第五章 软化增塑体系
- 格式:ppt
- 大小:686.00 KB
- 文档页数:67
1.配方设计的程序是什么?(1)制品性能和使用条件的分析;(2)加工性能和制造工艺的分析;(3)确定胶料的技术要求;(4)性能研究配方制订;(5)进行试验并选取最佳配方;(6)复试和扩大中试;(7)确定生产配方。
2.掌握橡胶配方五大体系的基本内容。
(1)生胶:最重要的组成部分,决定了胶料的使用性能、工艺性能和产品的成本。
(2)硫化体系:使橡胶大分子发生化学交联。
(3)填充补强体系:提供胶料的强度和降低成本。
(4)防老体系:提高胶料的耐老化性能(耐臭氧、耐热、耐疲劳)。
(5)软化增塑体系:改善胶料的加工性能,降低成本,提高硫化胶料的耐寒性。
3.掌握常见橡胶的分子结构、极性、结晶等与性能特点。
(1)天然橡胶NR1)分子结构a.顺式加成(97%)的异戊二烯均聚物2)极性:非极性橡胶3)结晶:易拉伸结晶4)性能特点:a.非胶组分使天然橡胶形成超分子结构,易拉伸结晶使拉伸强度提升;b.NR是一种结晶性橡胶,可拉伸结晶,且NR具有较高的分子量;c.NR的撕裂强度也很高;d.回弹性高,滞后损失小,生热低,良好的耐疲劳性;e.NR具有较高的耐磨性;f.混炼胶黏合性强,生胶强度高,挺性好;g.耐热性不高,常期使用温度低于90℃;性能不高(主链上存在大量的不饱和双键);h.耐老化,耐O3i.耐燃料油性差(非极性橡胶与烃类油相容性高)。
(2)丁苯橡胶SBR1)分子结构a.较大侧基:乙烯基和苯基2)极性:非极性橡胶3)结晶:非结晶性橡胶,必须使用增强填料补强,补强后强度能达到NR纯硫化胶水平4)性能特点:a.耐磨性好,耐寒性差,内耗大,生热高,弹性较低;b.耐热氧老化特性优于NR,硫化速度较NR慢,SBR的使用上限温度比NR高;c.SBR的耐溶剂性能以及电绝缘性能与NR相似;d.SSBR比ESBR的弹性好,滚动阻力低,抓着力高;e.加工性能比NR稍差,尤其是SSBR包辊性差,自粘互粘性差。
(3)顺丁橡胶BR1)分子结构a.顺1,4结构达到95%~98%的丁二烯橡胶被称为顺丁橡胶2)极性:非极性橡胶3)结晶:顺式结晶能力较差,反式常温结晶4)性能特点:a.顺式a)高弹性、耐寒性好、耐磨耗、耐动态疲劳、动态内耗生热低;b)拉伸强度、撕裂强度低;抗湿滑性不良;加工性能不好、生胶会因自重而发生冷流;c)顺丁胶很少单独使用,经常与其它通用橡胶并用,主要用于轮胎。
橡胶是一种材料,它在大的形变下能迅速而有力恢复其形变,能够改性;橡胶的弹性模量非常小,并具有相当好的耐气透性以及耐各种化学介质和电绝缘的性能,它可以和多种材料物质并用、共混、复合由此进行改性,以得到良好的综合性能。
橡胶的配合的主要包括五大体系,分别是生胶、硫化体系、防护体系、软化增塑体系和补强体系。
一、生胶生胶是高弹性高聚物材料,作为橡胶的母体材料或称为基体材料。
按制取来源与方法分可以分成天然橡胶和合成橡胶两大类;其中合成橡胶按照应用范围与用途分又可以分成通用橡胶、半通用橡胶、专用合成橡胶和特种橡胶。
1、天然橡胶主要应用与轮胎、胶带、胶管、电线电缆等多数橡胶制品,是应用最广的橡胶。
2、丁苯橡胶大部分的丁苯橡胶用于轮胎工业。
其他产品有汽车零件、工业制品、电线电缆包皮、胶管胶带和鞋类等。
3、氯丁橡胶氯丁橡胶可用来制造轮胎胎侧、耐热阻燃运输带、耐油及耐化学腐蚀的胶管、容器衬里、垫圈、胶辊、汽车和拖拉机配件、门窗密封胶条、止水带等。
4、丁腈橡胶丁腈橡胶有良好的耐油性有可以保持较好的橡胶特性,可以广泛的应用于耐油制品如油封、输油胶管、化工容器衬里、油箱、印刷胶辊、耐油手套、耐油减震器等;由于丁腈橡胶具有半导性,所以可用于余姚导出静电,以免引起火灾的地方,如纺织皮辊、皮圈、阻燃运输带等。
5、乙丙橡胶主要应用于要求耐老化、耐水、耐腐蚀、电气绝缘几个领域,如用于密封垫圈、屋顶单层防水卷材、桥梁减震器、高低压电缆绝缘层、汽车玻璃密封条、轮胎胎侧等。
6、丁基橡胶丁基胶具有突出的气密性和耐热性,主要用于充气轮胎的内侧和无内胎轮胎的气密层,有极好的耐化学药品腐蚀性能可用于化工耐腐蚀容器衬里等。
二、硫化体系硫化体系包括硫化剂、促进剂、活性剂、防焦剂;为橡胶大分子进行化学反应使橡胶油线性大分子交联成空间网状结构。
1、硫化体系一般有硫磺硫化体系、过氧化物硫化体系、硫载体硫化体系;2、促进剂是能缩短硫化时间,降低硫化温度,减少硫化剂用量,提高和改善硫化胶物理力学性能和化学稳定性的化学物质。
《材料导论》期末考试复习题一:基础知识1.生物和生命科学、纳米技术、能源与环境、电子与信息、材料是目前科学技术的七大热点和重点领域。
2.材料、能源和信息并列成为现代科学技术的三大支柱。
3.材料的分类:金属(金属、金属合金)、非金属(有机高分子材料、无机非金属材料)4.高分子材料的定义:包含由小分子通过共价键形成长链的天然或人工合成的材料。
5.高分子材料的分类:弹性体、热固性及热塑性树脂。
6.材料技术的发展趋势:从均质材料向复合材料发展、由结构材料往功能材料、多功能材料并重的方向发展、材料结构的尺度向越来越小的方向发展、由被动性材料向具有主动性的智能材料方向发展、通过仿生途径来发展新材料。
7.塑料:塑料是以合成树脂为主要成分,另加有(或不加)改性用的添加剂或加工助剂,在一定温度、压力条件下可塑化成型、并在常温下保持其形状的材料。
有时还包括塑料的半成品,如压塑粉、注塑粒料等。
经过成型加工,可制成具有特定形状又具有实用价值的塑料制品。
8.塑料的分类:合成塑料、天然塑料(按来源);热塑性塑料、热固性塑料(按热行为);通用塑料、工程塑料(使用范围和用途)。
9.塑料的特性:质轻、耐腐蚀、电绝缘、加工性能好;不耐热、易变形、不耐老化、易燃、原料受石化资源制约10.常用的塑料加工方式:挤出成型、注射成型、压延成型。
11.橡胶的定义:橡胶是一类线形柔性高分子聚合物。
其分子链柔顺性好,在外力作用下可产生较大的变形,除去外力后能迅速恢复原状。
12.橡胶的分类:天然橡胶、合成橡胶(按来源);热固性橡胶、热塑性橡胶(按加工性)。
13.橡胶配方的五大体系:生胶、填充补强、硫化促进、防老、软化增塑体系。
14.纤维的定义:指长度比直径大很多倍并且有一定的柔韧性的纤细物质。
15.涂料的定义和组成:涂料是合成树脂另一种应用形式,用来涂覆物体表面,形成保护或装饰膜层。
主要有三种组分:成膜物、颜料、溶剂。
16.黏合剂的定义:黏合剂也称胶黏剂,是一种把各种材料紧密地结合在一起的物质。
高耐热的弹性体复合材料的种类和制备1、前言传统的高温耐热材料有陶瓷、合金等,广泛应用于冶金、焦化、建材、输送、航天航空等高温作业环境,但是随着我国工业需求的发展,迫切需要发展高耐热的弹性体材料,来满足一些工业和环境的特殊要求。
随着橡胶使用条件的日趋苛刻,对橡胶产品的耐热性能提出了越来越高的要求,橡胶的耐热性是指橡胶制品在高温长时间热老化作用下,能够保持原有物理性能的能力。
一般认为能够在100℃以上长期使用能基本保持原有的性能和使用价值的橡胶都归于“耐热橡胶”的范畴[1]。
橡胶大分子在高温或热氧作用下会发生解聚、降解、环化、交联、异构化等老化行为,从而影响橡胶的性能,要提高橡胶制品的耐热性,主要通过橡胶配方设计进行改善,可以使用一下几种方法:第一,选用的橡胶基体对热氧稳定性好,橡胶分子结构具有较好的耐热性;第二,是在选用耐热橡胶品种的基础上,选择合适的硫化体系来增加橡胶制品的耐热性;第三是使用高效的稳定剂,进一步提高橡胶产品对热和氧的防护能力。
2、高耐热弹性体的制备2.1、生胶体系的选择橡胶的耐热性与橡胶分子链的饱和度、化学键性质、侧基性能有关。
要想提高橡胶分子链的耐热性,必须从以下几方面入手。
:(1 )主链结构:大部分橡胶的主链都为碳碳结构,而碳碳键的键能为346kJ /mol,如果分子链中有杂原子,会增加主链的键能,比如硅橡胶中的硅氧键键能高达451 kJ /mol,因此硅橡胶的耐热性能就大大超过其它碳主链的橡胶[2]。
(2 )不饱和度:由于双键是分子链中的薄弱环节,极易受破坏,所以主链的饱和度越高则耐热性越好,比如某些合成胶的双键含量被控制在较低水平,如丁基胶和三元乙丙胶,因此它们的耐热性就好一些。
而有些橡胶中不存在双键,它们的耐热性就更好,如氯化聚乙烯橡胶(CM)、氯磺化聚乙烯橡胶(CSM)和硅橡胶等。
(3 )侧基:橡胶分子链上侧基对橡胶的耐热性也起到一定作用。
它们对主链都起屏蔽作用,特别是强极性原子和基团(如氟、氯、酯基、羧基)[3]。