中考复习 24圆
- 格式:ppt
- 大小:1.33 MB
- 文档页数:21
专题24 圆的有关计算☞解读考点知识点名师点晴弧长和扇形面积弧长公式会求n°的圆心角所对的弧长扇形面积公式会求圆心角为n°的扇形面积圆锥侧面积计算公式能根据公式中的已知量求圆锥中的未知量☞2年中考【题组】1.(河池)如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.240πcm2 B.480πcm2 C.1200πcm2 D.2400πcm2【答案】A.【解析】试题分析:这张扇形纸板的面积=12×2π×10×24=240π(cm2).故选A.考点:圆锥的计算.2.(凉山州)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm【答案】A.考点:圆锥的计算.3.(德州)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288° B.144° C.216° D.120°【答案】A.【解析】试题分析:∵底面圆的半径与母线长的比是4:5,∴设底面圆的半径为4x,则母线长是5x,设圆心角为n°,则524180n xxππ⨯⨯=,解得:n=288,故选A .考点:圆锥的计算.4.(宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5cm B.10cm C.20cm D.5πcm【答案】B.考点:圆锥的计算.5.(苏州)如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A .433π-B .4233π-C .3π-D .233π-【答案】A .【解析】试题分析:过O 点作OE ⊥CD 于E ,∵AB 为⊙O 的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O 的半径为2,∴OE=1,CE=DE=3,∴CD=23,∴图中阴影部分的面积为:2120211233602⋅π⋅-⨯⨯=433π-.故选A .考点:1.扇形面积的计算;2.切线的性质.6.(成都)如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 和BC 弧线的长分别为( )A .2,3πB .23,πC .3,23πD .23,43π【答案】D .考点:1.正多边形和圆;2.弧长的计算.7.(甘孜州)如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()A.π﹣2 B.π﹣4 C.4π﹣2 D.4π﹣4【答案】A.【解析】试题分析:S阴影部分=S扇形OAB﹣S△OAB=29021223602π⨯-⨯⨯=π﹣2.故选A.考点:扇形面积的计算.8.(攀枝花)如图,已知⊙O的一条直径AB与弦CD相交于点E,且AC=2,AE=3,CE=1,则图中阴影部分的面积为()A 239π439πC.29πD.49π【答案】D.考点:1.扇形面积的计算;2.勾股定理的逆定理;3.圆周角定理;4.解直角三角形. 9.(自贡)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =32,则阴影部分的面积为( )A .2πB .πC .3πD .32π【答案】D . 【解析】试题分析:连接OD .∵CD ⊥AB ,∴CE=DE=12CD=3(垂径定理),故S △OCE=S △ODE ,即可得阴影部分的面积等于扇形OBD 的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,故S 扇形OBD=2602360π⨯=32π,即阴影部分的面积为32π.故选D .考点:1.扇形面积的计算;2.垂径定理;3.圆周角定理;4.解直角三角形. 10.(达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B′,则图中阴影部分的面积是( )A .12πB .24πC .6πD .36π 【答案】B .考点:1.扇形面积的计算;2.旋转的性质.11.(德阳)如图,已知⊙O 的周长为4π,AB 的长为π,则图中阴影部分的面积为( )A .2π-B .3π-C .πD .2 【答案】A .考点:1.扇形面积的计算;2.弧长的计算.12.(梧州)如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为()A.95 B.185 C.365 D.725【答案】B.【解析】试题分析:根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积﹣大半圆的面积.∵MN的半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积=大半圆的面积.∴阴影部分的面积=△DMN的面积.在Rt△AOD中,OD=22AD AO+=2263+=35,∴阴影部分的面积=△DMN的面积=12MN•AD=16562⨯⨯=185.故选B.考点:1.扇形面积的计算;2.勾股定理;3.综合题.13.(咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大 B.由大到小 C.不变 D.先由小到大,后由大到小【答案】C.考点:1.扇形面积的计算;2.定值问题;3.综合题.14.(常德)若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB 与扇形A1O1B1是相似扇形,且半径OA :O1A1=k (k 为不等于0的常数).那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB ∽△A1O1B1;③11ABk A B ;④扇形AOB 与扇形A1O1B1的面积之比为2k . 成立的个数为( )A .1个B .2个C .3个D .4个【答案】D .考点:1.相似三角形的判定与性质;2.弧长的计算;3.扇形面积的计算;4.新定义;5.压轴题.15.(邵阳)如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转次后,顶点A 在整个旋转过程中所经过的路程之和是( )A .πB .3019.5πC .3018πD .3024π 【答案】D . 【解析】试题分析:转动一次A 的路线长是:90331802ππ⨯=,转动第二次的路线长是:90551802ππ⨯=,转动第三次的路线长是:9042180ππ⨯=,转动第四次的路线长是: 0,转动五次A 的路线长是:90331802ππ⨯=,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:32π+52π+2π=6π,÷4=503余3,顶点A 转动四次经过的路线长为:6π×504=3024π.故选D .考点:1.旋转的性质;2.弧长的计算;3.规律型. 16.(北海)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 . 【答案】2.考点:圆锥的计算.17.(贵港)如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.【答案】15π.【解析】试题分析:∵OB=12BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:12×6π×5=15π.故答案为:15π.考点:圆锥的计算.18.(庆阳)如图,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△ABC绕边AB 所在直线旋转一周,则所得几何体的表面积为(结果保留π).【答案】2π.【解析】试题分析:过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴2,∴CD=2,以CD为半径的圆的周长是:4π.故直线旋转一周则所得的几何体得表面积是:2×12×4π×2282π.故答案为:82π.考点:1.圆锥的计算;2.点、线、面、体.19.(贺州)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D′,则点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是(结果保留π).【答案】2512 4π+.考点:1.扇形面积的计算;2.旋转的性质.20.(天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.【答案】4π.考点:1.弧长的计算;2.等边三角形的性质;3.综合题.21.(河南省)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB于点E,以点O为圆心,OC的长为半径作CD交OB于点D.若OA=2,则阴影部分的面积为.【答案】3 122π+.【解析】试题分析:连接OE、AE ,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=2602360π⨯=23π,S扇形ABO=2902360π⨯=π,S扇形CDO=2901360π⨯=14π,∴S阴影=S扇形ABO﹣S扇形CDO﹣(S扇形AOE﹣S△COE)=121(13)432πππ---⨯⨯=3122π+.故答案为:3122π+.考点:扇形面积的计算.22.(烟台)如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是.【答案】62.考点:圆锥的计算.23.(乐山)如图,已知A (23,2)、B (23,1),将△AOB 绕着点O 逆时针旋转,使点A 旋转到点A′(﹣2,23)的位置,则图中阴影部分的面积为 .【答案】34π.【解析】试题分析:∵A (232)、B (23,1),∴OA=4,13,∵由A (232)使点A 旋转到点A′(﹣2,23),∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,''OB C OBC S S ∆∆=,∴阴影部分的面积等于S 扇形A'OA ﹣S 扇形C'OC=22114(13)44ππ⨯-⨯=34π,故答案为:34π.考点:1.扇形面积的计算;2.坐标与图形变化-旋转.24.(镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【答案】(1)作图见试题解析;(2)15 8.试题解析:(1)如图所示,八边形ABCDEFGH即为所求;(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD的长=1355180π⨯=154π,设这个圆锥底面圆的半径为R,∴2πR=154π,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图.25.(宁德)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).【答案】(1)答案见试题解析;(2)26.6°.(2)连接EO1,如图所示,∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO=2142EOOA==,则∠EAO≈26.6°.考点:1.圆锥的计算;2.圆柱的计算;3.作图-三视图.26.(玉林防城港)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为AD的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.【答案】(1)证明见试题解析;(2)6.考点:1.切线的性质;2.平行四边形的判定;3.扇形面积的计算;4.综合题.27.(扬州)如图,已知⊙O的直径AB=12cm,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.(1)求证:∠PCA=∠B;(2)已知∠P=40°,点Q在优弧ABC上,从点A开始逆时针运动到点C停止(点Q与点C不重合),当△ABQ与△ABC的面积相等时,求动点Q所经过的弧长.【答案】(1)证明见试题解析;(2)53π或133π或233π.【解析】试题分析:(1)连接OC,由PC是⊙O的切线,得到∠1+∠PCA=90°,由AB是⊙O的直径,得到∠2+∠B=90°,从而得到结论;(2)△ABQ与△ABC的面积相等时,有三种情况,即:①当∠AOQ=∠AOC=50°时;②当∠BOQ=∠AOC=50°时;③当∠BOQ=50°时,即∠AOQ=230°时;分别求得点Q所经过的弧长即可.试题解析:(1)连接OC,∵PC是⊙O的切线,∴∠PCO=90°,∴∠1+∠PCA=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠B=90°,∵OC=OA,∴∠1=∠2,∴∠PCA=∠B;考点:1.切线的性质;2.弧长的计算;3.分类讨论;4.综合题;5.轨迹.【题组】1.(·扬州)如图,已知正方形边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()A.1.0 B.2.0 C.3.0 D.4.0【答案】B.【解析】试题分析:∵正方形的边长为1,圆与正方形的四条边都相切,∴22S S S10.510.250.215ππ=-=-⋅=-≈阴影正方形圆.∵0.215最接近0.2,∴阴影部分的面积与下列各数最接近的是0.2故选B.考点:1.圆和正方形的面积;2.无理数的大小估计;3.转换思想的应用.2.(·金华)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C52 D52【答案】A.故选A.考点:1.等腰直角三角形的判定和性质;2.勾股定理;3.扇形面积和圆面积的计算.3.(·辽宁省本溪市)底面半径为4,高为3的圆锥的侧面积是()A.12π B.15π C.20π D.36π【答案】B.【解析】试题分析:∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的侧面积为:πrl=π×3×5=15π,故选B.考点:圆锥的计算.4.(·山东省莱芜市)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.12R C3R D.32R【答案】D.【解析】试题分析:圆锥的底面周长是:πR;设圆锥的底面半径是r,则2πr=πR.解得:r=12R2213()22R R-=.故选D.考点:圆锥的计算.5.(·贵州安顺市)已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是()A . 30°B . 60°C .90°D .180°【答案】D .考点:圆锥的计算.6.(湖南衡阳市)圆心角为120,弧长为12π的扇形半径为 ( ) A .6 B .9 C .18 D .36 【答案】C .【解析】试卷分析:12012180rππ=,解得:r=18.故选C .考点:圆的计算.7. (南京) 如图,沿一条母线将圆锥侧面剪开并展开,得到一个扇形,若圆锥底面圆半径r=2cm ,扇形圆心角120θ=︒,则该圆锥母线长l 为 cm .【答案】6. 【解析】试题分析:∵圆锥底面圆半径r=2cm , ∴根据圆的周长公式,得圆的周长为2r 4ππ=,∵侧面展开后所得扇形弧长等于圆的周长,∴扇形弧长4π=.又∵侧面展开后所得扇形的圆心角为120°,∴根据扇形的弧长公式,侧面展开后所得扇形的弧长为()120l4l 6180cm ππ⋅⋅=⇒=.考点:圆锥和扇形的计算. 8.(·呼和浩特)一个底面直径是80cm ,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为 . 【答案】1600.考点:圆锥的计算.9.(·潍坊)如图,两个半径均为3的⊙O1与⊙O2相交于A 、B 两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为 .(结果保留π)【答案】233π-.【解析】试题分析:如图,连接O1O2,过点O1作O1H ⊥AO2于点H ,由题意可得:AO1=O1O2=AO2=3,∴△AO1O2是等边三角形.∴11233HO O O sin60322=︒=⋅=.∴()12122AO O AO O 6031333S 3S 223,2460ππ∆⨯=⨯⨯===扇形.∴12212AO O AO AO O 33S S S 24π∆=-=-弓形扇形.∴图中阴影部分的面积为:33423324ππ⎛⎫-=- ⎪ ⎪⎝⎭ .考点:1.扇形面积的计算;2.等边三角形的判定和性质;3.相交两圆的性质;4. 锐角三角函数定义;5.特殊角的三角函数值;6.转换思想的应用. 10.(·重庆A )如图,△OAB 中,OA=OB=4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积为 .(结果保留π)【答案】4433π-.考点:1.切线的性质;2.等腰三角形的性质;3.含30度角的直角三角形的性质;4.勾股定理;5.扇形面积的计算;6.转换思想的应用.☞考点归纳归纳 1:弧长公式 基础知识归纳:n °的圆心角所对的弧长l 的计算公式为180n r l π=注意问题归纳:①在弧长的计算公式中,n 是表示1°的圆心角的倍数,n 和180都不要带单位.②若圆心角的单位不全是度,则需要先化为度后再计算弧长. ③题设未标明精确度的,可以将弧长用π表示.④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一. 【例1】在半径为2的圆中,弦AB 的长为2,则AB 的长等于( )A .3πB .2πC .23πD .32π【答案】C .考点:弧长的计算. 归纳 2:扇形面积 基础知识归纳:扇形面积公式:lR R n S 213602==π扇注意问题归纳:其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长.【例2】如图,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,则S 扇形= cm²【答案】4. 【解析】试题分析:设围成扇形的角度为n ,∵将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,∴围成扇形的弧长为4cm .∴根据弧长公式,得n 23604n 180ππ⋅⋅=⇒=,∴根据扇形面积公式,得()223602S 4cm 360π⋅⋅==.考点:扇形的计算. 归纳 3:圆锥的侧面积 基础知识归纳:圆锥的侧面积:122S l r rlππ=•=,其中l 是圆锥的母线长,r 是圆锥的地面半径.注意问题归纳:①圆锥的母线与展开后所得扇形的半径相等.②圆锥的底面周长与展开后所得扇形的弧长相等.【例3】一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为( ) A . 12πcm2 B .15πcm2 C .20πcm2 D .30πcm2考点:圆锥的计算.归纳 4:阴影部分面积基本方法归纳:求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.注意问题归纳:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.【例4】如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在AB上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为.π-.【答案】24考点:扇形面积的计算.☞1年模拟1.(湖北省宜昌市兴山县校级模拟)劳技课上,小颖将一顶自制的圆锥形纸帽戴在头上,已知纸帽底面圆半径为10cm,母线长50cm,则这顶纸帽的侧面积为()cm2.A.250π B.500π C.750π D.1000π【解析】试题分析:底面圆的半径为10cm ,则底面周长=20πcm ,侧面面积=π×10×50=500πcm2.故选B .考点:圆锥的计算.2.(湖北省广水市校级模拟)如图,圆锥体的高h=2cm ,底面半径r=2cm ,则圆锥体的全面积为( )cm2.A .4π B .8π C .12π D .(4+4)π【答案】C . 【解析】试题分析:底面圆的半径为2,则底面周长=4π,因为底面半径为2cm 、高为23cm ,所以圆锥的母线长为4cm ,即可求得侧面面积=12×4π×4=8π;底面积为=4π,所以全面积为:8π+4π=12πcm2.故选C . 考点:圆锥的有关计算.3.(山东省高密市模拟考试)如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是( )A .210cmB .210cm π C .220cm D .220cm π 【答案】B .考点:1.圆锥的侧面展开图;2.扇形的面积计算.4.(山东省新泰市模拟考试)如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )A .77π338-B .47π338+C .πD .4π33+【答案】C .【解析】试题分析:连接BH ,BH1,∵O 、H 分别为边AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°到△A1BC1的位置,∴△OBH ≌△O1BH1,利用勾股定理可求得BH=437+=,所以利用扇形面积公式可得()()22360132********BH BC πππ=⨯-=-.故选C .考点:扇形面积的计算.5.(江苏省兴化顾庄等三校校级模拟)若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m2.【答案】154π.考点:圆锥的计算.6.(河南省三门峡市模拟考试)如图,在Rt △ABC 中,∠ABC =90°,AB =8,BC =6,分别以A 、C 为圆心,以2AC的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分的面积为 .【答案】24-254πcm2.【解析】试题分析:如图:∵Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC=2286+=10cm,△ABC的面积是:12AB•BC=12×8×6=24cm2.∴S阴影部分=12×6×8-2905360π⨯=24-254πcm2,故阴影部分的面积是:24-254πcm2.考点:扇形面积的计算.7.(湖北省武汉市校级模拟)如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(-2,3)、B(-1,2)、C(-3,1),△ABC 绕点O顺时针旋转90°后得到△A1B1C1.(1)在正方形网格中作出△A1B1C1;(2)求点A经过的路径弧AA1的长度;(结果保留π)(3)在y轴上找一点D,使DB+DB1的值最小,并直接写出D点坐标.【答案】(1)图形详见解析;(2132;(3)(0,53).试题解析:解:(1)如图如下:考点:作图—旋转变换;待定系数法求解析式;弧长公式.8.(广东省中山市校级模拟)如图,AB是的直径,点D在上,∠DAB=45°,BC∥AD,CD∥AB.(1)、判断直线CD 与的位置关系,并说明理由;(2)、若的半径为1,求图中阴影部分的面积(结果保留π).【答案】(1)、相切;(2)、324.【解析】试题分析:(1)、连接OD,根据OA=OD,∠ODA=45°得出∠AOD=90°,根据CD∥AB 得出∠ODC=90°,从而说明切线;(2)、首先求出梯形OBCD的面积,然后利用梯形的面积减去扇形OBD的面积求出阴影部分的面积.考点:切线的判定、扇形的面积计算.9.(山东省博兴县校级模拟)如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.【答案】(1)见解析;(2)3;(3)6π.【解析】试题分析:(1)连接OC交BD于点E,根据∠CDB=∠OBD=30°得出∠COB=60°,∠OEB=90°,根据AC∥BD得到∠OCA=90°;(2)根据OB=6,OE⊥BD,∠OEB=30°,求出OE和BE的长度,然后计算出BD的长度;(3)根据△OBE和△CDE全等,将阴影部分的面积转化成扇形OBC的面积,然后根据扇形的面积计算公式进行求解.试题解析:(1)证明:连接OC,交BD于点E.∵∠CDB=∠OBD=30°∴∠COB=60°,∠OEB=90°∵AC∥BD ∴∠OCA=∠OEB=90°∴OC⊥AC ∴AC是⊙O的切线.(2)∵∠OEB=90°,∠OBD=30°∴OC⊥BD,321==OB OE∴BE=DE=33273622==-∴362==DEBD(3)∵OE=CE,∠OEB=∠CED=90°,BE=DE,∴△OEB≌△CED∴ππ63606602=⋅==OBCSS扇形阴影考点:切线的判定、垂径定理、扇形的面积计算.10.(山东省高密市模拟考试)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线.(2)若⊙O的半径是4,AP=43,求图中阴影部分的面积.【答案】(1)见解析(2)16433π-.考点:1.切线的证明;2.勾股定理;3.特殊角的三角函数值;4.扇形的面积计算.。
第四章图形的性质第24节圆的有关概念与性质■知识点一:圆的有关概念(1)圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.(2)弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.(3)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(4)相关概念:同心圆、弓形、等圆、等弧.(5)圆心角:顶点在圆心的角叫做圆心角.(6)圆周角:顶点在圆上,并且两边和圆相交的角是圆周角.(7)确定圆的条件:过已知一点可作无数个圆,过已知两点可作无数个圆,过不在同一条直线上的三点可作一个圆.(8)圆的对称性:圆是轴对称图形,其对称轴是直径所在的直线;圆是中对称图形,对称中心为圆心,并且圆具有旋转不变性.■知识点二:垂径定理及推论:①垂直于弦的直径平分弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,③弦的垂直平分线经过圆心,并且平分弦所对的两条弧.④平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.⑤圆的两条平行弦所夹的弧相等.■知识点三:圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.(3)正确理解和使用圆心角、弧、弦三者的关系三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.■知识点四:圆周角定理及推论①圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半.推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.推论2:直径所对的网周角是直角;90°的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.②圆内接四边形的任意一组对角互补.■考点1.圆的有关概念◇典例:(2017年黑龙江大庆)如图,点M,N在半圆的直径AB上,点P,Q在上,四边形MNPQ 为正方形.若半圆的半径为,则正方形的边长为.【考点】正方形的性质;勾股定理;圆的认识.【分析】连接OP,设正方形的边长为a,则ON=,PN=a,再由勾股定理求出a的值即可.解:连接OP,设正方形的边长为a,则ON=,PN=a,在Rt△OPN中,ON2+PN2=OP2,即()2+a2=()2,解得a=2.故答案为:2.【点评】本题考查的是正方形的性质,勾股定理;圆的认识,根据题意作出辅助线,构造出直角三角形是解答此题的关键.◆变式训练(2017•宁夏)如图,点 A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为 __________■考点2.垂径定理及其推论◇典例:(2018年黑龙江省龙东、七台河、佳木斯、鸡西、伊春、鹤岗、双鸭山)如图,AB为⊙O 的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.【考点】垂径定理,勾股定理【分析】连接OC,由垂径定理知,点E是CD的中点,AE=CD,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.【点评】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.◆变式训练1.(2018年山东省烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C 三点的圆的圆心坐标为.2.(2018年浙江省绍兴市)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB=120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)■考点3. 圆心角、弧、弦的关系◇典例(2017•牡丹江)如图,在⊙O中,=,CD⊥OA于D,CE⊥OB于E,求证:AD=BE.【考点】圆心角、弧、弦的关系;垂径定理.【分析】连接OC,先根据=得出∠AOC=∠BOC,再由已知条件根据AAS定理得出△COD ≌△COE,由此可得出结论.证明:连接OC,∵=,∴∠AOC=∠BOC.∵CD⊥OA于D,CE⊥OB于E,∴∠CDO=∠CEO=90°在△COD与△COE中,∵,∴△COD≌△COE(AAS),∴OD=OE,∵AO=BO,∴AD=BE.【点评】本题考查的是圆心角、弧、弦的关系,熟知在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解答此题的关键.◆变式训练(2017•宜昌)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C. D.∠BCA=∠DCA■考点4. 圆周角定理及其推论◇典例:1.(2018 年广西梧州市)如图,已知在⊙O 中,半径 OA=2,弦 AB=2,∠BAD=18°,OD 与AB 交于点 C,则∠ACO=__________度.【考点】圆周角定理,勾股定理的逆定理,等腰三角形的性质【分析】根据勾股定理的逆定理可以判断△AOB 的形状,由圆周角定理可以求得∠BOD 的度数,再根据三角形的外角和不相邻的内角的关系,即可求得∠AOC的度数.解:∵OA=2,OB=2,AB=2,∴OA 2+OB2=AB2,OA=OB,∴△AOB 是等腰直角三角形,∠AOB=90°,∴∠OBA=45°,∵∠BAD=18°,∴∠BOD=36°,∴∠ACO=∠OBA+∠BOD=45°+36°=81°,故答案为:81.【点评】本题考查圆周角定理、勾股定理的逆定理、等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.◆变式训练1.(2018年四川省南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B 的度数是()A.58° B.60° C.64° D.68°2.(2017•锦州)如图,四边形ABCD是⊙O的内接四边形,AD与BC的延长线交于点E,BA与CD的延长线交于点F,∠DCE=80°,∠F=25°,则∠E的度数为()A.55°B.50°C.45°D.40°一、选择题1.(2018年广西柳州市)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°2.(2018年内蒙古赤峰市)如图,AB是⊙O的直线,C是⊙O上一点(A.B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°3.(2018年浙江省衢州市)如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75°B.70°C.65°D.35°4.(2018年湖北省襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2C. D.25.(2018年四川省甘孜州)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD二、填空题6.(2018年广东省)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.7.(2018年青海省)如图,A.B、C是错误!未找到引用源。
模型介绍【点睛1】触发隐圆模型的条件(1)动点定长模型若P为动点,但AB=AC=AP原理:圆A中,AB=AC=AP则B、C、P三点共圆,A圆心,AB半径备注:常转全等或相似证明出定长(2)直角圆周角模型固定线段AB所对动角∠C恒为90°原理:圆O中,圆周角为90°所对弦是直径则A、B、C三点共圆,AB为直径备注:常通过互余转换等证明出动角恒为直角(3)定弦定角模型固定线段AB所对动角∠P为定值原理:弦AB所对同侧圆周角恒相等则点P 运动轨迹为过A 、B 、C 三点的圆备注:点P 在优弧、劣弧上运动皆可(4)四点共圆模型①若动角∠A+动角∠C=180°原理:圆内接四边形对角互补则A 、B 、C 、D 四点共圆备注:点A 与点C 在线段AB 异侧(5)四点共圆模型②固定线段AB 所对同侧动角∠P=∠C 原理:弦AB 所对同侧圆周角恒相等则A 、B 、C 、P 四点共圆备注:点P 与点C 需在线段AB 同侧【点睛2】圆中旋转最值问题条件:线段AB 绕点O 旋转一周,点M 是线段AB 上的一动点,点C 是定点(1)求CM 最小值与最大值(2)求线段AB 扫过的面积(3)求ABC S △最大值与最小值作法:如图建立三个同心圆,作OM ⊥AB ,B 、A 、M 运动路径分别为大圆、中圆、小圆 结论:①CM 1最小,CM 3最大②线段AB 扫过面积为大圆与小圆组成的圆环面积③ABC S △最小值以AB 为底,CM 1为高;最大值以AB 为底,CM 2为高例题精讲考点一:定点定长构造隐圆【例1】.如图,已知AB =AC =AD ,∠CBD =2∠BDC ,∠BAC =44°,则∠CAD 的度数为.解:∵AB =AC =AD ,∴B ,C ,D 在以A 为圆心,AB 为半径的圆上,∴∠CAD =2∠CBD ,∠BAC =2∠BDC ,∵∠CBD =2∠BDC ,∠BAC =44°,∴∠CAD =2∠BAC =88°.故答案为:88°变式训练【变式1-1】.如图所示,四边形ABCD 中,DC ∥AB ,BC =1,AB =AC =AD =2.则BD 的长为()A .B .C .D .解:以A 为圆心,AB 长为半径作圆,延长BA 交⊙A 于F ,连接DF .∵DC ∥AB ,∴=,∴DF =CB =1,BF =2+2=4,∵FB 是⊙A 的直径,∴∠FDB =90°,∴BD ==.故选:B .【变式1-2】.如图,点A,B的坐标分别为A(4,0),B(0,4),C为坐标平面内一点,BC=2,点M为线段AC的中点,连接OM,OM的最大值为.解:∵C为坐标平面内一点,BC=2,∴点C的运动轨迹是在半径为2的⊙B上,如图,取OD=OA=4,连接OD,∵点M为线段AC的中点,∴OM是△ACD的中位线,∴OM=,∴OM最大值时,CD取最大值,此时D、B、C三点共线,此时在Rt△OBD中,BD==4,∴CD=2+4,∴OM的最大值是1+2.故答案为:1+2.考点二:定弦定角构造隐圆【例2】.如图,在△ABC中,BC=2,点A为动点,在点A运动的过程中始终有∠BAC=45°,则△ABC面积的最大值为.解:如图,△ABC的外接圆⊙O,连接OB、OC,∵∠BAC=45°,∴∠BOC=2∠BAC=2×45°=90°,过点O作OD⊥BC,垂足为D,∵OB=OC,∴BD=CD=BC=1,∵∠BOC=90°,OD⊥BC,∴OD=BC=1,∴OB==,∵BC=2保持不变,∴BC边上的高越大,则△ABC的面积越大,当高过圆心时,最大,此时BC边上的高为:+1,∴△ABC的最大面积是:×2×(+1)=+1.故答案为:+1.变式训练【变式2-1】.如图,P是矩形ABCD内一点,AB=4,AD=2,AP⊥BP,则当线段DP最短时,CP=.解:以AB为直径作半圆O,连接OD,与半圆O交于点P′,当点P与P′重合时,DP最短,则AO=OP′=OB=AB=2,∵AD=2,∠BAD=90°,∴OD=2,∠ADO=∠AOD=∠ODC=45°,∴DP′=OD﹣OP′=2﹣2,过P′作P′E⊥CD于点E,则P′E=DE=DP′=2﹣,∴CE=CD﹣DE=+2,∴CP′=.故答案为:2.【变式2-2】.如图,边长为4的正方形ABCD外有一点E,∠AEB=90°,F为DE的中点,连接CF,则CF的最大值为.解:如图,以AB为直径作圆H,∵∠AEB=90°,∴点E在这个⊙H上,延长DC至P,使CD=PC,连接BE,EH,PH,过H作HM⊥CD于M,∵EF=DF,CD=PC,∴CF=PE,Rt△AEB中,∵H是AB的中点,∴EH=AB=2,Rt△PHM中,由勾股定理得:PH===2,∵PE≤EH+PH=2+2,当P,E,H三点共线时,PE最大,CF最大,∴CF的最大值是+1考点三:对角互补构造隐圆【例3】.如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF ⊥BE,垂足为E,直线EF交线段DC于点F,则=__________.解:如图,连接BF,取BF的中点O,连接OE,OC.∵四边形ABCD是矩形,EF⊥BE,∴四边形EFCB对角互补,∴B,C,F,E四点共圆,∴∠BEF=∠BCF=90°,AB=CD=3,BC=AD=5,∵OB=OF,∴OE=OB=OF=OC,∴B,C,F,E四点在以O为圆心的圆上,∴∠EBF=∠ECF,∴tan∠EBF=tan∠ACD,∴==变式训练【变式3-1】.如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ACD=30°,AD=2,E是AC的中点,连接DE,则线段DE长度的最小值为.解:∵∠BAD=∠BCD=90°,∴A、B、C、D四点共圆,且BD为直径,取BD中点O,则圆心为点O,连接AO、CO,取AO中点F,连接EF,DF,∵∠ACD=30°,∴∠AOD=60°,∵OA=OD,∴△OAD为等边三角形,∴OA=OD=OC=AD=2,∴∠AFD=90°,则DF=,∵EF是△AOC的中位线,∴EF=OC=1,在△DEF中,DF﹣EF≤DE,∴当D、E、F三点共线时,DE取到最小,最小值为.∴DE的最小值为.【变式3-2】.如图,正方形ABCD的边长为2,点E是BC边上的一动点,点F是CD上一点,且CE=DF,AF、DE相交于点O,BO=BA,则OC的值为.解:如图∵四边形ABCD是正方形,∴AD=DC,∠ADF=∠ECD=∠ABC=90°,∵DF=CE,∴△ADF≌△DCE,∴∠DAF=∠EDC,∵∠EDC+∠ADO=90°,∴∠DAF+∠ADO=90°,∴∠AOD=90°,∴四边形ABEO对角互补,∴A、B、E、O四点共圆,取AE的中点K,连接BK、OK,作OM⊥CD于M.则KB=AK=KE=OK,∵BA=BO,∴∠BAO=∠BOA=∠AEB=∠DEC,∵AB=DC,∠ABE=∠DCE,∠AEB=∠DEC,∴△ABE≌△DCE,∴BE=EC=1,∴DF=EC=FC=1,∴DE==,∵△DFO∽△DEC,∴==,∴==,∴OD=,OF=,∵•DO•OF=•DF•OM,∴OM=,∴MF==,∴CM=1+=,在Rt△OMC中,OC==,故答案为.实战演练1.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(0,4),以点A为圆心,以AB长为半径画弧交x轴上点C,则点C的坐标为()A.(5,0)B.(2,0)C.(﹣8,0)D.(2,0)或(﹣8,0)解:∵点A、B的坐标分别为(﹣3,0)、(0,4),∴OA=3,OB=4,∴AB==5,∴AC′=5,AC=5,∴C′点坐标为(2,0);C点坐标为(﹣8,0).故选:D.2.如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与B,C 重合),连接AP,作点B关于直线AP的对称点M,则线段MC的最小值为()A.2B.C.3D.解:连接AM,∵点B和M关于AP对称,∴AB=AM=3,∴M在以A圆心,3为半径的圆上,∴当A,M,C三点共线时,CM最短,∵AC=,AM=AB=3,∴CM=5﹣3=2,故选:A.3.如图,在矩形ABCD中,AB=8,BC=6,点P在矩形的内部,连接PA,PB,PC,若∠PBC=∠PAB,则PC的最小值是()A.6B.﹣3C.2﹣4D.4﹣4解:∵四边形ABCD是矩形,∴∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PBC=∠PAB,∴∠PAB+∠PBA=90°,∴∠APB=90°,∴点P在以AB为直径的圆上运动,设圆心为O,连接OC交⊙O于P,此时PC最小,∵OC===2,∴PC的最小值为2﹣4,故选:C.4.如图所示,∠MON=45°,Rt△ABC,∠ACB=90°,BC=6,AC=8,当A、B分别在射线OM、ON上滑动时,OC的最大值为()A.12B.14C.16D.14解:如图,在Rt△ABC中,由勾股定理得AB=,在AB的下方作等腰直角△AQB,∠AQB=90°,作BH⊥QC于H,∴点O在以点Q为圆心,QB为半径的圆上,∵∠AQB+∠ACB=180°,∴点A、C、B、Q共圆,∴∠BCQ=∠BAQ=45°,∴BH=CH=3,在Rt△BQH中,由勾股定理得QH=4,∴CQ=7,当点C、Q、O共线时,OC最大,∴OC的最大值为OQ+CQ=5+7=12,故选:A.5.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为.解:∵AB=AC=AD,∴B,C,D在以A为圆心,AB为半径的圆上,∴∠CAD=2∠CBD,∠BAC=2∠BDC,∵∠CBD=2∠BDC,∠BAC=44°,∴∠CAD=2∠BAC=88°.故答案为:88°.6.如图示,A,B两点的坐标分别为(﹣2,0),(3,0),点C在y轴上,且∠ACB=45°,则点C的坐标为.解:在x轴的上方作等腰直角△ABF,FB=FA,∠BAF=90°,以F为圆心,FA为半径作⊙F交y轴于C,连接CB,CA.∵∠ACB=∠AFB=45°,∵B(﹣2,0),A(3,0),△ABF是等腰直角三角形,∴F(,),FA=FB=FC=,设C(0.m),则()2+(﹣m)2=()2,解得m=6或﹣1(舍弃)∴C(0,6),根据对称性可知C′(0,﹣6)也符合条件,综上所述,点C的坐标为(0,6)或(0,﹣6).故答案为(0,6)或(0,﹣6).7.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB+∠PBA=90°,则线段CP长的最小值为2.解:∵∠PAB+∠PBA=90°,∴∠APB=90°,∴P在以AB为直径的圆周上(P在△ACB内部),连接OC,交⊙O于P,此时CP的值最小,如图,∵AB=6,∴OB=3,∵BC=4,∴由勾股定理得:OC=5,∴CP=5﹣3=2,故答案为:2.8.在△ABC中,AB=4,∠C=45°,则AC+BC的最大值为.解:过点B作BD⊥AC于点D,∵∠C=45°,∴△BCD为等腰直角三角形,∴BD=CD,设BD=CD=a,延长AC至点F,使得CF=a,∵tan∠AFB==,作△ABF的外接圆⊙O,过点O作OE⊥AB于点E,则AE=AB=2,∠AOE=∠AFB,∴tan∠AOE=,∴OE=4,OA==,∴+BC=(AC+BC)=(AC+CF)=≤(OA+OF),∴+BC的最大值为×=4.故答案为:.9.如图,等边△ABC中,AB=6,点D、点E分别在BC和AC上,且BD=CE,连接AD、BE交于点F,则CF的最小值为.解:如图,∵△ABC是等边三角形,∴AB=BC=AC,∠ABC=∠BAC=∠BCE=60°,∵BD=CE,∴△ABD≌△BCE(SAS)∴∠BAD=∠CBE,又∵∠AFE=∠BAD+∠ABE,∴∠AFE=∠CBE+∠ABE=∠ABC,∴∠AFE=60°,∴∠AFB=120°,∴点F的运动轨迹是O为圆心,OA为半径的弧上运动(∠AOB=120°,OA=2),连接OC交⊙O于N,当点F与N重合时,CF的值最小,最小值=OC﹣ON=4﹣2=2.故答案为2.10.如图,正方形ABCD中,AB=2,动点E从点A出发向点D运动,同时动点F从点D 出发向点C运动,点E、F运动的速度相同,当它们到达各自终点时停止运动,运动过程中线段AF、BE相交于点P,则线段DP的最小值为.解:如图:,∵动点F,E的速度相同,∴DF=AE,又∵正方形ABCD中,AB=2,∴AD=AB,在△ABE和△DAF中,,∴△ABE≌△DAF,∴∠ABE=∠DAF.∵∠ABE+∠BEA=90°,∴∠FAD+∠BEA=90°,∴∠APB=90°,∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,AG=BG=AB=1.在Rt△BCG中,DG===,∵PG=AG=1,∴DP=DG﹣PG=﹣1即线段DP的最小值为﹣1,故答案为:﹣1.11.如图,四边形ABCD中,∠ABC=∠ACD=∠ADC=45°,△DBC的面积为8,则BC 长为.解:如图,作DH⊥BC交BC的延长线于H,取CD的中点O,连接OA,OB.∵DH⊥BH,∴∠DHC=90°,∴四边形DACH对角互补,∴A,C,H,D四点共圆,∵∠DAC=90°,CO=OD,∴OA=OD=OC=OH,∴A,C,H,D四点在以O为圆心的圆上,∵AC=AD,∴∠CHA=∠AHD=45°,(没有学习四点共圆,可以这样证明:过点A作AM⊥DH于M,过点A作AN⊥BH于N,证明△AMD≌△ANC,推出AM=AN,推出AH平分∠MHN即可)∵∠ABC=45°,∴∠BAH=90°,∴BA=AH,∵∠BAH=∠CAD=90°,∴∠BAC=∠HAD,∵AC=AD,AB=AH,∴△BAC≌△HAD(SAS),∴BC=DH,=×BC×DH=×BC2=16,∴S△BCD∴BC=4或﹣4(舍弃),故答案为4.12.已知:在△ABC中,AB=AC=6,∠B=30°,E为BC上一点,BE=2EC,DE=DC,∠ADC=60°,则AD的长.解:连接AE,过点A作AH⊥BC于H点,在Rt△ABH中,∵∠B=30°,∴AH=AB=3.利用勾股定理可得BH=3,根据等腰三角形性质可知CH=BH=3,BC=6.∴CE=BC=2.∴HE=CH﹣CE=.在Rt△AHE中,由勾股定理可求AE=2.所以AE=CE,∠CAE=∠ACB=30°,所以∠AEB=60°=∠ADC,∴四边形AECD对角互补,∴点A、D、C、E四点共圆,∴∠ADE=∠ACE=30°,所以∠CDE=∠ADC﹣∠ADE=30°.∵DE=DC,∴∠DEC=75°.∴∠AED=120°﹣75°=45°.过点A作AM⊥DE于M点,则AM=AE=.在Rt△AMD中,∠ADM=30°,∴AD=2AM=.故答案为2.13.如图,在正方形ABCD中,AD=6,点E是对角线AC上一点,连接DE,过点E作EF ⊥ED,连接DF交AC于点G,将△EFG沿EF翻折,得到△EFM.连接DM.交EF于点N.若AF=2.则△EMN的面积是.解:如图,取DF的中点K,连接AK,EK.连接GM交EF于H.∵四边形ACD是正方形,∴AD=AB=6,∠DAB=90°,AB∥CD,∠DAC=∠CAB=45°,∵DE⊥EF,∴∠DEF=∠DAF=90°,∴四边形AFED对角互补,∴A,F,E,D四点共圆,∵DK=KF,∴KA=KD=KF=KE,∴∠DFE=∠DAE=45°,∴∠EDF=∠EFD=45°,∴DE=EF,∵AF=2,AD=6,∴DF==2,∴DE=DF=2,∵AF∥CD,∴==,∴FG=FM=,∴GM=FM=,∴FH=GH=HM=,∵EF⊥GM,∴GH=HM=,∴EH=EF﹣FH=2﹣=,∵MH∥DE,∴===,∴EN=EH=,=•EN•MH=••=.∴S△ENM故答案为.14.如图,在正方形ABCD中,AD=8,点E是对角线AC上一点,连接DE,过点E作EF ⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则FM=,=.解:∵将△EFG沿EF翻折,得到△EFM,∴FG=FM,∵四边形ABCD是正方形,∴AB∥CD,∴△AGF∽△CGD,∴,∵点F是AB的中点,∴AF=CD,∴,∵AD=8,∴AF=4,∴DF==4,∴FM=FG=;∵AC是正方形ABCD的对角线,∴∠CAD=45°,∵EF⊥DE,∴∠DEF=90°=∠BAD,∴∠BAD+∠DEF=180°,∴点A,D,E,F四点共圆,∴∠DFE=∠DAC=45°,∴∠EDF=45°,∴DE=EF=DF=2,连接GM,交EF于P,由折叠知,PG=PM,GM⊥EF,∵DE⊥EF,∴GM∥DE,∴△FPG∽△FED,∴,∴PF=EF=,∴PE=EF﹣PF=,∵GM∥DE,∴△MPN∽△DEN,∴,∴,∴EN=PE=,在Rt△DEN中,,故答案为:;.15.如图,在矩形ABCD中,AB=6,AD=8,点E,F分别是边CD,BC上的动点,且∠AFE=90°(1)证明:△ABF∽△FCE;(2)当DE取何值时,∠AED最大.(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵∠AFE=90°,∴∠AFB+∠EFC=90°,∵∠EFC+∠FEC=90°,∴∠AFB=∠FEC,∴△ABF∽△FCE.(2)取AE的中点O,连接OD、OF.∵∠AFE=∠ADE=90°(对角互补),∴A、D、E、F四点共圆,∴∠AED=∠AFD,∴当⊙O与BC相切时,∠AFD的值最大,易知BF=CF=4,∵△ABF∽△FCE,∴=,∴=,∴EC=,∴DE=DC﹣CE=6﹣=.∴当DE=时,∠AED的值最大.16.如图,将两张等腰直角三角形纸片OAB和OCD放置在平面直角坐标系中,点O(0,0),A(0,4).将Rt△OCD绕点O顺时针旋转,连接AC,BD,直线AC与BD相交于点P.(1)求证:AP⊥BP;(2)若点Q为OA的中点,求PQ的最小值.(1)证明:∵△OAB和△OCD都是等腰直角三角形,∴OA=OB,OC=OD,∠AOB=∠COD=90°,∴∠AOC+∠COB=∠COB+∠BOD=90°,∴∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,∵△OAB是等腰直角三角形,∴∠OAB+∠OBA=90°,∴∠OAC+∠CAB+∠ABO=90°,∴∠OBD+∠CAB+∠ABO=90°,∴∠APB=90°,∴AP⊥BP;(2)解:如图,∵AP⊥BP,∴点P在以AB为直径的圆E上运动,由点圆最值可得,当P,Q,E三点共线,且点P在EQ的延长线上时,PQ最小,∵△OAB是等腰直角三角形,A(0,4),∴OA=OB=4,∴AB=OA=4,∵E是AB的中点,Q是OA的中点,∴QE=OB=2,∵PE是圆E的半径,∴PE=AB=2,∴PQ=PE﹣QE=2﹣2,∴PQ的最小值为2﹣2.17.(1)【学习心得】于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=45°.(2)【问题解决】如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度数.(3)【问题拓展】如图3,如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1.解:(1)如图1,∵AB=AC,AD=AC,∴以点A为圆心,AB为半径作圆A,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=∠BAC=45°,故答案是:45;(2)如图2,取BD的中点O,连接AO、CO.∵∠BAD=∠BCD=90°,∴点A、B、C、D共圆,∴∠BDC=∠BAC,∵∠BDC=25°,∴∠BAC=25°,(3)如图3,在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD===,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD﹣OH=﹣1.(解法二:可以理解为点H是在Rt△AHB,AB直径的半圆上运动当O、H、D三点共线时,DH长度最小)故答案为:﹣1.18.如图,已知抛物线y=ax2+bx+6(a≠0)的图象与x轴交于点A(﹣2,0)和点B(6,0),与y轴交于点C,点D为抛物线的顶点.(1)求抛物线的表达式及顶点D的坐标;(2)如图①,连接BC,点P是线段BC上方抛物线上一动点,若△PBC的面积为12,求点P的坐标;(3)如图②,已知⊙B的半径为2,点Q是⊙B上一个动点,连接AQ,DQ,求DQ+AQ的最小值.解:(1)令x=0,则y=6,C(0,6),∵A(﹣2,0),B(6,0),∴设抛物线的表达式为y=a(x﹣6)(x+2)(a≠0),当x=0时,y=﹣12a=6,解得a=﹣,抛物线的表达式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴顶点D的坐标为(2,8);(2)由(1)知,C(0,6),设直线BC的表达式为y=kx+t,将点B、C的坐标代入得6k+t=0,,解得,∴直线BC的表达式为y=﹣x+6;如图,过点P作PH∥y轴交BC于点H,连接PB,PC,设P(x,﹣x2+2x+6),则H(x,﹣x+6)(0<x<6),∴PH=﹣x2+2x+6﹣(﹣x+6)=﹣x2+3x,∵△PBC的面积为12,∴OB•PH=×6×(﹣x2+3x)=12,即﹣x2+3x=4,解得x=2或x=4,∴点P的坐标为(2,8)或(4,6);(3)如图,取点E(5.5,0),∴BE=0.5,∵AB=8,BQ=2,∴AB:BQ=4:1,∵BE=0.5,BQ=2,∴BQ:BE=4:1,∵∠ABQ=∠QBE,∴△ABQ∽△QBE,∴AQ:QE=BQ:BE=4:1,即QE=AQ,∴DQ+AQ=DQ+QE,由两点间线段最短可知,当点D,Q,E三点共线时,DQ+QE最小,最小值为DE,∴DE==.即DQ+AQ的最小值为:.19.模型分析如图在△ABC中,AD⊥BC于点D,其中∠BAC为定角,AD为定值,我们称该模型为定角定高模型.问题:随着点A的运动,探究BC的最小值(△ABC面积的最小值).(1)当∠BAC=90°时(如图①):第一步:作△ABC的外接圈⊙O;第二步:连接OA;第三步:由图知AO≥AD,当AO=AD时,BC取得最小值.(2)当∠BAC<90°时(如图②):第一步:作△ABC的外接圆⊙O;第二步:连接OA,OB,OC,过点O作OE⊥BC于点E:第三步:由图知AO+OE≥AD,当AO+OE=AD时,BC取得最小值.那么∠BAC>90°呢?结论:当AD过△ABC的外接圆圆心O(即AB=AC)时,BC取得最小值,此时△ABC的面积最小当∠BAC<90°时,请根据【模型分析】(2)中的做法将下面证明过程补充完整.求证:当AD过△ABC的外接圆圆心O(即AB=AC)时,BC取得最小值,此时△ABC 的面积最小.证明:如解图,作△ABC的外接圆⊙O,连接OA,OB,OC,过点O作OE⊥BC于点E,设⊙O的半径为r,∠BOE=∠BAC=α,AD=h,∴BC=2BE=2OB•sinα=2r•sinα,∵sinα为定值,∴要使BC最小,只需…自主探究:我们知道了当AD过△ABC的外接圆圆心O(即AB=AC)时,△ABC的面积取得最小值,那么要使△ABC的周长取得最小值,需要满足什么条件呢?模型分析:证明:如图1,作△ABC的外接圆⊙O,连接OA,OB,作OE⊥BC于E,设⊙O的半径为r,AD=h,∴BC=2BE=2CE,∵=,∴∠BOC=2∠BAC=2α,∵OB=OC,∴∠BOE=∠BOC=α,∴OE=OB•cosα=r•cosα,∵OA+OE≥AD,∴r+r•cosα≥h,∴r≥,∵BE=OB•sinα=r•sinα,∴BC=2BE=2r•sinα,∴当r最小时,BC最小,=;∴当r=时,BC最小自主探究:解:如图2,延长CB知E,使BE=AB,延长BC至F,使CF=AC,∴AB+BC+AC=BE+BC+CF=EF,∠AEB=∠EAB,∠CAF=∠AFC,∴∠ABC=2∠EAB,∠ACB=2∠CAF,∵∠ABC+∠ACB=180°﹣∠BAC=180°﹣α,∴2∠EAB+2∠CAF=180°﹣α,∴∠EAF+∠CAF=90°﹣,∴∠EAF=∠EAF+∠CAF+∠BAC=90°+,作△AEF的外接圆O,作OH⊥EF于H,连接OA,OE,OF,在优弧EF上任取一点G (不在E和点F处),连接EG,FG,∴∠G=180°﹣∠EFA=90﹣,同理上可得:∠EOH=∠G=90°﹣,∴∠OEH=90°﹣∠EOH=,∴OH=r•sin,EF=2EH=2r•cos,∵OH+AD≤OA,∴r•sin+h≤r,∴(1﹣sin)r≥h,∴r≥,∴r=,最小=,∴EF最小∴△ABC的周长最小值为:.20.如图,抛物线y=ax2+x+c与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,直线y=kx+b经过点A,C,且OA=2OC=4.(1)求抛物线的解析式;(2)点E为AC上方抛物线上一动点,过点E作EF∥y轴交AC于点F,求线段EF的最大值;(3)在(2)的结论下,若点G是x轴上一点,当∠CGF的度数最大时,求点G的坐标.解:(1)∵OA=2OC=4,∴A(4,0),C(0,2),将A(4,0),C(0,2)代入y=ax2+x+c,∴,解得,∴y=﹣x2+x+2;(2)将点A(4,0),C(0,2)代入y=kx+b,∴,解得,∴y=﹣x+2,设E(t,﹣t2+t+2),则F(t,﹣t+2),∴EF=﹣t2+t+2+t﹣2=﹣t2+2t=﹣(t﹣2)2+2,当t=2时,EF的最大值为2;(3)∵t=2,∴E(2,3),F(2,1),设G(x,0),作△CFG的外接圆M,设圆M的半径为r,当圆M与x轴相切时,∠CGF最大,此时M(x,r),∵MC=MF=r,∴x2+(r﹣2)2=r2,(2﹣x)2+(1﹣r)2=r2,解得x=4﹣,∴G(4﹣,0).。
章复习第24章圆(学案)一、圆的有关概念及性质1、圆的有关概念⑴圆的定义:在一个平面内,线段OA绕它固定的一个端点O________,另一个端点A所形成的图形叫做圆,固定的端点O叫做______,线段OA叫做______.注:①圆的另一种定义:圆是到______的距离等于______的点的集合;②圆心确定________,半径确定________.⑵弦、直径、弧、圆心角、圆周角的概念:①弦:连接___________的线段叫做弦;②直径:________________叫做直径;③弧:________________________叫做圆弧,简称弧;④圆心角:圆心角是____________的角;⑤圆周角:顶点________,并且两边______________的角叫做圆周角.如下图,第______个图中的APB是圆周角,第______个图中的APB不是圆周角.注:①弦是线段,直径是____________,弧是曲线;②大于半圆的弧叫做____(用三个点表示),小于半圆的弧叫做____;③半圆也是____,它既不是____弧,也不是____弧;④等弧只能出现在____或____中.2、圆的有关性质⑴圆是________图形,________________________都是它的对称轴,圆也是____________,________是圆心.⑵垂径定理①垂直于弦的直径________,并且________________;②平分弦(不是直径)的直径________,并且平分________________.注:如图,①AC CB=;②AD DB=;③AE=BE;④AB⊥CD;⑤CD是直径,五个条件中,具备了任意两个,则另三个作为结论都成立(注意③⑤作为条件时,应限制AB不为直径,为啥?________________________).⑶弧、弦、圆心角之间的关系:①在同圆或等圆中,________________所对的相等,所对的也相等;②同圆或等圆中,两________、两________、两________中有一组量相等,它们所对应的其余各组量也相等.⑷圆周角定理及推论:①圆周角定理:在同圆或等圆中,________________圆周角相等,都等于________________.②圆周角定理的推论:半圆(或直径)所对的圆周角________,90°的圆周角________________.注:定理中的圆周角、圆心角是________或________所对的角.二、与圆有关的位置关系1、点和圆的位置关系设⊙O 的半径为r ,点P 到圆心的距离OP=d ,如右图,则有: ①点P 在圆外⇔________; ②点P 在圆上⇔________; ③点P 在圆内⇔________. 2、直线和圆的位置关系⑴直线和圆的三种位置关系: 如图(1),直线和圆有两个公共点,我们说这条直线和圆____,这条直线叫做圆的____,如图(2),直线和圆有一个公共点,我们说这条直线和圆____,这条直线叫做圆的____,这个点叫做____.如图(3),直线和圆没有公共点,我们说这条直线和圆____.注:直线l 和⊙0相交⇔____;直线l 和⊙0切⇔____:直线l 和⊙0相离⇔____. ⑵切线的判定和性质:①切线的判定定理:经过__________并且___________的直线是圆的切线. ②切线的性质定理:圆的切线____________________.注:一条直线若满足:①经过圆心;②垂直于切线;③经过切点这三个条件中任何两个,则必具备另两个.⑶切线长的概念及切线长定理:①切线长的概念:经过圆外一点作圆的____,这点和____之间的________,叫做这点到圆的切线长;②切线长定理:从圆外一点可以引圆的____条切线,它们的________相等,这一点和圆心的连线____________________.3、圆和圆的位置关系⑴圆和圆有五种位置关系,如下图:OdPr OOOddd r r r lll注:①____与____统称相离,____、____统称切;②________是内含的一种特殊情况。
考点一:正多边形和圆例1 如图,正三角形的内切圆半径为1,那么这个正三角形的边长为() A. 2 B. 3 C.3D.32OD对应训练1.正六边形的边心距与边长之比为()A.3:3 B.3:2 C.1:2 D.2:21.B考点二:圆周长与弧长例2 如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l 作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为6π.解:如图,∵四边形ABCD 是矩形,AB=4,BC=3,∴BC=AD=3,∠ADC=90°,对角线AC (BD )=5. ∵根据旋转的性质知,∠ADA ′=90°,AD=A ′D=BC=3, ∴点A 第一次翻滚到点A ′位置时,则点A ′经过的路线长为:90331802ππ⨯=. 同理,点A ′第一次翻滚到点A ″位置时,则点A ′经过的路线长为:904180π⨯=2π. 点″第一次翻滚到点A 1位置时,则点A ″经过的路线长为:90551802ππ⨯=. 则当点A 第一次翻滚到点A 1位置时,则点A 经过的路线长为:35222πππ++=6π. 故答案是:6π. 对应训练2.如图,将边长为1cm 的等边三角形ABC 沿直线l 向右翻动(不滑动),点B 从开始到结束,所经过路径的长度为( ) A .32πcmB .(2+32π)cm C .43πcmD .3cm2.C考点三:扇形面积与阴影部分面积π⨯,解得:r=1cm.2πr=1203180故选D.对应训练4.一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于()A.60°B.90°C.120°D.180°4.D考点五:圆的综合题例5如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF.(1)求证:PB与⊙O相切;(2)试探究线段EF,OD,OP之间的数量关系,并加以证明;,求cos∠ACB的值.(3)若AC=12,tan∠F=12解答:(1)证明:连接OA,∵PA 与圆O 相切, ∴PA ⊥OA ,即∠OAP=90°, ∵OP ⊥AB ,∴D 为AB 中点,即OP 垂直平分AB , ∴PA=PB ,∵在△OAP 和△OBP 中,AP BP OP OP OA OB =⎧⎪=⎨⎪=⎩, ∴△OAP ≌△OBP (SSS ), ∴∠OAP=∠OBP=90°, ∴BP ⊥OB ,则直线PB 为圆O 的切线;(2)答:EF 2=4DO •PO .证明:∵∠OAP=∠ADO=90°,∠AOD=∠POA , ∴△OAD ∽△OPA , ∴OA ODOP OA=,即OA 2=OD •OP , ∵EF 为圆的直径,即EF=2OA ,【聚焦中考】1.若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( ) A .6,32 B .3 2,3 C .6,3 D .62,321.B2.如图,正方形ABCD 中,分别以B 、D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为( ) A .πaB .2πaC .12πaD .3a2.A3.如图,扇形AOB 的半径为1,∠AOB=90°,以AB 为直径画半圆,则图中阴影部分的面积为( ) A .4πB .π-12C .12D .4π + 12.C4.将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )A .22B .2C .10D .32.A5.在半径为5的圆中,30°的圆心角所对的弧长为 (结果保留π). .56π6.已知一个扇形的半径为60cm ,圆心角为150°,用它围成一个圆锥的侧面,那么圆锥的底面半径为 cm . 257.如图,AB 是⊙O 的直径,弦AC=2,∠ABC=30°,则图中阴影部分的面积是 ..433π- 8.若扇形的半径为6,圆心角为120°,则此扇形的弧长是( ) A .3π B .4π C .5π D .6π.B9.如果一个扇形的弧长是43π,半径是6,那么此扇形的圆心角为( )A.40°B.45°C.60°D.80°A10.已知圆锥的底面半径为6cm,高为8cm,则这个圆锥的母线长为()A.12cm B.10cm C.8cm D.6cm.B11.如图是某几何体的三视图,则该几何体的体积是()A.πB.2πC.3πD.4π.A12.用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为()A.3cm B.5cm C.6cm D.8cm12.B,13.如图,已知圆锥的母线长为6,圆锥的高与母线所夹的角为θ,且sinθ=13则该圆锥的侧面积是()A.242πB.24πC.16πD.12π.D14.如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E 、B ,E 是半圆弧的三等分点,弧BE 的长为23π,则图中阴影部分的面积为( )A .9πB .39πC .33322π-D .33223π-D二、填空题1.已知扇形的圆心角为120°,弧长为10πcm ,则扇形的半径为 cm . .152.如图,一个圆心角为90°的扇形,半径OA=2,那么图中阴影部分的面积为(结果保留π) ..π-23.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为 cm2..404.△OAB是以正多边形相邻的两个顶点A,B与它的中心O为顶点的三角形,若△OAB的一个内角为70°,则该正多边形的边数为..95.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为 cm..4π6.如图,Rt△ABC中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为.π6.2547.如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O 重合,点A在x轴上,点B在反比例函数k=位于第一象限的图象上,则k的值yx为..93三、解答题1.如图,圆锥的侧面展开图是一个半圆,求母线AB与高AO的夹角.参考公式:圆锥的侧面积S=πrl,其中r为底面半径,l为母线长.`.解:设圆锥的母线长为l,底面半径为r,则:πl=2πr,∴l=2r,∴母线与高的夹角的正弦值=12r l =,∴母线AB 与高AO 的夹角30°.2.如图,在矩形ABCD 中,AB=2DA ,以点A 为圆心,AB 为半径的圆弧交DC 于点E ,交AD 的延长线于点F ,设DA=2.(1)求线段EC 的长;(2)求图中阴影部分的面积.2.解;(1)∵在矩形ABCD 中,AB=2DA ,DA=2,∴AB=AE=4,∴DE=2223AE AD -=,∴EC=CD-DE=4-23;(2)∵sin ∠DEA=12AD AE =, ∴∠DEA=30°,∴∠EAB=30°,∴图中阴影部分的面积为:S 扇形FAB -S △DAE -S 扇形EAB=290413602π⨯-×2×23-2304360π⨯=83π-23.3.如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)求证:AC2=AD•AB;(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.3.(1)证明:如图,连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠DAC=∠BAC,∴∠OCA=∠DAC,∴OC∥AD,∵AD⊥EF,∴OC⊥EF,∵OC为半径,∴EF是⊙O的切线.。
【初中数学】必备的初三上册数学第24章复习要点:圆的性质
1.垂径定理及推论: 如图:有五个元素,“知二可推三”;需记忆其中四个定理,即“垂径定理”“中径定理” “弧径定理”“中垂定理”.
2.“角、弦、弧、距”定理:(同圆或等圆中)“等角对等弦”; “等弦对等角”; “等角对等弧”; “等弧对等角”;“等弧对等弦”;“等弦对等(优,劣)弧”;“等弦对等弦心距”;“等弦心距对等弦”.
3.圆周角定理及推论:(1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(3)“等弧对等角”“等角对等弧”;(4)“直径对直角”“直角对直径”;
(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.
4.圆内接四边形性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角.
5.切线的判定与性质定理:如图:有三个元素,“知二可推一”;需记忆其中四个定理.(1)经过半径的外端并且垂直于这条半径的直线是圆的切线;(2)圆的切线垂直于经过切点的半径;
6.相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项.
7.关于两圆的性质定理:(1)相交两圆的连心线垂直平分两圆的公共弦;(2)如果两圆相切,那么切点一定在连心线上.
8.正多边形的有关计算:(1)中心角?n ,半径RN ,边心距rn ,边长an ,内角?n ,边数n;(2)有关计算在RtΔAOC中进行.
以上就是数学网为大家整理的必备的
初三
上册数学第24章复习要点:圆的性质,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!
感谢您的阅读,祝您生活愉快。