任务3城轨车辆直流牵引传动系统
- 格式:ppt
- 大小:8.92 MB
- 文档页数:42
城轨车辆牵引传动系统综合实践
城轨车辆牵引传动系统是城市轨道交通运行的核心组成部分,其主要作用是将电力能量转换为机械能,驱动城轨车辆行驶。
该系统主要由牵引变流器、牵引电机、齿轮减速器、轮对、车轮和轴承等组成。
牵引变流器是城轨车辆牵引传动系统的核心,其作用是将直流电能转换为交流电能,控制牵引电机的转速和转向。
牵引电机是由牵引变流器提供控制信号,使其能够实现不同的动力输出并根据需要调整牵引力大小。
齿轮减速器则是将牵引电机高速转动的输出轴减速,同时使输出能量转换为最大的扭矩输出。
轮对作为车辆轮胎,是牵引传动系统中非常重要的部件,承担着车辆行驶以及牵引力传递的重要任务。
为了保证城轨车辆在高速行驶过程中的稳定性和安全性,轮对应采用优质材料和合理的设计结构。
对于城轨车辆或高铁等大型轨道交通运输工具而言,牵引传动系统的可靠性和安全性是非常重要的考虑因素。
一旦出现故障,可能会导致车辆停止运行,造成严重的安全事故。
因此,牵引传动系统维护保养工作同样非常重要,需定期进行保养和检修,检查传动系统各部件的工作状况和运行状态,及时发现和解决问题。
城市轨道交通列车牵引传动系统城市轨道交通列车牵引传动系统城市轨道交通列车的牵引⼒是由城市轨道交通列车的牵引系统产⽣的,因此要掌握城市轨道交通列车牵引⼒的知识,就必须先掌握列车牵引传动系统的基础知识。
⽬前城市轨道交通列车的牵引传动系统基本都是电⼒牵引传动系统,其基本的⼯作过程是:电能经过列车牵引供电系统传输和相应的转换,提供给列车的牵引电动机,电能转换成机械能,从⽽驱动列车运⾏。
城市轨道交通列车牵引供电的电源是城市电⽹,城市电⽹提供的电能经过牵引变电所的降压、整流变成DC 1 500 V(或DC 750 V),再通过馈电线传递给接触⽹,然后通过受流装置,由钢轨和回流线流回牵引变电所形成回流。
城市轨道交通列车牵引传动系统的基本特点是牵引功率⼤、传动效率⾼、能源利⽤率⾼、绿⾊环保、产⽣的污染很少、容易实现⾃动化控制。
城市轨道交通列车的牵引电动机为列车提供动⼒,牵引电动机按⼯作原理可分为直流电动机、交流异步电动机、交流同步牵引电动机三种。
由于交流电动机与直流电动机相⽐不需要换向器,结构简单,可靠性⾼,维护量少,重量⼩,并能获得较⼤的单位重量功率,具有良好的牵引性能,同时三相交流牵引电动机的调频、调压特性如果设计合理,可以实现⼤范围的平滑调速,还具有防空转的性能,使黏着利⽤率提⾼;三相交流牵引电动机对瞬时过电压和过电流很不敏感,在启动时能在更长的时间内产⽣较⼤的起动⼒矩。
因此,交流异步电动机有取代直流电动机的趋势。
⼀、牵引传动系统的⼯况城市轨道交通列车的牵引传动系统有两个⼯况:牵引⼯况和制动⼯况。
1、在牵引⼯况下,列车牵引传动系统为列车提供牵引动⼒,将供电接触⽹上的电能转换为列车在轨道上运⾏的机械能。
2、制动⼯况可以分为再⽣制动⼯况和电阻制动⼯况。
再⽣制动就是将列车的机械能转换成电能反馈到接触⽹再供给其他列车或车站设备使⽤,这种⽅式能最⼤限度地降低电能的损耗。
列车制动过程中牵引传动系统反馈的电能超过了接触⽹上的限值(达到DC 1 800 V)时,列车电制动产⽣的电能将会消耗在制动电阻上,通过制动电阻发热⽽消耗到⼤⽓中去,这种通过制动电阻消耗电能的电制动⼯况称为电阻制动⼯况。
城市轨道交通车辆-第章-电力牵引传动系统课件 (一)城市轨道交通车辆是现代城市交通中非常重要的一部分,而他们的电力牵引传动系统就是其运行的核心和动力。
本文将详细介绍城市轨道交通车辆的电力牵引传动系统。
一、电力牵引传动系统的组成电力牵引传动系统由三个组成部分构成:牵引变流器、牵引电机和制动电阻。
1.牵引变流器:牵引变流器是电力牵引的核心和决定因素,它可以将直流电转化为交流电。
牵引变流器能够控制电机的转速和力矩,以达到牵引车辆的目的。
2.牵引电机:城市轨道交通车辆的牵引电机是三相异步电动机或同步电动机。
牵引电机可以将电能转化为机械能,从而提供动力以驱动轨道车辆。
3.制动电阻:制动电阻是在车辆紧急制动时提供制动力的电阻元件。
当电机接通制动电阻电路时,电机旋转速度要逐渐降低,从而达到制动效果。
二、电力牵引传动系统的分类根据使用条件和使用要求的不同,电力牵引传动系统可以分为直流电力牵引传动系统和交流电力牵引传动系统两种类型。
1.直流电力牵引传动系统:直流电力牵引传动系统具有简单、可靠、成熟的技术,对牵引电机的故障诊断和控制较为方便。
同时,直流电力牵引传动系统还具有调速范围大,可靠性高的特点。
2.交流电力牵引传动系统:交流电力牵引传动系统采用AC电机,可以在不同速度下提供更高的牵引力和效率。
此外,交流电力牵引传动系统可以通过能量回馈来降低整车的能耗。
三、电力牵引传动系统的优缺点1.优点电力牵引传动系统具有牵引力大、加速度快、稳定性高和运行平稳等特点。
同时,电力牵引传动系统能够提供更为舒适的乘坐环境,降低噪声和振动。
另外,电力牵引传动系统还能够节能环保,大大减少空气污染和噪声污染。
2.缺点电力牵引传动系统的成本较高,维护和保养也比较复杂。
同时,由于其本身的构造和性能,电力牵引传动系统的动力响应有些慢,无法满足部分应急情况下的需要。
总之,电力牵引传动系统是城市轨道交通车辆运行的核心,也是现代城市交通发展的重要标志之一。
城轨车辆电力牵引交流传动控制系统的分析及故障排除设计城轨车辆电力牵引交流传动控制系统是城市轨道交通中重要的部件之一,负责车辆的电力牵引和传动。
它通过对电机的控制来实现车辆的启动、停止、变速等功能。
本文将对城轨车辆电力牵引交流传动控制系统进行分析,并提出故障排除的设计。
城轨车辆电力牵引交流传动控制系统主要由电机、逆变器、牵引变压器、牵引变流器、车辆控制器等组成。
电机是系统的关键部件,通过传动装置将电能转化为力,推动车辆运动。
逆变器将直流电转换为交流电,为电机提供电能。
牵引变压器将高压电网的电能变成适合牵引电机使用的低压电能。
牵引变流器可以改变电机的转速,实现车辆的变速。
车辆控制器负责对整个系统进行控制和监测。
在进行故障排除设计之前,首先需要对城轨车辆电力牵引交流传动控制系统进行分析。
通过系统的故障诊断,可以确定故障出现的位置和原因。
常见的故障包括电机故障、逆变器故障、牵引变压器故障、牵引变流器故障、车辆控制器故障等。
通过对各个部件的故障诊断,可以准确定位故障源,为故障排除提供指导。
在进行故障排除设计时,首先需要确定故障的具体原因。
例如,如果是电机故障,可以通过检查电机的绝缘状况、转子的转动情况、电机的热保护等方式进行排查。
如果是逆变器故障,可以通过检查逆变器的输入电流、输出电压、控制信号等方式进行排查。
如果是牵引变压器故障,可以通过检查变压器的绝缘状况、温度状态等方式进行排查。
如果是牵引变流器故障,可以通过检查变流器的电流、电压、温度等方式进行排查。
如果是车辆控制器故障,可以通过检查控制器的输入信号、输出信号、控制逻辑等方式进行排查。
在故障排除设计中,需要精确地确定故障的原因,并采取相应的措施进行修复。
例如,如果是电机故障,可以进行绝缘处理、更换电机、调整电机的参数等方式进行修复。
如果是逆变器故障,可以更换逆变器、调整逆变器的参数等方式进行修复。
如果是牵引变压器故障,可以更换变压器、调整变压器的参数等方式进行修复。
城市轨道交通列车牵引传动系统城市轨道交通列车的牵引力是由城市轨道交通列车的牵引系统产生的,因此要掌握城市轨道交通列车牵引力的知识,就必须先掌握列车牵引传动系统的基础知识。
目前城市轨道交通列车的牵引传动系统基本都是电力牵引传动系统,其基本的工作过程是:电能经过列车牵引供电系统传输和相应的转换,提供给列车的牵引电动机,电能转换成机械能,从而驱动列车运行。
城市轨道交通列车牵引供电的电源是城市电网,城市电网提供的电能经过牵引变电所的降压、整流变成DC 1 500 V(或DC 750 V),再通过馈电线传递给接触网,然后通过受流装置,由钢轨和回流线流回牵引变电所形成回流。
城市轨道交通列车牵引传动系统的基本特点是牵引功率大、传动效率高、能源利用率高、绿色环保、产生的污染很少、容易实现自动化控制。
城市轨道交通列车的牵引电动机为列车提供动力,牵引电动机按工作原理可分为直流电动机、交流异步电动机、交流同步牵引电动机三种。
由于交流电动机与直流电动机相比不需要换向器,结构简单,可靠性高,维护量少,重量小,并能获得较大的单位重量功率,具有良好的牵引性能,同时三相交流牵引电动机的调频、调压特性如果设计合理,可以实现大范围的平滑调速,还具有防空转的性能,使黏着利用率提高;三相交流牵引电动机对瞬时过电压和过电流很不敏感,在启动时能在更长的时间内产生较大的起动力矩。
因此,交流异步电动机有取代直流电动机的趋势。
一、牵引传动系统的工况城市轨道交通列车的牵引传动系统有两个工况:牵引工况和制动工况。
1、在牵引工况下,列车牵引传动系统为列车提供牵引动力,将供电接触网上的电能转换为列车在轨道上运行的机械能。
2、制动工况可以分为再生制动工况和电阻制动工况。
再生制动就是将列车的机械能转换成电能反馈到接触网再供给其他列车或车站设备使用,这种方式能最大限度地降低电能的损耗。
列车制动过程中牵引传动系统反馈的电能超过了接触网上的限值(达到DC 1 800 V)时,列车电制动产生的电能将会消耗在制动电阻上,通过制动电阻发热而消耗到大气中去,这种通过制动电阻消耗电能的电制动工况称为电阻制动工况。
项目三 交流城轨车辆牵引变流与传动系统任务三 城轨车辆交流牵引传动系统 【学习目标】(1)能够熟练分析城轨车辆直-交型调速主电路的工作原理及基本控制方式。
(2)能够描述城轨车辆交流牵引供电系统的结构,正确分析其电气原理。
(3)能熟练分析典型城轨车辆的交流牵引传动系统主电路的电气原理。
(4)了解城轨车辆交流牵引传动系统的各组成部分及各部分的作用。
(5)能熟练对城轨车辆主要电器进行检测与维护。
(6)能正确使用相关仪器、设备对城轨车辆交流牵引传动系统进行维护、简单调试及常见故障分析与检修。
【任务导入】近年来随着电力电子器件的迅速发展,变频调速技术已经很成熟了,调压调频逆变器已经成功地解决了交流电动机的调速问题。
目前,城市轨道交通车辆普遍采用的是交流异步牵引电机作为牵引动力的交流牵引传动。
3.10 城轨车辆交流牵引传动系统概述城轨车辆单元车辆结构示意图如图3-38所示,为2M1T结构。
主牵引传动系统如图3-39所示。
图3-38 两动一拖(2M1T)单元车主电路结构框图图3-39 1C4M单元车交流主传动系统原理电路图SA—浪涌吸收器;IES—隔离开关;HSCB—高速断路器;LFL—滤波电抗器;CCZ—充电电阻;CCK—充电接触器;LIK—线路接触器;VMD—电压传感器;DBZ—制动电阻;CMD—电流传感器;SS—速度传感器;M1~M4—交流电动机;CBR—差动电流保护器;FCZ—过压保护电阻;LFC—滤波电容器列车从受电弓P受流后,经过主熔断器FU 同时给两节车上的逆变器供电牵引时,电能传递路径为:电网直流1 500 V通过受电弓P、主熔断器FU、隔离开关IES、高速断路器HSCB、线路接触器LIK及逆变器给牵引电机供电。
在再生制动时以相反的路径使电网吸收电机反馈的能量。
R是固定并联在滤波电容器LFC上的放电电阻。
主电路断电后LFC两端的电压在 5 min C内降到 50 V 以下,由此可以确定放电的时间常数及放电电阻值。
城市轨道交通直流牵引供电系统构成及运行方式优缺点分析城市轨道交通直流牵引供电系统构成及运行方式优缺点分析内容简介:摘要:城市轨道交通供电系统是为运营提供能源的系统,而直流牵引供电系统为电动列车提供牵引用电,也是供电系统的核心组成部分,分析了各种供电方式优缺点,并从电力调度的角度,运用调度方式的灵活性,保障城市轨道交通安全可靠论文格式论文范文毕业论文摘要:城市轨道交通供电系统是为运营提供能源的系统,而直流牵引供电系统为电动列车提供牵引用电,也是供电系统的核心组成部分,分析了各种供电方式优缺点,并从电力调度的角度,运用调度方式的灵活性,保障城市轨道交通安全可靠运营。
关键词:直流牵引供电系统电力调度供电方式1、直流牵引供电系统构成主要由①牵引降压混合变电所②正馈电线、③接触网(第三轨)、④电动列车、⑤走行钢轨、⑥回流线路、⑦电分段组成。
图1-直流牵引供电系统构成图1.1牵引降压混合变电所引自主变电所来的中压电压经过变压器、整流器(即整流机组)变为DC1500V,再经DC1500V开关柜、正馈电线向接触网供电。
牵引混合降压变电所和接触网(第三轨)之间的电缆,正馈电线将电能传输至接触网(第三轨)。
1.3接触网(第三轨)正线一般采用架构刚性接触网,刚性接触网是向电动客车供给电能的导电体,在地铁末端一般采用架空柔性接触网。
1.4走行钢轨列车在运行时,走行轨作为牵引电流回流至牵引降压混合变电所的电路,正线走行钢轨作为回流轨,均流线设置在上、下行钢轨之间,目的是为了减小钢轨电阻和线路损耗,更好的降低了钢轨点位,更好的保障设备和人员的安全。