橡胶的软化与增塑体系
- 格式:doc
- 大小:30.50 KB
- 文档页数:3
橡胶增塑原理一.橡胶增塑的方法1.物理增塑法:加入物理增塑剂2.化学增塑法:化学塑解剂3.机械增塑法:通过机械剪切作用,提高可塑性。
二、作用机理1.软化剂(对非极性橡胶)的作用增塑剂的加入会降低橡胶的玻璃化温度Tg,Tg下降值与增塑剂的体积分数有直接关系:ΔTg=kφ1k-常数;φ1—增塑剂的体积分数2.增塑剂(对极性橡胶)的作用ΔTg=kn k—与增塑剂性质有关的常数;n—增塑剂的摩尔数。
三、判断互溶性的基本原则1.溶解度参数相近相溶溶解度参数δ(简称S.P.)是表示物质互溶能力的参数,可表示物质极性的大小。
吉布斯自由能ΔG=ΔH-TΔS若ΔG<0,溶解能自发进行,相容性好。
溶解焓变:ΔH=υ1υ2(δ1-δ2)2υ1、υ2—橡胶、增塑剂的体积分数δ1、δ2—橡胶、增塑剂的溶解度参数一般来说:(δ1-δ2)→0时,互溶性最好;(δ1-δ2)<1.2时,能互溶2.相似相溶或同类相溶即结构相似的物质能够相溶。
这即是“同类相溶”原理3.溶剂化效应(1)概念:由于软化剂和增塑剂分子与橡胶分子之间产生分子间吸引力,而引起橡胶分子链分离的作用。
(2)两种物质间产生溶剂化的条件①两者之间能形成氢键②两者之间能产生亲电亲核作用三、溶剂型与非溶剂型软化增塑剂1.溶剂型软化剂、增塑剂(能与橡胶产生溶剂化作用)如芳烃油、松焦油古马隆、酯类等2.非溶剂型软化剂、增塑剂如链烷油、石蜡凡士林、油膏、机油等增塑剂的选择一、与橡胶的互溶性互溶性是衡量增塑剂对橡胶增塑能力的标志。
二、对胶料加工性能的影响1.对填料分散的影响一般来说,与橡胶互溶性好的软化、增塑剂对橡胶的增塑作用大,易使填料分散均匀。
2.对胶料粘着性的影响一般来说,与橡胶互溶性好的软化增塑剂,其加工性能好,粘着性也好。
3.对于压延、挤出工艺应选与橡胶互溶性较小,增塑效果适中,增粘作用小的软化增塑剂。
三、对硫化胶物机性能和老化性能的影响四、对橡胶的污染性五、对制品成本的影响橡胶小知识——喷霜现象喷霜:是指未硫化或硫化胶中所含的配合剂迁移到表面并析出的现象。
橡胶原材料的五大体系的作用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!橡胶原材料的五大体系的作用橡胶是一种广泛用于制造各种产品的重要材料,其质量和性能直接影响到最终产品的品质和使用寿命。
橡胶制品是如何生产制作的?配方、工艺、设备基础介绍一、概论1.橡胶分子链几何形状大致分为三类:线型橡胶分子,支链型橡胶分子,网状橡胶分子。
2.胶料的组成可概括为五个体系,即生胶,硫化体系,增塑及软化体系,补强与填充体系,仿护体系。
3.橡胶制品生产的基本工艺过程包括塑炼、混炼、压延、压出、成型、硫化六个基本工序。
★橡胶的流动性是整个加工过程中最重要的工艺特性。
★分子量较高且分布窄的橡胶,物理机械性能较好,但加工性较差。
★生胶分子量越低,生胶的可塑度越大.★生胶分子量分布越宽,在开炼机上混炼时包辊性越好。
二、橡胶配方设计(一)、生胶1.SBR是丁苯橡胶,BR是顺丁橡胶,EPDM是三元乙丙橡胶,CR是氯丁橡胶。
★合成丁苯橡胶的单体是丁二烯和苯乙烯,合成乙丙橡胶的单体是乙烯和丙烯丁腈橡胶和氟橡胶----------耐油性最好丁基橡胶----------------------气密性最好氟橡胶----------最佳耐热耐化学药品性三元乙丙橡胶---------------耐候性最好丁腈橡胶的耐油性、耐热性及机械强度随丙烯腈含量的增加而提高,而弹性和耐寒性却有所下降。
三元乙丙橡胶大分子主链不含双键,双键在侧链上。
主链为稳定的碳碳饱和键,受到老化因素的影响时,主链不易短链,因此三元乙丙橡胶具有优良的耐老化性能。
二元乙丙橡胶主链和侧链都不含双键,用过氧化物硫化后,形成稳定的碳碳饱和键,因此二元乙丙橡胶的耐老化性能比三元乙丙橡胶还好。
(二)、配合剂补强与填充剂1.炭黑的混炼性主要取决于炭黑的结构,粒径和表面化学性质。
★炭黑粒径减小,硫化胶硬度升高。
★炭黑结构越高,炭黑在胶料中的分散越容易。
增塑剂2.增塑剂应与橡胶具有良好的相溶性。
3.促进剂M可作天然胶的化学增塑剂(塑解剂)。
硫化与促进剂、活性剂4.在橡胶硫化中,凡能加快橡胶与硫化剂的交联作用,使硫化时间缩短的物质,都叫硫化促进剂。
5.按促进剂的活性可将其分为以下四类超促进剂,中超促进剂,中等促进剂,弱促进剂。
橡胶是一种材料,它在大的形变下能迅速而有力恢复其形变,能够改性;橡胶的弹性模量非常小,并具有相当好的耐气透性以及耐各种化学介质和电绝缘的性能,它可以和多种材料物质并用、共混、复合由此进行改性,以得到良好的综合性能。
橡胶的配合的主要包括五大体系,分别是生胶、硫化体系、防护体系、软化增塑体系和补强体系。
一、生胶生胶是高弹性高聚物材料,作为橡胶的母体材料或称为基体材料。
按制取来源与方法分可以分成天然橡胶和合成橡胶两大类;其中合成橡胶按照应用范围与用途分又可以分成通用橡胶、半通用橡胶、专用合成橡胶和特种橡胶。
1、天然橡胶主要应用与轮胎、胶带、胶管、电线电缆等多数橡胶制品,是应用最广的橡胶。
2、丁苯橡胶大部分的丁苯橡胶用于轮胎工业。
其他产品有汽车零件、工业制品、电线电缆包皮、胶管胶带和鞋类等。
3、氯丁橡胶氯丁橡胶可用来制造轮胎胎侧、耐热阻燃运输带、耐油及耐化学腐蚀的胶管、容器衬里、垫圈、胶辊、汽车和拖拉机配件、门窗密封胶条、止水带等。
4、丁腈橡胶丁腈橡胶有良好的耐油性有可以保持较好的橡胶特性,可以广泛的应用于耐油制品如油封、输油胶管、化工容器衬里、油箱、印刷胶辊、耐油手套、耐油减震器等;由于丁腈橡胶具有半导性,所以可用于余姚导出静电,以免引起火灾的地方,如纺织皮辊、皮圈、阻燃运输带等。
5、乙丙橡胶主要应用于要求耐老化、耐水、耐腐蚀、电气绝缘几个领域,如用于密封垫圈、屋顶单层防水卷材、桥梁减震器、高低压电缆绝缘层、汽车玻璃密封条、轮胎胎侧等。
6、丁基橡胶丁基胶具有突出的气密性和耐热性,主要用于充气轮胎的内侧和无内胎轮胎的气密层,有极好的耐化学药品腐蚀性能可用于化工耐腐蚀容器衬里等。
二、硫化体系硫化体系包括硫化剂、促进剂、活性剂、防焦剂;为橡胶大分子进行化学反应使橡胶油线性大分子交联成空间网状结构。
1、硫化体系一般有硫磺硫化体系、过氧化物硫化体系、硫载体硫化体系;2、促进剂是能缩短硫化时间,降低硫化温度,减少硫化剂用量,提高和改善硫化胶物理力学性能和化学稳定性的化学物质。
橡胶硬度配方估算及调整
橡胶硬度是衡量橡胶材料刚度的一个重要指标,它反映了橡胶材料在受力后抵抗形变的能力。
在橡胶制品的研发和生产过程中,硬度是一个需要严格控制的物理性能指标。
为了估算和调整橡胶硬度,可以采用以下配方:
1. 生胶体系:选择适当的胶种和配方比例,可以调节橡胶的硬度。
例如,增加高苯乙烯、PVC/NBR合金的用量可以提高硬度。
2. 硫化促进体系:通过增加硫化剂的用量,可以提高交链密度,从而提高硬度。
例如,在生产再生橡胶制品时,加入相应硫磺用量可在一定程度上提高橡胶制品硬度。
3. 补强填充体系:添加炭黑作为填充剂,可以显著影响橡胶制品的硬度。
通过更换炭黑品种或添加胶粉,可以在保持含胶率不变的前提下,大幅增加硬度。
4. 增塑软化体系:调整橡胶油用量,可以改变橡胶制品的软化效果,从而提高硬度。
请注意,以上配方估算及调整方法仅供参考,实际应用中还需要考虑其他因素,如温度、压力、时间等。
同时,建议在专业人士指导下进行配方调整,以确保产品质量和安全性。
第一章概论一、橡胶的作用橡胶是一种高分子弹性体,是重要的战略物资和经济物质。
橡胶与国民经济与人民生活密切相关,对我国农业、工业、国防、科学技术、交通运输、人民生活都起着极为重要的作用。
二、橡胶工业开展史人类使用橡胶已有二百多年历史。
1770年,人们开始用橡胶树上自然凝固的橡胶来制造文具橡皮等。
1823年在英国建立了世界上第一个橡胶工厂,它将橡胶溶于有机溶剂中,然后涂在布上,生产发防水胶布。
1826年汉考克〔Hancock〕发现橡胶反复通过两个转动圆筒的缝隙后,弹性下降,易于加工,从而诞生了专用橡胶设备,为现代橡胶加工方法奠定了根底。
直到1839年美国科学家固特异〔Goodyear〕发现了橡胶可用硫黄硫化方法改善其强度、弹性与耐温性后,橡胶才真正进入工业化生产阶段,开辟了橡胶制品广泛应用的前景。
1880年邓录普〔Dunlop〕发明了充气轮胎,利用橡胶制造轮胎,使橡胶制品从雨衣、雨鞋等日常用品转入以轮胎、胶带等工业用品为主,使橡胶工业突飞猛进地开展起来。
我国橡胶工业仅有几十年的历史,1917年萌芽于##,建立起第一个小型橡胶厂,以后相继在##、##、##等地建立起小型橡胶工厂。
经过几十年的开展,到今天橡胶工业已成为我国化学工业的重要组成局部,橡胶消耗量居世界首位,产品品种已达到四万种以上,是世界上橡胶制品的生产大国。
三、橡胶制品的分类橡胶制品通常分五大类,即轮胎、管带、工业用品、胶鞋与其他〔文化、医疗卫生、日常用品等〕。
四、橡胶制品生产根本工艺高弹性是橡胶特有的性质,这种高弹性增加了产品制造的困难,生胶需要经过加工,才能制成各种各样的制品。
同时,单纯的橡胶,其性能是不十分完善的,为了提高制品的使用性能,改善加工性能,节约生胶,降低本钱,必须在生胶中参加各种配合剂。
其胶料的组成,可概括五个体系。
主体材料:生胶、橡胶代用品硫化体系:硫化剂、促进剂、活性剂、防焦剂补强与填充体系:补强剂、填充剂增塑与软化体系:增塑剂、塑解剂、软化剂防护体系;化学防老剂、物理防老剂其他性能体系:着色剂、发泡剂、芳香剂、其他专用配合剂橡胶制品生产的根本工艺过程包括塑炼、混炼、压延、压出、成型、硫化六个根本工序,如下图。
电线电缆用橡皮及配料介绍在电线电缆生产中,除了胶料这个基体外,还需要有以下四大体系混合,这样炼出的橡皮才能用作线缆绝缘和护套上.★补强填充体系:碳酸钙、炭黑、白炭黑、滑石粉、钛白粉等★软化体系:DOP、石蜡、硬脂酸、凡士林、机油黄油等★硫化体系:NA22、CZ、DM、M、DCP、TMTD、VA-7、TAIC、A-172、MgO 、ZnO等★防护体系:MB、DNP、RD、防4010、Sb2O3 、十溴二苯醚等以上体系常作为单变量体系来调整配方以下是我司(SOCO)所用胶料\配料及相关性能:一.橡皮基体1、天然橡胶(NR)以橡胶烃(聚异戊二烯)为主,含少量蛋白质、水分、树脂酸、糖类和无机盐等。
弹性大,定伸强度高,抗撕裂性和电绝缘性优良,耐磨性和耐旱性良好,加工性佳,易于其它材料粘合,在综合性能方面优于多数合成橡胶。
缺点是耐氧和耐臭氧性差,容易老化变质;耐油和耐溶剂性不好,第抗酸碱的腐蚀能力低;耐热性不高。
使用温度范围:约-60℃~+80℃。
制作轮胎、胶鞋、胶管、胶带、电线电缆的绝缘层和护套以及其他通用制品。
特别适用于制造扭振消除器、发动机减震器、机器支座、橡胶-金属悬挂元件、膜片、模压制品。
2、丁苯橡胶(SBR)丁二烯和苯乙烯的共聚体。
性能接近天然橡胶,是目前产量最大的通用合成橡胶,其特点是耐磨性、耐老化和耐热性超过天然橡胶,质地也较天然橡胶均匀。
缺点是:弹性较低,抗屈挠、抗撕裂性能较差;加工性能差,特别是自粘性差、生胶强度低。
使用温度范围:约-50℃~+100℃。
主要用以代替天然橡胶制作轮胎、胶板、胶管、胶鞋及其他通用制品。
3.乙丙橡胶(EPM\\EPDM)乙烯和丙烯的共聚体,一般分为二元乙丙橡胶和三元乙丙橡胶。
特点是抗臭氧、耐紫外线、耐天候性和耐老化性优异,居通用橡胶之首。
电绝缘性、耐化学性、冲击弹性很好,耐酸碱,比重小,可进行高填充配合。
耐热可达150℃,耐极性溶剂-酮、酯等,但不耐脂肪烃和芳香烃,其他物理机械性能略次于天然橡胶而优于丁苯橡胶。
橡胶的软化与增塑体系在橡胶加工过程中一般都需要加入10-30份重量的软化剂或增塑剂,通常是一种能使胶料具有一定柔软性的低分子物质。
它们除了能增加胶料的可塑性、流动性、粘着性,便于压型和成型等工艺操作,以及有助于粉末状配合剂的分散和降低温度外,还降低了橡胶的粘流温度及玻璃化温度,提高橡胶制品的耐低温性能。
- 中国橡胶网,橡胶技术交流会,橡胶论坛,橡胶技术论坛,橡胶配方,橡胶培训班!. n# x* w8 a* i% W: a从最终效果都是增大胶料柔软性这一点来看,软化剂与增塑剂起到相同的效果,从应用范围来看,两都有很大的差别。
软化剂多来源于天然物质,常用于非极性橡胶。
而增塑剂多为合成产品主要应用于某些极性合成橡胶或塑料中,它多属于难挥发物质,在天然橡胶等通用橡胶中很少使用,因而它与软化剂有着不同极性的化学物质。
在胶料中加入化学塑解剂与加入增塑剂或软化剂作用本质上是不同的,前者是通过化学反应,使橡胶大分子断链,降低橡胶分子量,增大生胶的可塑性,塑解剂起着促进橡胶分子断裂作用,这种增塑方法称为化学增塑法。
后者是通过互相溶解或渗透,软化剂或增塑剂分子物进入到橡胶分子内,增大橡胶分子间的距离,减弱大分子间的作用力(降低粘度),使大分子链较易滑动,宏观上增大了胶料的柔软性和流动性。
因此这种增塑方法被称为物理增塑法。
+ w8 I- F( a" C. @" N" U橡胶是一种高粘度的弹性体,在低分子软化剂或增塑剂作用时,首先出现溶胀现象,然后才能互相混溶。
溶胀时低分子物质渗入到橡胶分子之间,降低了橡胶分子间相互作用力,结果降低了橡胶的玻璃化温度,改善了耐寒性。
橡胶与软化剂的相溶性与它们的内聚能密度大小可溶解度参数(S.P.)有关,两者内聚能密度差值愈小即S.P.值相近时,溶解过程则愈易自动进行,也意味着溶质与溶剂两分子结构相似,较易互相溶解。
各种物质的S.P.值与物质的某些性质,如,极性有关。
所以要使系统具有良好的互溶性,先决条件是两者的S.P.值相近,这时它们的分子间作用力相差不大,两种分子易发生扩散和渗透作用,可达到较好的溶解状态。
实践证明,当溶剂的S.P.值和高聚物的SP值之差小于1.3-1.8时就可以相互溶解,相反,当S.P.值相差悬殊就很难达到互溶的效果。
这是选择软化剂、增塑剂配合时,必须首先考滤的问题。
橡胶技术论坛,橡胶技术咨询,橡胶技术交流会,橡胶助剂,橡胶期货,橡胶制品,橡胶培训,天然橡胶,特种橡胶,橡胶人才网,橡胶配方,中国橡胶$ h6 N% k- x+ |7 W5 d 高聚物在溶解时,溶剂的性质对高聚物的溶解能力有很大的影响。
从高聚物和溶济的极性大小亦可判断两者之间的溶解能力。
一般极性大的溶质易溶于极性大的溶剂,极性小的溶质易溶于极性小的溶剂之中。
这一原则在一定程度上对选用高聚物的溶剂有指导意义。
非极性橡胶的软化作用,首先是软化剂渗入橡胶分子之间,把大分子链推开,降低大分子间作用力。
软化剂用量越多,它在橡胶大分子间的融离作用越强,大分子的链的活动性就越大,从而提高了大分子链的柔顺性,降低了玻离化温度,也即提高了橡胶的耐寒性。
其次,由于软化剂稀释作用,使橡胶的粘度大地降低,同样获得软化效果,起到了屏蔽和隔离作用。
由于极性橡胶分子结构中含有极性基团,可提高大分子链的作用力,结果降低了大分子链的柔顺性。
但当加入极性增塑剂时,增塑剂分子的极性部份定向排列于大分子的极性部位,对大分子链起着包围融离作用,因而增加入了大分子链的距离,也增大了分子链的运动性,提高了橡胶的塑性,极性增塑剂的增塑机理主要不是填充融离作用,而是它的极性基与橡胶分子的极性基相互作用,所以增塑效果与增塑剂的克分子数成正比例。
极性增塑剂分子中的极性部分和非极性部分对增塑效果匀起着作用。
极性基使增塑和被增塑两种物质能很好地互溶,而非极性基把橡胶分子极性基屏蔽起来,削弱了橡胶分子间的内聚力,阻碍了大分子的敛集。
如增塑剂选用不当,以致增塑剂的极性与橡胶极性相差很大,则增塑效果不明显,而经过一段时间后,而增塑剂会从内部渗到制品表面,结果不但不能改善硫化胶性能,反而加速了制品的硬化,使制品过早地失去使用价值。
橡胶技术论坛,橡胶技术咨询,橡胶技术交流会,橡胶助剂,橡胶期货,橡胶制品,橡胶培训,天然橡胶,特种橡胶,橡胶人才网,橡胶配方,中国橡胶0 [9 P2 N( \1 m& Y* U溶剂化作用也影响软化增塑效果。
溶剂化是指溶剂分子在大分子链段上发生较强的相互作用,即把大分子链段分离的作用。
它相当于链段间产生了相斥力。
如果软化剂能够与橡胶分子产生良好的溶剂化作用的话,这种软化剂称为溶剂型软化剂。
若软化剂只能机械地均匀分散在橡胶中,靠稀释作用使橡胶软化的话,这种软化剂称非溶剂型软化剂。
当过量使用非溶剂型软化剂时,软化剂会喷出橡胶制品表面。
软化剂的类别取决于它们本身的化学结构。
如石油系统软化剂的组成,以芳香烃为主时,有较高的不饱和度,多属溶剂型软化剂。
若以石蜡烃为主时,因石蜡有较高饱和度,则为非溶剂型软化剂。
芳香烃软化剂的极性与大部分橡胶极性相近,所以具有良好的互溶性。
石腊烃软化剂与橡胶的极性相差较大,所以软化作用不够理想。
软化剂对胶料的硫化及硫化胶的老化过程均有影响,它与胶料中的各种成份起着复杂的反应,如,聚合、缩合、氧化、磺化等,可见软化剂在橡胶中起着很复杂的化学反应。
- 中国橡胶网,橡胶技术交流会,橡胶论坛,橡胶技术论坛,橡胶配方,橡胶培训班!5 N1 X3 U" [9 U% a1 d石油软化剂品种繁多分为操作油、重油、石腊、凡士林、沥青、及石油树脂等。
中国橡胶技术网为广大从事橡胶行业的朋友提供橡胶技术,、橡胶技术论坛、橡胶价格信息、橡胶培训学习、橡胶技术交流会、橡胶交易的平台。
我们努力打造一个橡胶人最喜爱的橡胶技术交流平台。
: S/ P. J7 v. g: N8 | B操作油是是石油的高沸点馏分,即汽油、燃料被蒸出后所剩下的部分。
这些烃类可分为链烷烃(石腊烃)、环烷烃、、芳香烃,此外还含有烯烃、少量杂环类混合物。
在橡胶工业中用量在5份左右时称操作油,用量在15-20份时称软化油,用量在20—50份时称填充油。
为了避免因充油损害橡胶物性,在橡胶合成时加入大量油液使橡胶的门尼粘度从120—130降到50-60的范围。
中国橡胶技术网为广大从事橡胶行业的朋友提供橡胶技术,、橡胶技术论坛、橡胶价格信息、橡胶培训学习、橡胶技术交流会、橡胶交易的平台。
我们努力打造一个橡胶人最喜爱的橡胶技术交流平台。
5 o2 T* q% g( S5 \3 [- l; c库尔茨分类法分为,链烷烃的碳原子C占分子中总碳原子数50%以上,称链烷烃油环烷烃的碳原子C占分子中总碳原子数30—50%以上,称环烷烃油芳香烃的碳原子C占分子中总碳原子数35% 以上,称芳香烃油这种分类法引入一个比重常数(V.G.C.)的物理量,石蜡烃油为V.G.C.为0.79—0.85。
环琓油.V.G.C.为0.85-0.90。
芳烃油为0.9以上。
石腊烃油主要成分是石腊烃,烯烃具有活性双键,不宜作操作油或填充油,所以含量越低越好。
环烷油主要成分是环烷烃,橡胶工业的环烷油通常为环戊烷和环已烷的混合物。
- 中国橡胶网,橡胶技术交流会,橡胶论坛,橡胶技术论坛,橡胶配方,橡胶培训班!" S) a1 c7 [1 L% b% M* w' M3 D芳烃油主要成分是芳香烃,橡胶工业中应用的油液含的60-70%的芳烃化合物,由于芳香烃油光稳定性差,色泽较深,不适于制作浅色制品。
按罗斯特莱分类法,按油液的化学性质分类为,1.沥青质,是石油系增塑剂中不溶于正戊烷的含少量S.O.N的碳氢化合物。
它是原油蒸馏的残渣成分,沥青含量高,会使胶料变硬,胶料不易分散,并有污染性。
2.氮碱,除去历青责后用85%冷硫酸处理的不溶于正戊烷含有吡啶、硫醇、羧酸、醌等极性化合物的部分。
这类物质对胶料有软化和增粘作用,并对硫化有弱促进作用,硫化曲线平坦,但有污染性。
中国橡胶技术网为广大从事橡胶行业的朋友提供橡胶技术,、橡胶技术论坛、橡胶价格信息、橡胶培训学习、橡胶技术交流会、橡胶交易的平台。
我们努力打造一个橡胶人最喜爱的橡胶技术交流平台。
" U4 w X; _( |8 M3.第一亲酸物,是石油增塑剂中与97%冷硫酸作用不溶于正戊烷的部份。
它是增塑剂在硫化时消耗硫黄的重要部分。
该成分与氮碱、第二亲酸物一样,又是决定增塑剂与极性橡胶和不饱和橡胶的重要成分含量在15%以下没有污染,有延迟硫化现象,亲酸物超过20%后会有白色制品在日光下变色的情况。
4.第二亲酸物,是第一亲酸物的液体残留物,用发烟硫酸处理得到的不溶于正戊烷的部分。
其不包和度比第一亲酸物小,与所有橡胶的相溶性好,没有污染性,对硫化无影响。
橡胶技术论坛,橡胶技术咨询,橡胶技术交流会,橡胶助剂,橡胶期货,橡胶制品,橡胶培训,天然橡胶,特种橡胶,橡胶人才网,橡胶配方,中国橡胶/ ]! b0 m Q* c0 F2 f% [5.饱和烃,(烷烃、环烷烃),亦称石腊烃。
石油系增剂中不与发烟硫酸作用的饱和烃部份,其中主要是环状饱和烃,除了与丁基胶外,与其它橡胶相溶性都低,但在天然、丁苯、氯丁橡胶中的的利于胶料的混练压出,对粘着性有效地抑制作用。
. U/ g8 D! B) F+ p9 ~' {# X+ y操作油的性能与特性,1.粘度,操作油的粘度与分子量有关,分子量很高时,油液呈粘稠状态。
它对胶料的加工性能和硫化胶的物性都有影响。
使用高粘度油比低粘度油的抗张强度和伸长率大,但定伸强度和弹性小。
填充高粘度油的硫化胶其低温特性不好,变色性小。
相反采用低粘度操作油,虽润滑作用好,耐寒性提高,但加工时发挥损失大,且易变色。
闪点低于180度者挥发损失更大,最好选用分子量325以上的操作油。
; h. g' X! s. Y4 n2.石油软化剂的主要成分为烃类化合物,其中所含芳香烃类多少决定它们在与橡胶混溶性的大小,石腊和凡士林几乎不含芳香烃,主要是饱和烃类这种稳定极不活泼的结构,使得它们与橡胶的混溶性最差,所以易呈固相从橡胶中分离出来,喷出于表面。
还有些芳烃类软化剂,因分子结构内含有双健和极性基团(如硫和氮),从而增加了与橡胶的亲和性,总之,凡芳香烃含量大及不饱和度高时,与橡胶的混溶性就好,对填料的粘着性、湿润性高。
3.苯胺点,苯胺点是在试管内先加入5—10毫升苯胺后再加入同量的试料,然而下部加热,直至出现透明均匀的溶液。
此时的温度就是苯胺点。
芳香烃类软化剂的分子结构与苯胺最接近,易溶于其中,故苯胺点低。
苯胺点低的油类与橡胶有较好的互溶性,大量加入无喷出现象。
相反,苯胺点高的油类,需在高温时才与生胶互溶,这样温度降低时就易喷出表面。