城轨车辆用牵引电机分析
- 格式:doc
- 大小:486.60 KB
- 文档页数:18
城轨车辆用异步牵引电机的轴承寿命分析与改进引言:城轨交通系统是现代城市中重要的公共交通工具之一,对于人们出行、减少交通拥堵、改善环境质量等方面具有重要作用。
而城轨车辆的牵引系统中,异步牵引电机是至关重要的组成部分之一。
然而,由于长时间运行和频繁操作,城轨车辆用异步牵引电机的轴承寿命存在一定的问题,需要进行深入的分析和改进。
1. 异步牵引电机轴承寿命的重要性及现状分析异步牵引电机轴承的寿命直接关系到城轨车辆的安全性、可靠性以及运行成本。
目前存在的问题主要体现在以下几个方面:(1)轴承故障率高:由于城轨车辆的长时间运行和大负荷工况,牵引电机的轴承容易出现疲劳、磨损、断裂等故障。
(2)维修成本高:轴承故障引发的维修成本高,包括零件更换、工时费等费用,给城轨运营企业造成了不小的经济压力。
(3)运行安全性低:轴承故障可能导致列车失去动力或轨道交通事故,对乘客安全构成潜在威胁。
2. 异步牵引电机轴承寿命分析为了分析异步牵引电机轴承寿命,需要考虑以下几个因素:(1)负荷特性:城轨车辆的负荷特性复杂,包括启动、加速、制动等工况。
牵引电机在不同负荷下工作,轴承所受力有所不同,从而影响了寿命。
(2)润滑方式:润滑方式对轴承寿命也有一定的影响。
目前的润滑方式主要有油润滑和脂润滑两种,各自有其优劣之处。
(3)安装结构:轴承的安装结构、轴承盖结构等因素也会影响轴承的使用寿命。
3. 改进措施(1)负荷分析:通过对城轨车辆运行过程中的负荷特性进行监测与分析,找出负载状况变化较大的区间,并根据不同区间调整电机控制策略,减小轴承受力。
(2)润滑改进:在润滑方式上,可以考虑使用更先进的润滑材料,如纳米润滑材料、润滑膜等,以提高润滑效果。
此外,定期检查润滑系统,确保润滑油或脂的质量和量符合要求。
(3)结构改良:改良轴承的安装结构,或使用更耐磨、耐腐蚀性能更好的材料,以增加轴承的使用寿命。
4. 寿命监测与维护为了保障城轨车辆用异步牵引电机的轴承寿命,需要建立相应的寿命监测与维护机制:(1)轴承寿命监测:通过对城轨车辆异步牵引电机轴承的工况、振动、噪声等参数进行实时监测,并结合专业的寿命模型,预测轴承的使用寿命,及时采取措施进行维护。
异步牵引电机在城轨车辆中的振动与故障检测引言:随着城市交通的不断发展,城轨交通系统作为城市公共交通的重要组成部分,承载着越来越多的乘客出行需求。
而在城轨车辆的运行中,异步牵引电机作为主要动力源之一,起着关键作用。
然而,由于工作环境复杂、运行负荷大、运行时间长等因素,城轨车辆中的异步牵引电机常常面临振动与故障问题。
因此,本文将就异步牵引电机在城轨车辆中的振动与故障检测进行探讨。
一、异步牵引电机的工作原理异步牵引电机是一种常用的城轨车辆动力源,其工作原理主要基于电磁感应。
当电机输入电源后,电流通过定子线圈,形成磁场。
由于感应与转子的相对运动,感应到的磁场将产生电流,从而形成转子磁场。
转子磁场与定子的磁场交互作用,产生转矩,带动车辆运行。
二、异步牵引电机的振动问题1. 振动来源城轨车辆运行过程中,异步牵引电机的振动主要来源于以下几个方面:(1)电机内部的非线性磁路导致的电磁力变化;(2)电机运行时产生的电磁振动;(3)电机系统结构、零部件的松动、变形等机械因素;(4)电机与车辆轴的传动系统的不平衡。
2. 振动影响异步牵引电机的振动问题不仅会影响车辆的舒适性,还会对车辆的安全性和持久性造成威胁。
强烈的振动不仅会导致乘客的不适,还可能加速车辆结构的疲劳破坏,甚至引发故障。
三、异步牵引电机振动的故障检测方法为了及时发现异步牵引电机的振动问题,提前做出维修和保养,需要采用有效的故障检测方法。
以下是几种常用的振动故障检测方法。
1. 加速度传感器检测法利用加速度传感器安装在电机或车辆上,实时检测电机振动信号,并通过信号处理和分析来判断电机振动是否异常。
这种方法可以实时监测振动情况,并通过与预设阈值进行比较来判断是否存在故障。
2. 频谱分析法频谱分析法是一种通过分析振动信号的频谱来判断是否存在故障的方法。
通过采集振动信号,并将其转换为频谱图,可以清晰地看到信号中各个频率成分的特征。
通过对比正常和异常状态下的频谱图,可以发现异常频率分量,进而判断电机是否存在故障。
城轨车辆用异步牵引电机的供电系统设计随着城市交通的快速发展,城轨交通系统成为了现代城市中常见的交通方式之一。
作为城轨车辆的主要动力装置,异步牵引电机在城轨交通系统中起着至关重要的作用。
为了确保城轨车辆的安全、高效运营,供电系统的设计至关重要。
一、供电系统的基本原理供电系统作为城轨车辆的动力来源,需要提供足够的电能来驱动异步牵引电机,确保车辆的正常运行。
供电系统基本原理如下:1. 直流供电系统:城轨车辆常采用直流供电系统,其主要原理是通过集电靴和接触线之间的接触实现电能传输。
供电系统分为架空接触网和第三轨两种常见形式。
架空接触网通过接触线向集电靴提供电能,集电靴与电机之间的干接触方式能够保证电能传输的稳定性和可靠性。
第三轨供电方式则是利用放置在地面的导电轨道,通过接触线与第三轨之间的接触实现电能传输。
2. 异步牵引电机:异步牵引电机是城轨车辆常见的动力装置,其工作原理是通过电能转换成机械能,驱动车辆运行。
异步牵引电机由定子和转子构成,定子绕组由电磁铁和电气器件组成,转子上则包含短路环和绕组。
二、供电系统的关键设计考虑因素在设计城轨车辆用异步牵引电机的供电系统时,需要考虑以下关键的设计因素:1. 电能传输的可靠性:供电系统的设计应该保证电能能够稳定、可靠地传输到异步牵引电机,避免因供电不稳定而导致的车辆故障或停机。
2. 效率和能耗:供电系统的设计应该尽可能地提高能源利用效率,并降低能耗,以实现城轨车辆的节能目标。
3. 电气安全:供电系统应设计电气安全机制,确保城轨车辆及乘客的安全。
例如,应设置过载保护装置和短路保护装置,以防止电能传输中的意外故障。
4. 抗干扰能力:由于城市交通环境的复杂性,供电系统应具有良好的抗干扰能力,以减少外部干扰对电能传输的影响。
5. 维护和管理便捷性:供电系统应设计成易于维护和管理的结构,以方便日常检查、维修和替换。
三、供电系统设计的主要构成部分城轨车辆用异步牵引电机的供电系统主要由以下几个构成部分组成:1. 接触网或第三轨:供电系统的基本结构,通过接触线和集电靴与车辆进行电能传输。
城轨车辆用异步牵引电机的电机启动控制策略引言城轨交通是当今城市化进程中不可或缺的一部分,它为城市居民提供了快捷、便利和环保的出行方式。
而城轨车辆的牵引电机起着至关重要的作用,电机启动控制策略对城轨车辆的性能和节能效果有着直接影响。
本文将探讨城轨车辆中使用的异步牵引电机的电机启动控制策略的相关内容。
1. 异步牵引电机基本原理和特点异步牵引电机是城轨车辆中常用的一种电机类型。
它由转子和定子组成,通过电磁感应的原理实现机械能转换。
相比于其他类型的电机,异步牵引电机具有结构简单、制造成本低、维护方便等特点。
2. 异步牵引电机的电机启动过程电机启动过程是指将电机从停止状态下转速为零的状态,加速到额定转速的过程。
异步牵引电机的启动过程对于城轨车辆的性能和电力系统的稳定性具有重要意义。
3. 异步牵引电机启动控制策略(1)直接启动控制直接启动控制是最简单和常见的启动控制策略,它通过将电机直接接入电源并施加额定电压,使得电机加速到额定转速。
直接启动控制的优点是结构简单、控制成本低。
然而,直接启动会造成启动电流冲击,对电力系统造成压力,同时也会对电机本身造成损害。
(2)无选择器电流启动控制无选择器电流启动控制通过控制电机的电流进行启动控制。
它使用起动调压器来改变电机的起始电流大小,以减小启动过程中的冲击电流。
这种控制策略可以减小对电力系统的冲击,同时对电机本身也具有保护作用。
(3)电压降低启动控制电压降低启动控制通过在启动过程中降低电机的供电电压,来减少启动过程中的电流冲击。
该控制策略可以在一定程度上减轻电力系统的压力,但也可能影响到电机的性能。
(4)转子电阻启动控制转子电阻启动控制是通过在电机转子电路中串联电阻来降低起动时的电流冲击。
该策略可以实现较平滑的启动过程,并有效减小电力系统的冲击。
4. 异步牵引电机启动控制策略的选择与优化在实际应用中,选择适合的启动控制策略对于城轨车辆的性能和效果至关重要。
同时,还需要对启动控制策略进行优化,以提高城轨车辆的性能和能源效率。
城轨车辆用异步牵引电机的实时故障检测方法引言:随着城市轨道交通的迅猛发展,城轨车辆的运行安全和正常使用变得尤为重要。
其中,异步牵引电机作为城轨车辆的主要动力来源之一,其运行状态的可靠检测对于保障车辆运行的安全性和稳定性具有重要意义。
本文将介绍一种城轨车辆用异步牵引电机的实时故障检测方法,旨在提高城轨车辆的运行安全性和可靠性。
一、介绍异步牵引电机的工作原理1.1 异步牵引电机的构成异步牵引电机是一种三相感应电机,由定子和转子组成。
定子上绕有三相绕组,转子由导线绕成,但不与电源相连。
1.2 异步牵引电机的工作原理当端子上施加电流时,定子绕组产生旋转磁场。
由于转子不直接和电源相连,它会受到旋转磁场的影响,开始旋转。
转子的旋转速度始终滞后于旋转磁场的速度,这就是异步牵引电机的工作原理。
二、异步牵引电机故障检测的重要性2.1 异步牵引电机故障的危害异步牵引电机故障可能导致城轨车辆停机,严重影响线路的运输能力,甚至危及乘客的安全。
2.2 实时故障检测的必要性传统的故障检测方法往往在车辆停机之后才能进行,这不仅导致停机时间延长,还使得故障所造成的后果无法事先得到预防。
因此,实时故障检测方法的研究与应用势在必行。
三、异步牵引电机实时故障检测的方法3.1 电机参数检测通过对异步牵引电机的电流、电压、转速等传感器所获取的参数进行实时检测,可以判断电机是否存在故障。
例如,当电机转速明显下降时,可能存在转子断条的故障。
3.2 振动检测通过安装振动传感器监测异步牵引电机的振动情况,可以提前发现电机的反馈振动异常,并据此判断是否存在故障。
例如,电机的振动频率突然增加可能意味着存在轴承故障。
3.3 温度检测利用温度传感器监测异步牵引电机的温度变化,可以检测电机是否过热、绝缘是否存在问题。
过高的温度表明电机可能存在绝缘故障或电机通风不良。
3.4 声音检测通过安装声音传感器对异步牵引电机的工作声音进行监测,可以检测电机是否存在异常噪音。
城轨车辆牵引的实现及故障分析关键词:城市轨道交通、牵引、故障分析引言:城轨车辆的运行是通过受电弓将触网的1500V的直流电引到牵引系统,通过电流的转换(直流电转换为交流电)传输到牵引电机,从而带动转向架轮对的旋转使列车行进。
牵引系统是车辆的重要组成部分。
牵引系统为列车提供所需动力,用于控制列车电机工作。
牵引系统由受电弓、避雷器、隔离开关、高速断路器、高压箱、牵引逆变器、牵引电机、接地装置等组成。
一.实现牵引的原理要让列车实现牵引,可从车辆牵引系统电路的高压部分和低压控制部分(以郑州某项目的为例)来详细说明牵引系统的工作原理。
1、高压部分原理图如下:图1 高压分配原理图分析:触网1500V的直流电源通过B车上的受电弓受流,到高压箱内的闸刀开关(闸刀开关有:受电弓位、刀开关位、接地位,通过这个刀开关,打到不同的电源位实现不同的供电模式的转换。
外接库用电源插头通过一个车下供电插头连接到车间供电直流1500V的供电系统上,实现库内外接DC1500V),打到受电弓位将DC1500V引到高压箱中的母排上,再分别通过高速断路器供电到B、C车的牵引箱,将直流电压转换为变压变频(VVVF)的3相交流输出,给牵引电机供电,为列车提供所需的牵引力,从而实现列车的加速控制。
2、低压控制部分原理图如下:图2 牵引控制原理分析:司控器方向手柄向前,牵引手柄100%全牵,牵引指令控制回路中,要求所有停放制动缓解,27-K108吸合,司机台停放制动缓解灯亮,或停放制动旁路开关27-S103打到旁路位;无外接库用电源供电且库用电源端盖盖好锁扣到位,或无库用电源旁路开关31-S102旋钮打到合位;车辆所有左侧车门81-K110、右侧车门81-K109继电器吸合,左右侧车门全部关闭到位,或门关好旁路81-S110旋钮打到合位;经过牵引允许回路91-K04继电器吸合,或ATP91-K10打到切除位;整车紧急继电器22-K125吸合,紧急制动缓解,司机台所有制动缓解灯亮,(列车没有以上任何制动);牵引指令经过列车线到每节车的牵引箱,给牵引电机牵引命令。
城市轨道交通车辆牵引电机异响原因分析摘要:随着科学的不断发展与社会的不断进步,各大城市主要道路已越来越拥堵,而城市轨道交通作为各大中型城市的主要交通工具之一,它有着运量大、速度快、行车间隔时间短以及准点率高等优点,给人们的出行带来了极大的便利。
本文针对牵引电机在运转过程中发出“嗡嗡嗡”异响的声音进行了原因分析及验证。
关键词:定子;转子;伪布氏压痕1、引言牵引电机作为动车转向架的一个重要部件,对车辆的运行安全有着至关重要的影响。
随着城市轨道交通技术的不断进步,对于牵引电机异响的研究也不断深入,这对于解决牵引电机异响问题具有重大意义。
本文以调试过程中出现的故障情况作为切入点,将牵引电机进行拆解对各部件进行分析及试验,提出解决牵引电机异响的措施。
2、现象在某项目城轨地铁车辆到段后现场调试检查中发现某列车底架有一处地方发出“嗡嗡嗡”的响声,判断为牵引电机导致,于是将这一个牵引电机拆下后返厂进行检查。
3、原因分析牵引电机返厂后对牵引电机进行拆解检查、测试及验证。
3.1拆解前外观检查首先对电机外观进行检查,锁轴工装完好,未有螺栓松动,电机外表面无损伤无异常,外观部件检查详情见表1:表1外观检查结果由外观检查可以分析出:该电机外观良好,返厂过程中运输锁轴完好无异常。
3.2拆解前绕组绝缘、空载、振动测试对该电机进行空载及振动测试,测试电压为380VAC,测试频率为50Hz。
判断电机是否存在异响,同时测试振动值,测试结果见表2。
表2测试结果由空载振动测试及异响听诊可以得出振动测试结果合格,判断转子动平衡合格;但电机在启动过程有明显异响,疑似传动端轴承部位发出。
3.3电机拆解后各部件检查测试后将电机进行拆解,拆解的步骤包括:DE端(传动端)、NDE端(非传动端)端盖拆除、定转子分离、定转子检查。
电机拆解后,检查两端轴承油脂外观、油脂的润湿程度均正常;定、转子外观检查均正常;非驱动端轴承检查正常;驱动端轴承存在压痕痕迹。
异步牵引电机在城轨车辆中的启动与刹车性能分析引言:城轨交通作为一种高效、环保的交通工具,正得到越来越多城市的重视和采纳。
异步牵引电机作为城轨车辆中常用的驱动装置,其启动与刹车性能直接关系到城轨车辆的安全性、运行效率和乘坐舒适度。
本文将对异步牵引电机在城轨车辆中的启动与刹车性能进行深入分析。
1. 异步牵引电机的工作原理及特点异步牵引电机是采用感应原理工作的交流电机。
其主要特点包括结构简单、维修方便、功率因数高、过载能力强等。
在城轨车辆中,异步牵引电机常被使用于牵引装置中,负责提供足够的驱动力来推动车辆运行。
2. 启动性能分析2.1 启动过程概述城轨车辆启动过程是指将静止状态下的车辆逐渐提速,使其达到运行速度的过程。
启动性能的好坏直接影响到城轨车辆的出发顺利与否。
因此,异步牵引电机的启动性能需要满足以下要求:- 启动过程平稳,不产生冲击与颠簸;- 启动时间合理,能够在最短时间内使车辆达到稳定运行速度;- 启动电流控制在合理范围内,以避免对电网造成过大负荷。
2.2 启动过程中的问题与解决方案启动过程中常见的问题包括溜车、滑行、电网暂时性过载等。
针对这些问题,可以采取以下的解决方案:- 使用适当的启动方式,如直接启动、降压启动或自耦变压器启动等,以根据具体情况选择最合适的启动方式;- 通过合理设计控制系统,控制启动过程中的电流,并确保在合理范围内,以避免对电网造成过大负荷;- 选用合适的牵引台车结构,以保证启动过程的平稳性,减小车辆的颠簸和冲击。
3. 刹车性能分析3.1 刹车过程概述城轨车辆刹车过程是指将运行状态下的车辆逐渐减速,并最终停止的过程。
刹车性能的好坏直接关系到城轨车辆的安全性和乘坐舒适度。
因此,异步牵引电机的刹车性能需要满足以下要求:- 刹车过程平稳,不产生冲击和颠簸;- 制动距离短,能够在最短时间内将车辆停止;- 制动力调节灵敏,以适应不同路况和运行状态下的刹车需求。
3.2 刹车过程中的问题与解决方案刹车过程中常见的问题包括制动力不足、刹车距离过长和制动系统过热等。