控制工程基础—第7章控制系统的误差分析与计算
- 格式:ppt
- 大小:1.30 MB
- 文档页数:52
第7章习题答案7-1计算机数字控制系统的基本结构组成图,由数字控制器、检洲装置、执行器,被控对象、A /D 和D/A 等组成。
数字控制器由数字计算机实现,一般包括模数(A/D)转换器、数/模(D/A)转换器和控制算法等,整个系统的操作完全由计算机内的时钟控制,把实测信号转换成数字形式的时刻称为采样时刻,两次相邻采样之间的时间称为采样周期,记作T 。
数字计算机在对系统进行实时控制时,每隔个采样周期T 对系统进行一次采样修正,在每个采样周期中,控制器要完成对于连续信号的采样编码(即A/D 过程)和按控制律进行的数码运算,然后将计算结果由输出寄存器经解码网络将数码转换成连续信号(即D/A 过程)。
因此,A/D 转换器和D/A 转换器是计算机控制系统中的两个特殊环节.7-2信号采样的数学表达式*()()()n e t e nT t nT δ∞==-∑ 拉氏变换为0*0[()]()()()nTs st nTsnTs n L t nT e t e dt e E s e nT e δδ∞---∞-=-===⎰∑设计离散系统时,香农采样定理是必须严格遵守的一条准则,因为它指明了从采 信号中不失真地复现原连续信号理论上所必需的最小采样周期T 。
香农采样定理指出:如果采样器的输人信号()e t 具有有限带宽,并且有直到0ω的领率分量,则使信号()e t 完满地从采祥信号*()e t 中恢复过来的采样周期T ,应满足下列条件, 022T πω≤ 采样定理表达式与02s ωω≥是等价的。
在满足香农采样定理的条件下,要想不失真地复现采样器的输入信号,需要采用理想低通滤波器。
应当指出,香农采样定理只是给出了一个选择采样周期T 或采样频率s f 的指导原则,它给出的是由采样脉冲序列无失真地再现原连续信号所允许的最大采样周期,或最低采样领率。
在控制工程中,一般总是取02s ωω>,而不取02s ωω=的情形。
7-3(1)查表可知,3()E z z -=(2)查表可知,2sin10()2cos101z T E z z z T =-+ (3)34()1t z z E z z z e-=+-- (4)查表可知,2()(1)Tz E z z =- (5)12201()1..........11n n n n n E z a z az a z a z z az z a ∞----=-==+++++==--∑(6)部分分式法求得2222221/1/1/()111()(1)1aTa a a E s s s s a Tz z z E z a z a z a z e -=-++=-+--- (7)查表可知,(1)()(1)()aT aT e z E z z z e ---=-- (8)22211()(1)()1(1)(1)E s s s z Tz z z T E z z z z =++-=+=---将原函数表达式分解为再对各个部分查表,得7-4(1)211lim ()lim(1)()lim(1)0(0.8)(0.1)n z z z e nT z E z z z z →∞→→=-=-=-- (2)211lim ()lim(1)()lim(1)(1)n z z Tz e nT z E z z z →∞→→=-=-=∞- (3)121lim(1)()4lim(1)4(1)(2)z z z X z z z z z →→--=---*0101010(1)()(1)(2)(2)(1)()10*(21)()10(21)()n n n z z z E z z z z z e nT e t t nT δ∞===-----=-=--∑1212212345*033(2)()122135791113......()(23)()n z z z E z z z z z z z z z z e t n t nT δ--------∞=-+-==-+-+=-------=-+-∑(3)查表可知,()0.2t Te t =7-67-725252525252255,2525()()2510110110102532353310()()()3()()T T T TT T T T T T z z Z Z s z e s z ez z a G z z e z e z z Z Z s s s s z e z e z e e b G z z e z e ----------⎡⎤⎡⎤==⎢⎥⎢⎥+-+-⎣⎦⎣⎦=--⎡⎤⎡⎤=-=-⎢⎥⎢⎥++++--⎣⎦⎣⎦-=--,,(1) 由特征方程得到1212z z =-=-,所以系统不稳定。
实验七 控制系统的稳态误差分析一、 实验目的1、 研究系统在单位阶跃输入下的稳态误差变化。
2、 掌握系统型次及开环增益对稳态误差的影响。
3、 在Multisim 仿真平台上建立二阶电路,通过示波器观测控制系统稳态误差变化情况。
二、实验原理及内容构成下述环节的模拟线路,分析该实验系统的型次和不同增益时对稳态误差的影响。
图1 稳态误差分析电路图该电路图中选取信号为直流电压源,电阻和电容选用现实原件,运放和电位器选用虚拟原件。
系统的开环传递函数为:)103.0)(102.0(600)()(7++=s s R s H s G其中:R 7为电位器从系统的开环传递函数知,本系统属于0型系统,并且开环增益7600R K =,则系统的稳态误差K Ro e ss +=1。
三、实验步骤1、将开关J2断开,电位器R 7调到100K Ω进行实验,观察示波器中响应曲线稳态误差的情况(见图2)。
2、将开关J2闭合,调节电位器的数值(利用A 键),观测稳态误差的大小变化以及收敛的速度。
(1)当电位器R 7为200K Ω时,输出波形见图3(2)当电位器R 7为100K Ω时,输出波形见图4(3)当电位器R 7为50K Ω时,输出波形见图5图2 J2断开时的稳态误差分析曲线图3 R7=200KΩ时误差分析曲线图4 R7=100KΩ时误差分析曲线实验八 一阶系统频率特性测量一、实验目的1、加深了解系统及元件频率特性的物理概念。
2、掌握系统及元件频率特性的测量方法,根据所测得的频率特性做出波特图。
二、实验内容构成下述环节的模拟线路,使用仿真软件中的波特图一加深对惯性环节的频率特性的理解,通过测量值的变化规律得到系统的幅频特性和相频特性。
1、 测量原理若输入信号11()sin m u t U t ω=,则在稳态时,其输出信号为22()sin()m u t U t ωϕ=+,改变输入信号的角频率值ω,便可以测得两组随ω变化的值----12m mu u 和ϕ,进而可以通过测量值的变化规律得到系统的幅频特性和相频特性。
第一章概论本章要求学生了解控制系统的基本概念、研究对象及任务,了解系统的信息传递、反馈和反馈控制的概念及控制系统的分类,开环控制与闭环控制的区别;闭环控制系统的基本原理和组成环节。
学会将简单系统原理图抽象成职能方块图。
例1 例图1-1a 为晶体管直流稳压电源电路图。
试画出其系统方块图。
例图1-1a 晶体管稳压电源电路图解:在抽象出闭环系统方块图时,首先要抓住比较点,搞清比较的是什么量;对于恒值系统,要明确基准是什么量;还应当清楚输入和输出量是什么。
对于本题,可画出方块图如例图1-1b。
例图1-1b 晶体管稳压电源方块图本题直流稳压电源的基准是稳压管的电压,输出电压通过R和4R分压后与稳压管的电3压U比较,如果输出电压偏高,则经3R和4R分压后电压也偏高,使与之相连的晶体管基极w电流增大,集电极电流随之增大,降在R两端的电压也相应增加,于是输出电压相应减小。
c反之,如果输出电压偏低,则通过类似的过程使输出电压增大,以达到稳压的作用。
例2 例图1-2a为一种简单液压系统工作原理图。
其中,X为输入位移,Y为输出位移,试画出该系统的职能方块图。
解:该系统是一种阀控液压油缸。
当阀向左移动时,高压油从左端进入动力油缸,推动动力活塞向右移动;当阀向右移动时,高压油则从右端进入动力油缸,推动动力活塞向左移动;当阀的位置居中时,动力活塞也就停止移动。
因此,阀的位移,即B点的位移是该系统的比较点。
当X向左时,B点亦向左,而高压油使Y向右,将B点拉回到原来的中点,堵住了高压油,Y的运动也随之停下;当X向右时,其运动完全类似,只是运动方向相反。
由此可画出如例图1-2b的职能方块图。
例图1-2a 简单液压系统例图1-2b 职能方块图1.在给出的几种答案里,选择出正确的答案。
(1)以同等精度元件组成的开环系统和闭环系统,其精度比较为_______ (A )开环高; (B )闭环高; (C )相差不多; (D )一样高。
(2)系统的输出信号对控制作用的影响 (A )开环有; (B )闭环有; (C )都没有; (D )都有。
控制系统的误差分析与校正控制系统是现代工业及其他领域中广泛使用的一种技术手段,用于实现精确控制和自动化。
然而,在实际应用中,由于各种因素的存在,控制系统可能会出现误差。
为了保证系统的稳定性和准确性,在误差分析的基础上进行校正是非常重要的。
一、误差分析误差是指实际输出值与期望输出值之间的差异。
在控制系统中,误差主要来自于三个方面:传感器的测量误差、执行器的执行误差以及控制器的计算误差。
1. 传感器的测量误差传感器是控制系统中用来感知被控对象状态的关键组件,其测量精度直接影响到控制系统的准确性。
然而,由于传感器本身的特性以及外部环境的干扰,传感器输出的数据可能会存在误差。
例如,温度传感器受到温度波动、噪声等因素的影响,导致温度测量结果偏离实际值。
2. 执行器的执行误差执行器是控制系统中用于实现对被控对象操作的部件,例如,电机、阀门等。
执行器的执行误差主要来自于传动装置的摩擦、机械杂质、电力波动等因素,这些因素都可能导致输出的力、位移或流量与控制要求有所偏差。
控制器通常采用数字计算方法来实现控制算法。
由于计算机性能和精度的限制,控制器在进行计算时可能会产生一定的计算误差。
这些误差可能会对控制系统的性能产生一定的影响。
二、误差校正误差校正的目的是消除或减小误差,使得控制系统的输出能够更加接近期望值。
根据误差的来源和特点,误差校正可以采取不同的方法。
1. 传感器的误差校正传感器的误差校正可以通过以下方法实现:(1) 校准:通过与已知准确值进行比较来确定传感器的误差,并进行相应的修正。
(2) 温补:对于温度传感器等受环境因素影响较大的测量装置,可以通过在系统中添加温度补偿模块来校正误差。
2. 执行器的误差校正执行器的误差校正可以通过以下方法实现:(1) 反馈控制:引入反馈环路,通过测量执行器输出的实际值,并与期望值进行比较,根据差异来调整控制信号,使得执行器的输出更加接近期望值。
(2) 预补偿:通过预先确定执行器的误差特性,并在控制信号中进行修正,从而减小执行误差。
机械控制工程基础答案提示第二章 系统的数学模型2-1 试求如图2-35所示机械系统的作用力)(t F 与位移)(t y 之间微分方程和传递函数。
)(t F )(t y f图2-35 题2-1图解:依题意:()()()()22d y t dy t a m F t f ky t dt b dt ⋅=⋅-⋅-故 ()()()()t F b at ky dt t dy f dt t y d m ⋅=+⋅+22 传递函数: ()()()kfs m s b as F s Y s G ++==22-2 对于如图2-36所示系统,试求出作用力F 1(t )到位移x 2(t )的传递函数。
其中,f 为粘性阻尼系数。
F 2(t )到位移x 1(t )的传递函数又是什么?m 2m 1k 1 f k 2F 1(t )F 2(t ) x 2(t )x 1(t )图2-36 题2-2图解:依题意:对1m :()()()()212121111dt t x d m dt t dx dtt dx f t x k F =⎥⎦⎤⎢⎣⎡---对两边拉氏变换:()()()[]()s X s m s sX s sX f x k s F 12121111=---①对2m :()()()()()222222212dt t x d m t x k dt t dx dt t dx f t F =-⎥⎦⎤⎢⎣⎡-+ 对两边拉氏变换:()()()[]()()s X s m s x k s sx s sx f s F 22222212=--+②故: ()()()()()()()()⎩⎨⎧=+++-=-++S F s x k fs s m s fsx s F s fsx s x k fs s m 222221121121 故得:()()()()()()()()()()()()()()⎪⎪⎩⎪⎪⎨⎧-+++++++=-+++++++⋅=22221212212122222121222211fs k fs s m k fs s m k fs s m s F s fsF s x fs k fs s m k fs s m s fsF k fs s m s F s x 故求()t F 1到()t x 2的传递函数令:()02=s F()()()()()()()()()2122211122432121212211212x s fsG s F s m s fs k m s fs k fs fsm m s f m m s m k m k s f k k s k k ==++++-=+++++++求()t F 2到()t x 1的传递函数 令:()01=s F()()()()()()()()()1122221122432121212211212x s fsG s F s m s fs k m s fs k fs fsm m s f m m s m k m k s f k k s k k ==++++-=+++++++2-3 试求图2-37所示无源网络传递函数。
控制系统的误差分析和计算控制系统是一种能够根据输入信号自动调整输出信号以达到特定目标的系统。
在实际应用中,控制系统通常会存在误差,这是由于系统本身的局限性或者外部干扰所导致的。
因此,误差分析和计算是控制系统设计中非常重要的一个方面。
误差的分类在控制系统中,可以将误差分为静态误差和动态误差两类。
静态误差是指系统在达到稳定状态后与期望值之间的偏差,而动态误差则是指系统在过渡过程中可能出现的偏差。
静态误差静态误差可以进一步分为系统固有误差和外部扰动引起的误差两类。
1.系统固有误差:这种误差是由于系统本身的局限性造成的。
常见的系统固有误差有零点偏移和增益误差。
零点偏移是指当输入信号为零时,系统的输出不为零,而增益误差则是指系统的输出与输入的比例不匹配。
2.外部扰动引起的误差:除了系统固有误差外,控制系统还会受到外部扰动的影响而产生误差。
这些扰动可以是环境变化、传感器误差或者外力干扰等。
动态误差动态误差是指系统在过渡过程中与期望值之间的偏差。
常见的动态误差有超调、震荡和稳定时间等。
1.超调:当系统在响应过程中超过期望值时,会产生超调误差。
一般来说,超调误差越小,系统的性能越好。
2.震荡:当系统在过渡过程中出现频繁的来回振荡时,会产生震荡误差。
震荡误差会导致系统不稳定,甚至无法收敛到期望值。
3.稳定时间:稳定时间是指系统从初始状态到达稳定状态所需的时间。
稳定时间越小,系统的响应速度越快。
误差计算方法误差计算是评估控制系统性能的重要指标之一。
常用的误差计算方法包括绝对误差、相对误差和均方根误差等。
绝对误差绝对误差是指系统输出与期望值之间的差值的绝对值。
可以用以下公式表示:绝对误差 = |期望值 - 系统输出|绝对误差可以直观地反映系统的偏差情况,但它没有考虑到系统和期望值的尺度差异。
相对误差相对误差是指绝对误差与期望值之间的比值。
可以用以下公式表示:相对误差 = (绝对误差 / 期望值) * 100%相对误差可以解决绝对误差忽略尺度差异的问题,但它对于系统输出为零的情况会出现无穷大的情况。
《控制工程基础与信号处理》教学大纲课程代码:020031018课程英文名称:Basis of Control Engineering& Signal Processing课程总学时:48 讲课:44 实验:4 上机:0适用专业:车辆工程、能源与动力工程、装甲车辆工程大纲编写(修订)时间:2017.5一、大纲使用说明(一)课程的地位及教学目标《控制工程基础与信号处理》是工科类各相关专业的一门必修专业基础课,是跨“控制理论”、“测试技术与信号处理”的交叉学科,主要研究控制理论基本思想、信号基础知识、测试系统特性及评价方法等内容。
同时该课程也是汽车实验学等的先修课程。
为学生进一步学习、研究和处理机械工程技术问题打下基础。
通过本课程的学习,学生将达到以下要求:1.掌握进行控制工程与工程测试所需要的理论知识,培训学生应用基础知识的技能,开阔学生的视野,提高学生的工程实践能力;2.掌握测控技术的基本知识和技能,使学生建构起“系统与信号一体”的概念。
在思维上把系统与信号进行捆绑,掌握测控系统分析和设计的基本方法,能够合理选用测控方法和装置构建测控系统,能从理论上对其动态性能和稳态精度进行定性分析和定量计算;3. 了解测控技术的新发展。
(二)知识、能力及技能方面的基本要求通过本门课程的学习,学生能够掌握好经典控制理论中的基本原理及运用该原理分析、解决问题的方法,掌握各种信号频谱的建立和描述方法,获取几种常见传感器应用方面的基本技能。
同时达到对机电系统动态特性分析能力的培养,同时也要注意实验动手能力、创新能力的培养。
(三)实施说明1.教学方法:课堂讲授中要重点对基本概念、基本方法和解题思路的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;增加讨论课,调动学生学习的主观能动性;注意培养学生将所学理论知识应用于实践的能力。
2.教学手段:本课程属于专业基础课,在课堂教学中采用可在适当结合电子教案、CAI 课件及多媒体教学系统等先进教学手段作为辅助,以确保在有限的学时内,全面、高质量地完成课程教学任务。
控制系统误差分析及其算法及应用第一章概述控制系统误差是指所设计的系统输出值与输入值之间的差异。
误差分析是指对控制系统误差进行分析,以便找出误差来源,并提出改进控制系统的策略和方法。
本文将介绍控制系统误差分析的基本原理和算法,并探讨误差分析在控制系统中的应用。
第二章控制系统误差来源控制系统误差的来源有两种:系统固有误差和外部扰动。
系统固有误差是控制系统设计中的本质问题。
例如,比例控制器的响应速度较慢、积分控制器有积分误差等。
这些问题可能会导致系统出现稳态误差。
外部扰动是指系统受到的外部干扰,例如温度变化、压力变化、电磁干扰等。
这些因素会导致系统输出值与输入值之间出现偏差。
第三章调节控制器算法最常见的控制器类型是比例积分(PI)控制器。
PI控制器能够帮助系统消除稳态误差,并增加系统的响应速度。
PI控制器的算法基于积分饱和原理,即当积分误差超过一定值时,积分项将不再累加。
这有助于避免过度响应。
PI控制器还可以通过调整比例和积分项的系数来进一步优化系统响应。
第四章滤波算法滤波算法可以帮助消除由外部扰动引起的误差。
其中,低通滤波器可以帮助去除高频噪声。
高通滤波器具有相反的作用,可以去除低频噪声。
滤波器还可以用于平滑系统响应,以防止出现过度响应或噪声。
第五章预测控制算法预测控制算法可以帮助控制系统在未来一段时间内的状态进行预测,并采取相应的控制策略。
其中,支持向量机(SVM)算法可以用于预测非线性系统的响应,可以帮助控制系统消除非线性误差。
适应性控制算法可以根据系统输入和输出的实时数据来调整算法参数,以实现更好的控制效果。
第六章控制系统误差分析应用误差分析在控制系统中具有广泛应用。
其中,误差分析可以用于诊断控制系统在稳态下的性能,并帮助优化系统工作。
误差分析还可以用于诊断控制系统在动态条件下的性能,并帮助优化系统响应。
此外,误差分析还可以用于帮助控制系统诊断故障,以实现更可靠的操作。
第七章总结控制系统误差是控制系统设计中的重要问题。