从算式到方程-(2)
- 格式:pptx
- 大小:432.58 KB
- 文档页数:15
3.1一元一次方程一、教材分析1.教学目标、重点、难点.教学目标:(1)了解方程的解的概念.(2)体验对方程解的估算,会检验一个数是不是某个一元方程的解.(3)渗透对应思想.重点:方程解的意义,会检验一个数是不是一个一元方程的解.难点:方程解的意义,会检验一个数是不是一个一元方程的解.2.例、习题的意图本节课重点是了解方程的解的意义.通过实际问题中对所列方程解的估算,了解什么是方程的解以及由于估算遇到了困难,产生寻求方程解法的需求,为后面的学习做好铺垫.例1是通过实际问题列出方程,根据(1)题未知数x的取值范围以及方程解的概念逐一代入方程来寻求方程的解,使学生亲身体验什么是方程的解,也为例2检验一个数值是不是方程的解做好铺垫.对第(2)、(3)题再采用(1)题方法寻求方程的解已不容易,这又为后边学习解方程奠定了积极的心理储备.例2是根据方程的解的意义,使学生会检验一个数值是不是方程的解,这一点应切实使学生掌握.3.认知难点与突破方法难点是方程解的意义和检验一个数是不是一个一元方程的解.例1起着承上启下的作用,在估算方程解的过程中,理解方程解的意义,学会检验一个数是不是一个一元方程的解.抓住关键字“等号左右两边相等”,检验一个数是不是一个一元方程的解,要分别计算方程的左右两边,若其值相等,则这个未知数是方程的解,若不相等,则不是方程的解.二、新课引入复习:1.什么是一元一次方程?2.练习:当12y=-,0y=,5y=时,求式子31y-的值.答案:25-,1-,14通过练习2强调求式子的值的一般步骤,其中易错易混的地方,如代入的值是负数,应加上括号,数与数相乘时应恢复乘号,运算关系不能混淆等.三、例题讲解例1 教材P69 中 例1分析:三个题目中的相等关系分别是:(1)计算机已使用的时间+继续使用的时间=规定的检修时间.(2)2(长+宽)=周长.(3)女生人数—男生人数=80.问题:列方程是解决问题的重要方法,利用所列的方程我们可以得出未知数的值,你能估算方程17001502450x +=中的x 的值吗分析:方程中等号左边有未知数x ,估算的x 值代入方程应使等号左边1700150x +的值等于等号右边的值2450,这样的x 值才适合方程. 由于x 表示月份,是正整数,不妨让1x =,2x =,……分别代入方程算一算.由计算结果可以看到,每一个x 的允许值都使代数式1700150x +有一个确定的数值,为方便起见,可以列一个表格:等号的左边: 1700150170015052450x +=+⨯=. 等号的右边:2450. 由此得到方程的左边=右边,就说5x =叫做方程170015024x +=的解,也就是方程17001502450x +=中,未知数x 的值为5. 所以,方程的解就是5x =.教材P71中的小云朵,可以多选几个情况来说明,以加强对方程解得意义的理解. 从表中你还能发现哪个方程的解?(引导学生得出)如方程17001501850x +=的解是1x =;方程17001502600x +=的解是6x =等等,使学生进一步体会方程解的概念.方程解的意义:使方程中等号左右两边相等的未知数的值,叫做方程的解.教材P71的思考:你能估算方程()2 1.524x x +=和方程()0.5210.5280x x --=的解吗?通过估算这两个方程的解,你有什么想法?由于这两个方程估算其解有一定的困难,数不整齐,或方程比较复杂,出现矛盾冲突,引导学生得出:学习解方程的方法十分必要.怎样检验一个数是否是方程的解呢?例2(补充题) 检验下列各数是不是方程3210x x +=-的解:(1)2x =;(2)3x =-.分析:要检验某一个数是不是方程的解,根据方程解的意义,应把这个数分别代入方程的左右两边,能使方程左右两边的值相等的未知数的值才是方程的解.解:(1)把2x =分别代入方程的左边和右边,得左边=3×2+2=8,右边=10-2=8.∵ 左边=右边,∴2x =是方程3210x x +=-的解;(2)把3x =-分别代入方程的左边和右边,得左边=3×(-3)+2=-7,右边=10-(-3)=13.∵ 左边≠右边,∴3x =-不是方程3210x x +=-的解.注意:强调检验的格式,分方程中等号的左边和右边,若把3x =-代入方程,不能左边和右边同时代入,写成()()332103-+=--,92103-+=+, 注意提醒学生在代入和计算中易出现的错误713-≠.四、随堂练习1. (补充题)选择题: 下列方程的解为13x =的是( ). A .621x -+= B .343x -+= C .211233x x +=- D .11232x += 2.(补充题)检验下列各数是不是方程()326x x -+=的解:(1)3x =;(2)6x =-.答案:1. B 2.(1)3x =不是方程的解;(2)6x =-是方程的解.五、课后练习1.(补充题)选择题:(1)下列方程中,以1为解的方程是( )A . 11x -=B . 2143y y -=-C . ()314x --=D . 524t t -=-(2)下面有( )个方程的解为3x =-.①30x -=;②39x =-;③()2551x x -=-;④41x -=A . 1B . 2C . 3D . 4 2.(补充题)检验下列各小题括号里的数是不是它前面的方程的解:(1)329x x -=+ (2x =,2x =-)(2)121146x x +--= (7x =-,1x =- 答案:1.(1)B ;(2)B . 2(1)2x =-是方程的解;(2)7x =-是方程的解.3.教材练习1、2、3.。
第1篇一、活动背景数学是一门逻辑严谨、抽象思维的学科,从算式到方程的学习过程是学生数学思维从具体到抽象、从数量关系到关系式的转变。
为了提高学生对方程的理解和应用能力,本教研活动旨在探讨如何引导学生从算式到方程的过渡,提升学生的数学思维能力。
二、活动目标1. 使教师了解从算式到方程的教学策略,提高教学效果。
2. 培养学生的抽象思维能力,提高学生的数学素养。
3. 促进教师之间的交流与合作,共同探讨数学教学中的问题。
三、活动内容1. 算式与方程的关系(1)算式与方程的区别与联系算式是数学表达式的基本形式,用于表示数量关系。
方程则是含有未知数的等式,它表示未知数与已知数之间的数量关系。
算式是方程的基础,方程是算式的升华。
(2)算式到方程的过渡策略教师在教学过程中,应注重引导学生从算式到方程的过渡,具体策略如下:a. 从具体的实例出发,让学生感受未知数的存在。
b. 通过实际问题引入方程,让学生体会方程的应用价值。
c. 利用图形、表格等直观工具,帮助学生理解方程的意义。
2. 方程的教学方法(1)概念教学教师在讲解方程的概念时,要注重引导学生从算式到方程的思维转变,让学生理解方程的本质。
(2)解题教学教师在解题教学中,要注重培养学生的逻辑思维能力和运算能力,让学生掌握方程的解法。
(3)应用教学教师在应用教学中,要注重引导学生将方程应用于实际问题,提高学生的数学素养。
3. 案例分析(1)案例一:一元一次方程的应用问题:小明有10个苹果,给了小红5个,还剩几个?分析:这是一个一元一次方程的应用问题。
设小明原来有x个苹果,根据题意可列出方程x - 5 = 10。
解方程得到x = 15,即小明原来有15个苹果。
(2)案例二:二元一次方程组的应用问题:小明和小红一共有15元,如果小明买2元一支的铅笔,小红买3元一支的铅笔,他们各买几支?分析:这是一个二元一次方程组的应用问题。
设小明买了x支铅笔,小红买了y支铅笔,根据题意可列出方程组:2x + 3y = 15x + y = 15解方程组得到x = 6,y = 9,即小明买了6支铅笔,小红买了9支铅笔。
从算式到方程(2)一、内容和内容解析1.内容等式的性质以及利用等式的性质解方程.2.内容解析本节课在前面学习了有理数的加、减、乘、除、乘方及其综合应用、方程及方程的解的概念、利用估算的方法确定简单的一元一次方程的解的基础之上学习的.它是进一步研究一元一次方程的具体解法的依据.本节课在数学教学中起着承上启下的作用.方程是含有未知数的等式,解方程就是求出方程中未知数的值,解方程需要相应的理论基础说明解法的合理性.本章不涉及方程的同解原理,而以等式的性质作为解方程的依据.本节课通过观察、归纳引出等式的两条性质,并利用它们讨论一些比较简单的一元一次方程的解法,为后面几节进一步讨论比较复杂的一元一次方程的解法作准备.由以上分析,可以确定本节课的教学重点是:理解等式的两条性质并能运用它们解简单的一元一次方程.二、目标和目标解析1.目标(1)了解等式的概念和等式的两条性质并能运用这两条性质解简单的一元一次方程;(2)经历等式的两条性质的探究过程,培养观察、归纳的能力;(3)在运用等式的性质把简单的一元一次方程化成x=a的形式的过程中,体会化归的数学思想.2.目标解析达成目标(1)的标志是:使学生知道等式是用等号表示相等关系的式子;理解等式的两边都加上或减去同一个数或式子,都乘或除以(除数不为0)同一个数,结果仍相等的性质;能运用等式的两条性质解一些比较简单的一元一次方程;达成目标(2)的标志是:使学生经历通过观察、归纳得出等式的两条性质的探究过程,体会等式的两条性质的合理性,培养学生观察、归纳的能力;达成目标(3)的标志是:使学生在运用等式的两条性质解比较简单的一元一次方程,把一元一次方程转化为x=a的形式的过程中,明确一元一次方程的解的形式,渗透化归的数学思想.三、教学问题诊断分析对于等式的两条性质,借助天平从直观的角度认识,既给出了文字形式的表达,又用式子形式加以描述,这是一个抽象概括的过程,学生能体会到它们的合理性.把等式的性质与解方程结合起来,利用等式的性质研究一元一次方程的解法,这是由一般到特殊的过程,是具体操作层面的问题.怎样运用等式性质把一元一次方程化成x=a的形式,学生会存在一定的困难.由以上分析,本节课的教学难点是:运用等式的性质把简单的一元一次方程化成x=a 的形式.四、教学过程设计1.创设情境,复习导入先复习一下一元一次方程的定义.再复习一下方程的解的概念.问题1用估算的方法可以直接看出简单的一元一次方程的解.你能用估算的方法求出下列方程的解吗?(1)4x=24;(2)x+1=3.师生活动:教师提出问题:你能估算出第(1)题的解吗?学生估算第(1)(2)题,寻求正确的答案.学生充分发表意见,教师评价激励.追问:你能估算出这道题的解吗?2-x 41=3 师生活动:学生适当思考后,教师引入新课,用估算的方法解比较复杂的方程是困难的.因此,我们还要讨论怎样解方程.本环节中,教师应重点关注:(1)学生能否估算出第(1)(2)题的解;(2)学生能否意识到估算比较复杂的一元一次方程的解是比较困难的,体会进一步学习解方程的必要性.设计意图:第(1)题是为了复习巩固估算比较简单的一元一次方程的方法,第(2)题是为了让学生意识到估算比较复杂的一元一次方程的解是比较困难的,从而引起学生的认知冲突,体会到进一步学习的必要性,引出新课.问题2方程是含有未知数的等式,那什么叫做等式呢?教师出示以下例子:m +n =n +m ,x +2x =3x ,3×3+1=5×2,3x +1=5y .师生活动:学生观察以上例子,感知等式.教师指出:像以上这样的式子,都是等式.用等号表示相等关系的式子,叫做等式.通常可以用a =b 表示一般的等式,并指出等式的左边和右边.教师请学生举出等式的例子,并指出等式的左边和右边.本环节中,教师应重点关注:(1)学生能否举出等式的实际例子;(2)学生能否理解等式的概念并分清等式的左边和右边.设计意图:等式的概念虽然比较简单,但它是学习等式性质的基础.等式的性质要在等式的两边同时做某种相同的变化,因此必须让学生分清等式的左边和右边,为进一步学习等式的性质做好准备.2.实验探究,学习新知问题3探究、归纳等式的两条性质.师生活动:教师演示实验,提出问题:由它你能发现什么规律?学生叙述发现的规律后,教师进一步引导:把一个等式看作一个天平,等号两边的式子看作天平两边的物体,则等式成立可以看作是天平两边保持平衡.等式具有与上面的事实同样的性质,你能用文字叙述等式的这个性质吗?在学生回答的基础上,教师说明:等式两边加上或减去的可以是同一个数,也可以是同一个式子.归纳等式的性质1.等式一般可以用a=b来表示,等式的性质1怎样用式子的形式来表示呢?师生一起归纳:如果a=b,那么a±c=b±c.你能用具体的数字等式验证这条性质吗?a等式的左边等式的右边b等号师生活动:教师演示实验,提出问题:由它你能发现什么规律?师生一起归纳等式的性质2并用式子表示.学生用具体的数字等式验证这条性质.注意:(1)等式两边都要参加运算,并且是作同一种运算;(2)等式两边加或减,乘或除以的数一定是同一个数或同一个式子;(3)等式两边不能都除以0,即0不能作除数或分母.本环节中,教师应重点关注:(1)学生能否理解由天平向等式过渡的合理性;(2)学生能否观察、探究、归纳出等式的两条性质;(3)学生能否用文字语言和符号语言来表示等式的两条性质.设计意图:借助天平演示,探究等式的性质,可以加强对等式性质的直观理解;用文字语言和符号语言两种形式描述等式的两条性质,让学生一方面切实理解等式的性质,另一方面体会如何用数学的符号语言抽象概括地表示它们.用具体的数字等式验证等式的两条性质,是为了让学生进一步体会等式性质的合理性,也是等式性质的初步应用.3.应用举例,学以致用练习用适当的数或式子填空,使所得结果仍是等式,并说明是根据等式的哪一条性质以及怎样变形的.(1)如果3x-1=4,那么3x=4+( );(2)如果0.2x=10,那么x=( ).答案:(1)1,根据等式的性质1,两边加1;(2)50,根据等式的性质2,两边除以0.2.教师出示问题,学生独立思考后同桌交流,学生展示思路,教师点拨.本环节中,教师应重点关注:(1)学生是否理解等式的两条性质;(2)学生能否利用等式的两条性质对方程进行变形;(3)学生是否认真思考、积极交流、勇于展示.设计意图:第(1)小题是对等式性质1的直接应用,第(2)小题是对等式性质2的直接应用,虽然题目本身难度不大,但学生首次接触用等式性质进行方程变形可能不很顺利.第(1)小题要通过两个等式左边3x -1与4的比较,得出两边加1;第(2)小题要通过两个等式左边0.2x 与x 的比较,得出两边除以0.2.通过练习使学生进一步理解等式的两条性质,提高学生运用所学知识解决具体问题的能力,为例2做好铺垫.例2 利用等式的性质解下列方程:(1)x +7=26;(2)-5x =20;(3)-31x -5=4. 师生活动:师生共同完成第(1)小题,教师板书过程.后两个小题,学生独立完成,两名学生板演并展示思路,教师讲评.教师指出:解以x 为未知数的方程,就是把方程转化为x =a (常数)的形式,等式的性质是转化的重要依据.本环节中,教师应重点关注:(1)学生能否利用等式的两条性质解简单的一元一次方程;(2)学生能否进一步理解等式的两条性质;(3)学生能否进一步体会解一元一次方程就是把方程转化为x =a 的形式.设计意图:使学生能够利用等式的两条性质解简单的一元一次方程;使学生理解等式的两条性质;使学生进一步体会解一元一次方程就是把方程转化为x =a 的形式,渗透化归的数学思想,进一步培养学生分析问题、解决问题的能力.问题4 怎样检验方程的解?师生活动:教师提出问题,学生回答.教师指出:一般地,从方程解出未知数的值以后,可以代入原方程检验,看这个值能否使方程的两边相等.学生检验x =-27是否是方程-31x -5=4的解. 本环节中,教师应重点关注:(1)学生能否掌握检验一个数值是否是某个一元一次方程的解的方法;(2)学生能否进一步理解方程的解的概念.设计意图:使学生掌握检验一个数值是否是某个一元一次方程的解的具体方法,并进一步理解方程的解的概念.练习 用等式的性质解下列方程并检验:(1)x -5=6;(2)0.3x =45;(3)5x +4=0;(4)2-41x =3. 师生活动:教师出示问题,学生独立完成后同桌互查.同时四名学生板演,学生展示思路,教师点拨.本环节中,教师应重点关注:(1)学生能否进一步理解等式的两条性质;(2)学生能否顺利地运用等式的两条性质解简单的一元一次方程;(3)学生能否进一步体会解一元一次方程就是把方程转化为x =a 的形式.设计意图:使学生能够利用等式的两条性质解简单的一元一次方程;使学生进一步理解等式的两条性质;使学生进一步体会解一元一次方程就是把方程转化为x =a 的形式,渗透化归的数学思想方法,进一步培养学生分析问题、解决问题的能力.4.课堂小结,布置作业课堂小结:学生发表对本节课的收获、提示和困惑,教师及时给予激励性评价.本环节中,教师应重点关注:学生能否从多方面、多角度说出自己的收获,并对其他同学进行提示.设计意图:课堂小结不仅可以使学生巩固所学知识和方法、加深对所学内容的理解,还可以培养学生独立分析、归纳概括的能力,充分发挥学生的主体作用.布置作业:教科书习题3.1第4,9,10题.设计意图:通过布置作业让学生进一步体验建立数学模型的过程,体会数学的实用价值,感受数学与生活的联系.说明:本课程结合了义务教育教科书数学七年级上册(人民教育出版社)第三章第1节的内容,见教科书第81页至第83页。