圆轴剪切与扭转变形
- 格式:pptx
- 大小:5.70 MB
- 文档页数:68
圆轴扭转的受力特点和变形特点
圆轴在受到扭矩作用时,其受力特点和变形特点与直轴不同。
下面我们来详细探讨一下圆轴扭转的受力特点和变形特点。
一、受力特点
在圆轴扭转过程中,受到的力主要是扭矩。
扭矩是使物体产生转动的力,其大小可以用公式T=FT*d来计算,其中T是扭矩,F是力,T是距离,d是轴的直径。
在圆轴扭转时,扭矩会使圆轴上的横截面产生剪切应力,剪切应力的大小与扭矩成正比。
二、变形特点
圆轴在受到扭矩作用时,会产生扭转变形。
这种变形主要表现为圆轴的各个横截面发生相对转动。
在圆轴扭转时,横截面之间的距离保持不变,因此不会出现拉伸或压缩变形。
同时,由于圆轴的刚度较大,所以扭转变形量相对较小。
三、影响圆轴扭转的因素
圆轴的扭转性能受到多种因素的影响,包括材料性质、截面形状、尺寸和边界条件等。
例如,圆轴的材料强度越高,其抵抗扭矩的能力就越强;截面形状和尺寸也会影响圆轴的扭转性能;边界条件如支撑条件和固定方式也会对圆轴的扭转性能产生影响。
四、圆轴扭转的应用
圆轴的扭转性能在机械工程中有着广泛的应用。
例如,在汽车和自行车中,车轴就是一种圆轴,它们需要承受来自轮子和车轮的扭矩。
在设计这些车轴时,需要考虑其受力特点和变形特点,以确保其具有足够的强度和刚度。
此外,在建筑工程和桥梁工程中,钢结构和钢筋混凝土结构的连接节点也需要利用圆轴的扭转性能来传递力和转矩。
第五节圆轴的扭转变形与刚度条件一、圆周的扭转变形圆轴受扭转时,除了考虑强度条件外,有时还要满足刚度条件。
例如机床的主轴,若扭转变形太大,就会引起剧烈的振动,影响加工工件的质量。
因此还需对轴的扭转变形有所限制。
轴受扭转作用时所产生的变形,是用两横截面之间的相对扭转角ϕ表示的,如下图所示。
由于γ角与ϕ角对应同一段弧长,故有ϕ·R = γ·l (a)式中的R是轴的半径,由剪切虎克定律,τ=G·γ,所以可得ϕ=τ·l/ (G·γ)(b)式中τ=M·R/ Jρ,代入(b)得:ϕ=M·l/ (G·Jρ)(1-46)公式(1-46)是截面A、B之间的相对扭转角计算公式,ϕ的单位是rad。
两截面间的相对扭转角与两截面间的距离l成正比,为了便于比较,工程上一般都用单位轴长上的扭转角θ表示扭转变形的大小:θ=ϕ/ l=M/ (G·Jρ)(1-47)θ的单位是rad/m。
如果扭矩的单位是N·m,G的单位MP a,Jρ的单位m4。
但是工程实际中规定的许用单位扭转角[θ]是以°/m 为单位的,则公式(1-47)可改写为:(1-48)式中G·Jρ称为轴的抗扭刚度,取决于轴的材料与截面的形状与尺寸。
轴的G·Jρ值越大,则扭转角θ越小,表明抗扭转变形的能力越强。
二、扭转的刚度条件圆轴受扭转时如果变形过大,就会影响轴的正常工作。
轴的扭转变形用许用扭转角[θ]来加以限制,其单位为°/m,其数值的大小根据载荷性质、工作条件等确定。
在一般传动和搅拌轴的计算中,可选取[θ]=0.5°/m~10°/m。
由此得出轴的扭转刚度条件:θ=M/ (G·Jρ)·(180/ π)≤[θ](1-49)圆轴设计时,一般要求既满足强度条件(1-45),又要满足刚度条件(1-49)。
圆轴扭转的变形特点是杆件的各横截面绕杆轴线发生相
对转动
1.扭转角度分布:沿着杆件的轴线方向,各横截面相对于杆轴线发生
相对转动,即发生扭转角。
在较小的纵向位置x处,扭转角θ与x之间
的关系满足线性的关系,即θ∝x。
这表明扭转变形是沿杆件轴线方向均
匀分布的。
2.变形分布:由于扭转变形的存在,杆件的各横截面之间会发生相对
转动,因此各个截面之间存在一定的位移差,即由轴线到各点的距离发生
了变化。
在一个环形截面上,截面内的各点具有不同的位移,距离轴心越
远的点位移越大。
这种位移差随着距离轴心的增加而增加。
3.外观特点:当杆件的圆轴扭转时,可以观察到杆件表面发生了特征
性的变化。
沿着杆件轴线方向,杆件的表面呈现出螺旋状纹理或者所谓的
对角纹理。
这是由于杆件各横截面之间相对转动的结果。
4.扭转变形的比例:扭转变形的比例与杆件的材料性质和几何尺寸有关。
通常情况下,杆件的扭转变形与受到的扭矩成正比,材料的剪切模量
和几何尺寸成反比。
这意味着扭转刚度随着杆件截面积的增加和材料剪切
刚度的减小而增加。
总之,圆轴扭转的变形特点是杆件的各横截面绕杆轴线发生相对转动,扭转角度沿着杆件的轴线方向均匀分布,各个截面之间存在位移差,杆件
表面呈现螺旋状纹理,扭转变形的比例与材料性质和几何尺寸有关。
圆轴扭转时的变形与刚度计算圆轴扭转时的变形与刚度计算是机械工程中的一项重要内容。
圆轴扭转是指轴材受到扭矩作用产生的变形现象。
在圆轴扭转中,轴材会经历弹性变形和塑性变形。
弹性变形是指轴材在扭矩作用下恢复原状的变形,而塑性变形则是指超过轴材弹性限度后产生的永久变形。
圆轴扭转可通过弹性力学原理进行分析。
根据胡克定律,弹性体的应力与应变之间有线性关系。
对圆轴来说,变形主要体现为轴材的剪切变形。
剪切形变角度φ与应力τ之间的关系为:τ=G*φ其中,G是剪切模量,表示材料抵抗剪切变形的能力。
φ是单位长度的圆周上小弧δs扭转对应的形变角。
通过积分可得到实际的扭转角θ与应力之间的关系:τ=G*θ/L其中,L是轴材的长度。
对于圆轴来说,扭转力矩T与应力分布之间的关系为:T=τ*A其中,A是轴材的横截面积。
将τ带入等式可得到扭转角与扭转力矩之间的关系:T=G*θ*A/L从上述公式可知,轴材扭转角度与扭转力矩之间存在一线性关系,即扭转刚度k。
k=G*A/L通过上述公式,可以得到轴材的扭转刚度。
扭转刚度越大,则轴材对于扭转力矩的抵抗能力越强。
此外,圆轴扭转时的变形也与材料的断裂强度有关。
当扭转力矩超过材料的断裂强度时,轴材会发生塑性变形,产生永久变形。
在实际应用中,通常会根据所需要的刚度和工作条件来选择合适的轴材及其横截面积。
在计算中需要考虑到轴材的材料特性、几何形状和所受的载荷等因素。
此外,还可以通过模拟实验或数值计算的方法对扭转变形和刚度进行验证和评估。
总之,圆轴扭转时的变形与刚度计算是机械工程中的一项重要内容。
通过弹性力学原理,可以分析轴材在扭转力矩作用下的变形情况,并计算出轴材的扭转刚度。
这对于轴类零件的设计和工程应用具有重要意义。