A到原点的距离比点B到原点的距离大8,点P从点A出发,以每秒3个单位的速度向数轴负方向运动,到达点B后,立即以相同的速度反向运动;点Q从点B出发,以每秒1个单位的速度向数轴负方向运动,两点同时出发,设运动时间为t秒.(1)a=,b=;(2)当点P、点Q所表示的数互为相反数时,求t的值;(3)当点P、点Q与原点的距离之和为22时,求t的值.22.问题一:如图①,甲,乙两人分别从相距30km的A,B两地同时出发,若甲的速度为40km/h,乙的速度为30km/h,设甲追到乙所花时间为xh,则可列方程为;问题二:如图②,若将线段AC弯曲后视作钟表的一部分,线段AB对应钟表上的弧AB(1小时的间隔),已知∠AOB=30°.(1)分针OC的速度为每分钟转动度;时针OD的速度为每分钟转动度;(2)若从1:00起计时,几分钟后分针与时针第一次重合?(3)在(2)的条件下,几分钟后分针与时针互相垂直(在1:00~2:00之间)?参考答案1.D解:3小时=180分钟由题意下山的速度为1.5x 千米/分钟,从而可得方程:1801150 1.5x x +=⨯ 故选:D .2.C解:设小明爸爸追上小明所用的时间为min x ,则小明走的路程为(80580)x m ⨯+,小明的爸爸走的路程为180xm ,由题意列式得:805+80180x x ⨯=,解得:4x =.即小明爸爸追上小明所用的时间为4分钟.故选:C3.B解:∵逆流而上38个小时,∴逆流时船本身的速度可以表示为38x 千米/时, ∵顺流而下需用32个小时,∴顺流时船本身的速度可以表示为32x 千米/时, ∵静水的速度是不变的,∴可列方程为883238x x -=+. 故选:B .4.A解:设正方形的边长为a ,甲的速度为v ,则乙的速度为4v ,第一次相遇时间为1t ,第二次相遇时间为2t ,第n 次相遇时间为n t ,甲第一次走的路程为S 1,第二次走的路程为S 2,第n 次走的路程为S n , 1142vt vt a +=, 125a t v=,1125a S v t ==, 2244vt vt a +=, 245a t v=,2245a S v t ==,3344vt vt a +=,345a t v =,3345a S v t ==, … 45n a t v=,45n n a S v t ==, ()12422445555n n a a a a S S S S -=+⋯+=++⋯=, 当2020n =时,()4280781615,655n a a S a -===, 4403.9S a ÷=圈,0.94 3.6a a ⨯=,第2020次相遇在AB 上.故选:A .5.A解:设乙车出发h x 后追上甲车,等量关系为甲车h x 行驶的路程100km +=乙车h x 行驶的路程,据此列方程为60100100x x +=.故选:A.6.B解:根据题意设甲乙经过x 日相逢,则甲、乙分别所走路程占总路程的5x 和27x +,可列方程2175x x ++=. 故选B .7.C解:根据题意可知甲的速度为60/km h ,乙的速度是()604/km h -,相遇后甲行驶的路程+乙行驶的路程=80km ,∴可列方程为()6060480x x +-=.故选:C .8.A解:设快马x 天可以追上慢马,由题意,得240x ﹣150x =150×12,解得:x =20.答:快马20天可以追上慢马.故选:A .9.A解:设爸爸出发xh 后与小明会合,则此时小明出发了2460x ⎛⎫+ ⎪⎝⎭h , 依据题意得:2451560x x ⎛⎫+= ⎪⎝⎭, 故选:A .10.C解:12秒=1300小时,150米=0.15千米, 设火车长x 千米,根据题意得:1300×(4.5+120)=x +0.15, 解得:x =0.265,0.265千米=265米.答:火车长265米.故选:C .11.C解:设野鸭与大雁从南海和北海同时起飞,经过x 天相遇, 根据题意得:11179x ⎛⎫+= ⎪⎝⎭. 故选:C .12.C解:设小宇的速度为x 米/分,根据题意得:1018010800x =⨯-,解得:10x =,则小宇家离学校的距离为10180102800x +⨯=(米),故选:C .13.2解:设水流速度是x 千米/时,依题意有4(x +18)=(4+1)×(18−x ), 解得x =2.答:水流速度是2千米/时.14.50解:设这列火车完全通过桥洞所需时间为x 秒,根据题意得:15x =600+150,解得:x =50.答:这列火车完全通过隧道所需时间是50秒.故答案为:50.15.1或1.2或1解:设甲出发x 小时后甲乙相距10千米, 当甲乙相遇前:306040()901060x x +-=-, 解得x =1;当甲乙相遇后:306040()901060x x +-=+, 解得x =1.2,故答案为:1或1.2.16.2481632378+++++=x x x x x x解:设此人第六天走的路程为x 里,则前五天走的路程分别为2x ,4x ,8x ,16x ,32x 里,依题意得:2481632378+++++=x x x x x x ;故答案是:2481632378+++++=x x x x x x .17.3000解:设经过x 分钟两人相遇,依题意,得:(50+40)x =1800,解得:x =20,所以小狗跑的距离为150×20=3000(米)故答案为:3000.18.甲的速度为13千米每小时,乙的速度为17千米每小时解:设乙的速度为x 千米每小时,则甲的速度为(4)x -千米每小时,根据题意得, 22(4)60x x +-=解得17x =,则甲的速度为17413-=千米每小时 答:甲的速度为13千米每小时,乙的速度为17千米每小时. 19.10km解:设去时的路程为km x ,则回来时的路程就是(2)km x +,去时路上所用的时间为h 5x ,回来时路上所用的时间为2h 4x +.根据题意,得2 1.50.5754x x ++++=. 解得10x =. 因此,去时走的路程是10km .20.255m解:3.6km/h =1m/s .设这列火车的速度为x m/s ,则火车的长为15x +1×15=(15x +15)m , 根据题意得:17x ﹣17×1=15x +15×1, 解得:x =16,∴15(x +1)=255,答:这列火车长255m .21.(1)16,﹣8;(2)t 的值是2;(3)t 的值是1或7.5或11.5或9. 解:(1)∵点A 在原点右边,点B 在原点左边,它们相距24个单位长度,且点A 到原点的距离比点B 到原点的距离大8,0,0a b ∴>< ∴24,8a b a b -=-=∴a =(24+8)÷2=16,b =﹣(24﹣8)÷2=﹣8;故答案为:16,﹣8.(2)①当0≤t ≤8时,点P 表示的数是16﹣3t ,点Q 表示的数是﹣8﹣t , 所以(16﹣3t )+(﹣8﹣t )=0,解得t =2; ②当8<t <16时,点P 表示的数是﹣8+(3t ﹣24)=3t ﹣32,点Q 表示的数是﹣8﹣t , 所以(3t ﹣32)+(﹣8﹣t )=0,解得t =20(舍去); 所以当点P 、点Q 所表示的数互为相反数时,t 的值是2; (3)①当0≤t ≤8时,OP =|16﹣3t |,OQ =8+t , 所以|16﹣3t |+8+t =22,解得t =1或7.5;②当8<t<16时,OP=|3t﹣32|,OQ=8+t,所以|3t﹣32|+8+t=22,解得t=11.5或9;综上,当点P、点Q与原点的距离之和为22时,t的值是1或7.5或11.5或9.22.问题一:(40-30)x=30;问题二:(1)6,0.5;(2)从1:00起计时,6011分钟后分针与时针第一次重合;(3)24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).解:问题一:依题意有(40-30)x=30;故答案为:(40-30)x=30;问题二:(1)分针OC的速度为每分钟转动6度;时针OD的速度为每分钟转动0.5度;故答案为:6,0.5;(2)设从1:00起计时,y分钟后分针与时针第一次重合,依题意有(6-0.5)y=30,解得y=6011.故从1:00起计时,6011分钟后分针与时针第一次重合;(3)设在(2)的条件下,z分钟后分针与时针互相垂直(在1:00~2:00之间),依题意有(6-0.5)z=90+30或(6-0.5)z=270+30,解得z=24011或z=60011,故在(2)的条件下,24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).11。