高斯光束传播特性研究
- 格式:pdf
- 大小:454.85 KB
- 文档页数:6
第19期2018年10月No.19October,2018无线互联科技Wireless Internet Technology激光器自产生以来,已广泛应用于科学技术、通信、医学等各个领域。
高斯光束在激光器中的研究是更好地利用激光器的关键。
高斯光束(如厄米-高斯光束、拉盖尔-高斯光束[1],可用于描述矩形和圆形对称下的高阶激光模,其性质已被人们深入研究。
高斯光束的束腰半径和位置、远场发散角、衍射放大系数和高斯光束通过透镜的变换规律是描述高斯光束基本特性的重要物理量和规律,也是激光物理教学的重要内容。
1 设计思想本文激光实验采用等距四点采光测量法[2],激光光束被定义为垂直于光轴的截面上,强度分布为最大值e 的平方分之一。
在坐标轴上任意取4个点,其中一个点等于c ,其他3个点与该点差的绝对值相等,并且值相等,该值小于所测的光束半径,经过计算可得到强度分布。
通过搭建实验平台并调试,能够接收到高斯光斑。
这种方法的优势在于,它可以较为准确地判断这一被测量的光束是否为高斯光束,而且还能求出此光束的束径和径向强度分布。
系统方案流程如图1所示。
图1 系统方案流程2 实验结果2.1 实验原理等距四点采光测量法其实是一种基于等距离三点采光测量方法的新原理。
根据这个原理,只需要同时测量光束截面中任意相等间隔的4个点的光强,就可以定量地确定被测光束是否为高斯光束。
在高斯光束的情况下,可以根据四点强度给出高斯光束的光束直径和径向强度分布。
高斯光束的鉴别测量仪是一种基于四点法原理的新型仪器。
这种发明将阵列接收元件以及计算机技术有机地结合起来,可以同时对光束截面中等距坐标点的光强进行采光测量,并且可以对测量数据以及光谱图进行打印和说明,从而达到定量判别和测量高斯光束的目的[3]。
2.2 界面设计实验中采用CCD 来接收光斑,利用Matlab 对激光的输出特性进行GUI 界面设计,界面中可以对像素值、波长、束腰半径、传播距离等进行选择,通过设置不同的参数值,可以得到高斯光束传播距离不同时,振幅强度分布的示意图[4]。
目录1 基本原理 (1)1.1耦合波理论 (1)1.2高斯光波的基本理论 (9)2 建立模型描述 (10)3仿真结果及分析 (10)3.1角度选择性的模拟 (10)3.2波长选择性的模拟 (13)3.3单色发散光束经透射型布拉格体光栅的特性 (15)3.4多色平面波经透射型布拉格体光栅的特性 (17)4 调试过程及结论 (18)5 心得体会 (20)6 思考题 (20)7 参考文献 (20)8 附录 (21)高斯光束经透射型体光栅后的光束传输特性分析1 基本原理1.1耦合波理论耦合波理论分析方法基于厚全息光栅产生的布拉格衍射光。
当入射波被削弱且产生强衍射效率时,耦合波理论分析方法适用耦合波理论分析方法适用于透射光栅。
1.1.1耦合波理论研究的假设条件及模型耦合波理论研究的假设条件:(1) 单色波入射体布拉格光栅;(2) 入射波以布拉格角度或近布拉格角度入射;(3)入射波垂直偏振与入射平面;(4)在体光栅中只有两个光波:入射光波 R 和衍射光波 S;(5)仅有入射光波 R 和衍射光波 S 遵守布拉格条件,其余的衍射能级违背布拉格条件,可被忽略;(6)其余的衍射能级仅对入射光波 R 和衍射光波 S 的能量交换有微小影响;(7)将耦合波理论限定于厚布拉格光栅中;图1为用于耦合波理论分析的布拉格光栅模型。
z 轴垂直于介质平面,x 轴在介质平面内,平行于介质边界,y 轴垂直于纸面。
边界面垂直于入射面,与介质边界成Φ角。
光栅矢量K垂直于边界平面,其大小为2/=Λ,Λ为光栅周期,θ为入射角。
Kπ图1布拉格光栅模型R —入射波,S —信号波,Φ—光栅的倾斜角,0θ—再现光满足布拉格条件时的入射角(与z 轴所夹的角),K —光栅矢量的大学,d —光栅的厚度,r θ和s θ—再现光波和衍射光波与z 轴所夹的角度,Λ—光栅周期。
光波在光栅中的传播由标量波动方程描述:220E k E ∇+= (1)公式(2)中(),E xz 是y 方向的电磁波的复振幅,假设为与y 无关,其角频率为ω。
第1篇一、实验目的1. 加深对高斯光束物理图像的理解;2. 学会对描述高斯光束传播特性的主要参数,即光斑尺寸、远场发散角的测量方法进行掌握;3. 学习体会运用微机控制物理实验的方法。
二、实验原理1. 高斯光束的传播特性高斯光束的振幅在传播平面上呈高斯分布,近场时近似为平面波,远场时近似为球面波。
高斯光束的振幅分布公式为:\[ I(r, z) = I_0 \exp\left(-\frac{2r^2}{w_0^2(z)}\right) \]其中,\( I(r, z) \) 为距离光轴距离为 \( r \) 处,距离光束传播方向为 \( z \) 处的光强;\( I_0 \) 为光束中心处的光强;\( w_0 \) 为光束中心处的光斑尺寸。
光斑尺寸 \( w(z) \) 与光束中心处的光斑尺寸 \( w_0 \) 的关系为:\[ w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_r}\right)^2} \]其中,\( z_r \) 为光束的瑞利长度。
2. 发散角的定义及测量光束的全发散角定义为光束中光强下降到中心光强的 \( 1/e \) 位置时,光束边缘与光轴所成的角度。
在远场情况下,光束的全发散角近似为:\[ \theta = \frac{1.22 \lambda}{w(z)} \]其中,\( \lambda \) 为光束的波长。
三、实验仪器与设备1. 激光器:输出波长为 \( \lambda = 632.8 \) nm 的红光激光;2. 凹面镜:曲率半径为 \( R = 50 \) cm;3. 平面镜:用于反射激光;4. 光电探测器:用于测量光强;5. 数据采集卡:用于采集光电探测器数据;6. 计算机:用于处理实验数据。
四、实验步骤1. 将激光器输出光束照射到凹面镜上,使光束经凹面镜反射后形成高斯光束;2. 将光电探测器放置在凹面镜后的某个位置,调整探测器位置,使探测器接收到的光强最大;3. 记录探测器接收到的光强 \( I \);4. 根据公式 \( I = I_0 \exp\left(-\frac{2r^2}{w_0^2(z)}\right) \) 求解光斑尺寸 \( w_0 \);5. 根据公式 \( \theta = \frac{1.22 \lambda}{w(z)} \) 求解发散角\( \theta \);6. 重复步骤 3-5,改变探测器位置,记录不同位置的光强 \( I \) 和发散角\( \theta \)。
拉盖尔高斯光束公式拉盖尔高斯光束(Laguerre-Gauss beam)是一种具有角动量和轨道角动量的特殊激光束,其在光学成像、信息传输、光纤通信等领域具有广泛的应用前景。
在实际应用中,拉盖尔高斯光束的传输特性和性能优化成为研究的关键。
本文将从拉盖尔高斯光束的传播特性、叠加相位方法及其在光学系统中的应用等方面进行讨论。
一、拉盖尔高斯光束的传播特性拉盖尔高斯光束的传播特性研究为其在光学系统的应用提供了理论基础。
耿滔等研究人员通过对拉盖尔高斯光束的传播形式进行推导,证明了高阶拉盖尔高斯光束在自由空间的传播过程中能够保持其自身表达形式的不变性[1]。
这一研究为拓展拉盖尔高斯光束在傍轴条件下的应用提供了理论支持。
二、叠加相位方法优化拉盖尔高斯光束性能为了进一步提高拉盖尔高斯光束的性能,研究人员提出了叠加相位的方法。
通过空间光调制器(SLM)对多个拉盖尔高斯光束施加不同的相位调制,然后将它们叠加在一起,形成一个新的复合光束。
这种方法在提高成像、传输和调制性能方面具有显著优势[2]。
三、拉盖尔高斯光束在光学系统中的应用1.光学微操控:拉盖尔高斯光束的优良旋转、聚焦和传输特性使其在光学微操控领域具有广泛应用。
例如,利用拉盖尔高斯光束驱动微粒、捕获和引导粒子、驱动微粒等。
2.信息传输:拉盖尔高斯光束在信息传输方面具有较高的传输速率和容量。
通过对光束进行相位调制,可以实现高速、安全的信息传输。
3.光纤通信:拉盖尔高斯光束在光纤通信中具有较低的损耗和较高的传输速率,可有效提高光纤通信系统的性能。
4.光学成像:拉盖尔高斯光束的成像质量较高,可以应用于高分辨率的光学成像领域。
1。
激光原理
高福斌
2013116
2013.11.6
/25 1
3.3 高斯光束的传播特性
回顾——求解对称开腔中的自再现模积分方程, 了解输出激光的具体场的分布——
前瞻研究高斯光束的传播特性
/22 2
一、等相位面的分布
等相位面 1、等相位面——行波场中相位相同的点连成的曲面(
, , x y z ϕx
z
z 0
(
00,0, z ϕ共焦场等相面的分布
/25
9
三 . 共焦场的等相位面的分布图
共焦场等相面的分布
可以证明:
如果在场的任意一个等相位面处放上一块具有相应曲率的反射镜片,则入射在该镜片上的场将准确地沿着原入射方向返 /25
16回,这样共焦场分布将不会受到扰动.这是非常重要的性质.
z 小结:高斯光束的基本性质
1. 高斯光束在其轴线附近可看作是一种非均匀高斯
球面波,
22. 在其传播过程中曲率中心不断改变
3. 其振幅在横截面内为一高斯光束
4. 强度集中在轴线及其附近
5. 等相位面保持球面/25 17
数值例 :
器件辐射能量脉冲时间 P
普通红宝石激光器 1J 10-4s 104W 1J 10910
调 Q 红宝石激光器 1J 10-9s 109W 调 Q 及锁模红宝石激光器 1J 10-12~10-13s 1012~1013W *输出能量一定时 , 激光器由于脉冲时间缩短可使△ I 很大 ; ,
而且因θ(或Ω 很小 , 故亮度 B 很大。
/25 23。