电子设备金属腐蚀机理
- 格式:doc
- 大小:18.00 KB
- 文档页数:5
高压环境下金属腐蚀机理探究高压环境下金属腐蚀机理探究引言金属腐蚀是指金属在与外界介质相互作用时,发生一系列化学或电化学反应而导致金属表面受损的现象。
在高压环境下,金属腐蚀是一个重要而复杂的问题,其机理的解析对于确保设备和结构的安全运行至关重要。
本文旨在探究高压环境下金属腐蚀的机理,并介绍一些常见的抑制腐蚀的方法。
一、高压环境下金属腐蚀的机理1. 压力效应高压环境下,介质中溶解的氧气、水和一些酸性或碱性物质更容易与金属表面发生反应,从而加速腐蚀过程。
一方面,高压会增加氧气和水的溶解度,使其更易渗透到金属表面并与金属发生反应;另一方面,高压还会增加液态介质中氧气和其他腐蚀物质的活性,从而使金属更容易受到腐蚀的侵害。
2. 强腐蚀介质的存在在某些高压环境中,存在一些强腐蚀介质,如酸性溶液、强氧化剂等。
这些介质能够迅速氧化金属表面,并在短时间内形成大量的腐蚀产物,加速金属的腐蚀速率。
3. 应力腐蚀高压环境下,金属内部的应力会受到增大,而金属表面又常常存在裂纹或缺陷等缺陷,在高压下,这些缺陷处的应力会进一步增大,从而促进金属的腐蚀。
此外,高压环境下金属之间的相互摩擦、挤压等作用也会导致金属表面的腐蚀。
二、高压环境下金属腐蚀的抑制方法1. 选择合适的金属材料在高压环境下,选择合适的金属材料是防止金属腐蚀的首要措施。
一般来说,具有优异耐蚀性的不锈钢是高压环境中的首选材料。
此外,还可以通过金属合金的选择来提高金属的抗腐蚀性能。
2. 表面处理通过表面处理可以形成一层保护性的膜或涂层,以防止金属与外界介质直接接触。
常用的表面处理方法包括:电镀、喷涂、镀膜等。
这些处理方法可以在金属表面形成一层致密、均匀的保护膜,起到抵御腐蚀介质侵害的作用。
3. 添加缓蚀剂在高压环境中,添加适量的缓蚀剂可以有效降低金属的腐蚀速率。
缓蚀剂能够在金属表面形成一层保护膜,阻止金属与腐蚀介质接触,从而起到抑制腐蚀的效果。
常见的缓蚀剂包括有机缓蚀剂、无机缓蚀剂等。
东莞理工学院金属腐蚀原因及常用的防腐方法化学与环境工程学院08化工工艺2班200841511208王东贤2011-5-30金属腐蚀的原因及常用的防腐方法摘要:在当今工业生产中,金属腐蚀已变的越来越严重,造成的损失也越来越大,所以研究防腐的方法就显得尤为重要。
本文简单介绍了一些金属腐蚀的机理,在此基础上着重从改善金属本质、把金属和腐蚀介质分开、改善腐蚀环境、电化学保护这四方面介绍了防止金属腐蚀的措施及方法,为以后的研究和探索防腐方法打下基础。
关键词:腐蚀防腐防腐方法金属引言当金属和周围介质接触时,由于发生化学和电化学作用而引起的破坏叫做金属的腐蚀。
从热力学观点看,除少数贵金属(如Au、Pt)外,各种金属都有转变成离子的趋势,就是说金属腐蚀是自发的普遍存在的现象。
金属被腐蚀后,在外形、色泽以及机械性能方面都将发生变化,造成设备破坏、管道泄漏、产品污染,酿成燃烧或爆炸等恶性事故以及资源和能源的严重浪费,使国民经济受到巨大的损失。
据估计,世界各发达国家每年因金属腐蚀而造成的经济损失约占其国民生产总值3.5%~4.2%,超过每年各项大灾(火灾、风灾及地震等)损失的总和。
有人甚至估计每年全世界腐蚀报废和损耗的金属约为1亿吨!因此,研究腐蚀机理,采取防护措施,对经济建设有着十分重大的意义。
本文探讨化工生产中发生腐蚀的原因以及采取合适的防腐方法防止金属腐蚀。
1.引起金属表面腐蚀的多种原因1.1季节性腐蚀腐蚀可以发生在一年内的任何时候。
一般来说,7~9月的温度和相对湿度较高,在美国东部和中西部更容易发生腐蚀。
干旱地区,如克罗拉多州、新墨西哥州、亚利桑那州、犹他州及加州,这些地方的相对湿度较低,腐蚀情况就很少发生。
1.2手印腐蚀当工件接触人手后,就容易发生腐蚀。
搬运过程中新机床和金属工件表面留下的手印,会导致腐蚀。
这种情况普遍存在于皮肤呈酸性的人群,以及表面光洁度高的工件。
使用手印中和剂能防止类似的手印腐蚀。
随着温度上升,包括腐蚀在内的化学反应速度就会更快。
《装备电化学腐蚀仿真原理与应用》阅读笔记目录一、装备电化学腐蚀概述 (2)1. 装备腐蚀定义及危害 (3)2. 电化学腐蚀基本原理 (3)3. 腐蚀类型与特点 (5)二、电化学腐蚀仿真原理 (6)1. 仿真技术概述 (7)2. 电化学腐蚀仿真模型建立 (8)3. 仿真软件及功能介绍 (9)三、装备电化学腐蚀仿真应用 (10)1. 航空航天领域应用 (12)1.1 飞机结构腐蚀仿真分析 (13)1.2 航空发动机材料腐蚀评估 (14)2. 石油化工领域应用 (16)2.1 石油化工设备腐蚀仿真分析 (17)2.2 管道系统腐蚀预测与防护 (18)3. 铁路运输领域应用 (20)3.1 铁路车辆金属结构腐蚀仿真研究 (22)3.2 轨道设施腐蚀防护优化 (23)四、仿真实验设计与实施 (25)1. 实验前期准备 (26)2. 实验操作过程 (27)3. 数据处理与结果分析 (28)五、案例分析与实践应用探讨 (30)1. 成功案例分析 (31)2. 实践应用中的挑战与对策 (32)六、装备电化学腐蚀防护技术展望 (33)1. 新材料应用前景 (34)2. 先进工艺技术发展趋势 (35)3. 智能监测与预防性维护策略展望 (35)一、装备电化学腐蚀概述电化学腐蚀是金属在电解质环境中发生的化学反应,这种反应导致金属材料的破坏和性能下降。
在装备制造中,电化学腐蚀是一个普遍存在的问题,它不仅影响装备的可靠性和使用寿命,还可能对装备的安全性能造成威胁。
电化学腐蚀的过程涉及电解质中的离子与金属表面发生反应,形成腐蚀产物,并导致金属离子的释放。
这个过程通常伴随着电流的产生,因此也被称为电化学腐蚀电池。
腐蚀电池的形成和发展受到多种因素的影响,包括金属的化学成分、电极电位、电解质溶液的性质以及环境条件等。
为了有效地防止或减轻电化学腐蚀,装备制造者需要采取一系列措施。
选择耐腐蚀性更强的金属材料是预防电化学腐蚀的基础,通过表面处理技术如电镀、喷涂等可以改变金属表面的化学和物理性质,提高其耐腐蚀能力。
变压器油中的铜腐蚀原因及其有效控制摘要:在运行过程中,变压器油容易和铜导体相互接触并发生相应的反应,进而导致铜腐蚀现象的出现,本文研究变压器油中铜腐蚀现象的原因,并对相应的控制手段进行探讨,希望在提高变压器运行可靠性的同时为电网事故发生率的有效降低提供重要支持。
关键词:变压器油,铜腐蚀,原因,控制1变压器油中铜腐蚀的原因1.1金属腐蚀机理分析金属腐蚀现象,指的其实就是金属自身所经历的一种劣化和降解的过程,在发生的化学或是电化学反应的影响之下,金属出现了溶解的状况,此即金属腐蚀,这一现象最先在表面表现出来。
通常情况下,腐蚀现象的出现都以电化学反应为主,对于金属而言,其腐蚀现象主要是自身同电解质溶液相互之间产生作用,进而出现电化学反应。
在腐蚀的过程中,处在阳极一侧的金属在自身的溶解过程中会有离子生成,与此同时,会为阴极提供电子,支持其反应的发生。
也就是说,金属在阳极一侧出现溶解的情况,在此过程中,腐蚀电流会流向电解液或是阴极一侧。
1.2铜腐蚀的原因在实际运行时,变压器油容易和铜导体接触并发生反应,所以油品会有铜腐蚀现象出现。
其实,位于变压器中的铜绕组能够被视作一个封闭式的循环,若是铜线圈并不纯净,便会有一定的可能出现电化学腐蚀现象。
在阳极一侧,阳离子可以和其他化合物反应并生成相应的金属氢氧化物与不溶性盐。
20世纪50年代,学者们首次在变压器油中将铜检测出来,并认为铜在其中以潜在破坏性因素的形式而存在。
尽管在变压器内部,铜的表面会有一层厚度很小的氧化层形成,不过电化学反应依旧会发生在氧化层下。
对受到氧化层保护的铜线圈的溶解过程进行分析,可作如下概括:最先,氢和铜表面的氧化层产生反应,之后,阳极与阴极发生反应,需要强调一点,即这些反应有可能并不具有连续性。
要想有阴极反应形成,必需具备的条件即有质子存在。
在水发挥电解液作用时,H+的获得难度很小;不过在变压器油中,质子的产生是通过一部分油品的氧化产物来实现的,其存在会将阴极的反应速度加快。
Cu +→Cu 2++e OE =0.17V2H 2O →4H ++O 2+4e O E =1.229V此外,阳极中含有比铜电势更负的杂质离子也可能从阳极溶解。
一般由于Cu 2+离子的电极电势较Cu +离子的更负,主要发生的二价铜离子的阳极溶解;而一价铜离子的反应为次要的,但因溶液中存在以下化学平衡:2Cu + = Cu 2++Cu ,Cu +的浓度虽很低,却可能引起副反应,使电流效率下降。
阴极过程是阳极过程的逆反应,即Cu 2+离子的还原 :Cu 2++2e - →Cu ,尽管电解液是酸性,一般情况氢析出的电势较铜更负,所以在阴极很少有氢气析出。
在铜电解精炼时,比铜电极电势更负的杂质如:Fe 、Ni 、Zn 等,可在阳极共溶,进入电解液,但不能在阴极与铜析出;而电极电势较铜正的杂质虽可能在阴极共析,却不能在阳极共溶而进入电解液,只能进入阳极泥,这类金属包括Ag 、Au 、铂族等。
这样就达到分离杂质精炼金属铜以及资源充分利用的目的。
最危险的杂质是电极电势与铜接近的杂质,它们在阳极可能共溶,又可能在阴析共析,这要定期地对电解液进行净化,尽量降低这些离子在溶液中的积累。
三* 无机电合成1氯碱工业的电化学基础2氯碱工业的发展3 膜电解技术四* 有机电合成1 直接有机电合成2 间接有机电合成§10.3 电化学腐蚀与防护金属腐蚀会导致国民经济的巨大损失,美国在20世纪80年代初期的统计年损失达1千多亿美元;估计我国的年损失在300亿元以上。
电化学腐蚀与防护问题既有我们日常生活常见到的钢铁生锈、电池的点蚀等问题,也与当前新能源、新材料等领域密切相关。
可以说,腐蚀与防护问题存在于国民经济和科学技术的各个领域,不断地提出的新问题促使腐蚀与防护成为一门迅速发展的综合性边缘学科。
引起金属腐蚀的主要原因是:金属表面与周围介质的生物、化学或电化学作用而导致金属被破坏。
这一节仅讨论金属表面与潮湿空气、电解质溶液等介质发生电化学作用而引起的腐蚀——电化学腐蚀。
由于腐蚀的危害性十分大,为了搞好防腐蚀工作,作为防腐施工的技术人员和工人对材料受到腐蚀的起因、原理等应进一步加深了解,以便合理地选择防腐蚀的方法。
一、腐蚀腐蚀是指材料在环境的作用下引起的破坏或变质。
这里所说的材料包括金属材料和非金属材料。
金属的腐蚀是指金属和周围介质发生化学或电化学作用而引起的破坏。
有时还伴随有机械、物理和生物作用。
非金属腐蚀是指非金属材料由于直接的化学作用(如氧化、溶解、溶胀、老化等)所引起的破坏。
这里应当指出,单纯的机械磨损和破坏不属于腐蚀的范畴。
二、腐蚀分类腐蚀在这里指金属腐蚀,金属腐蚀的分类方法很多。
通常是根据腐蚀机理、腐蚀破坏的形式和腐蚀环境等几个方面来进行分类。
(1)按腐蚀机理分类从腐蚀机理的角度来考虑,金属腐蚀可分为化学腐蚀和电化学腐蚀两大类。
1 化学腐蚀金属的化学腐蚀是指金属和纯的非电解质直接发生纯化学作用而引起的金属破坏,在腐蚀过程中没有电流产生。
例如,铝在纯四氯化碳和甲烷中的腐蚀,镁、钛在纯甲醇中的腐蚀等等,都属于化学腐蚀。
实际上单纯的化学腐蚀是很少见的,原因是在上述的介质中,往往都含有少量的水分,而使金属的化学腐蚀转变为电化学腐蚀。
2电化学腐蚀金属的电化学腐蚀是指金属和电解质发生电化学作用而引起金属的破坏。
它的主要特点是:在腐蚀过程中同时存在两个相对独立的反应过程———阳极反应和阴极反应,并有电流产生。
例如,钢铁在酸、碱、盐溶液中的腐蚀都属于电化学腐蚀。
金属的电化学腐蚀是最普遍的一种腐蚀现象,电化学腐蚀造成的破坏损失也是最严重的。
(2)按腐蚀破坏的形式分类金属腐蚀破坏的形式多种多样,但无论哪种形式,腐蚀一般都从金属表面开始,而且伴随着腐蚀的进行,总会在金属表面留下一定的痕迹,即腐蚀破坏的形式。
可以通过肉眼、放大镜或显微镜等进行观察分析。
根据腐蚀破坏的形式,可将金属腐蚀分为全面腐蚀和局部腐蚀两大类。
1 全面腐蚀金属的全面腐蚀亦称为均匀腐蚀,是指腐蚀作用以基本相同的速度在整个金属表面同时进行。
电化学腐蚀电化学腐蚀是指在电化学条件下金属与溶液或电解质的相互作用过程中,金属表面发生电化学反应而造成金属腐蚀的现象。
这种腐蚀方式与其他类型的腐蚀不同,它是在外电势的作用下发生的,可以通过改变外电势或电化学环境来控制和减缓腐蚀过程。
下面将介绍电化学腐蚀的机理和预防措施。
电化学腐蚀的机理主要涉及两个方面:阳极溶解和阴极反应。
阳极溶解是指金属离子在阳极处释放,形成金属离子和电子的电子传递过程。
阴极反应则是指电子在阴极处与溶液中的还原剂发生反应,还原成原子或形成气体。
导致腐蚀的外电流是由阳极溶解和阴极反应共同产生的。
在实际应用中,许多因素会影响电化学腐蚀的发生和发展。
首先是金属的材质和结构。
不同的金属在特定电化学条件下具有不同的腐蚀倾向,称为腐蚀电位。
一般而言,腐蚀电位较低的金属更容易发生电化学腐蚀。
此外,金属的晶体结构、表面形貌和化学成分也会对腐蚀产生影响。
其次,电化学环境对电化学腐蚀的影响也非常重要。
温度、pH值、溶液中的物质浓度和氧气浓度等因素都会对腐蚀速率和腐蚀类型产生显著影响。
例如,高温、酸性环境、高浓度的盐溶液和富含氧气的环境往往加速金属的腐蚀过程。
了解电化学腐蚀的机理和影响因素有助于我们制定预防和控制措施。
以下是一些常见的预防措施:1. 选择抗腐蚀性能好的金属材料,特别是在恶劣环境下使用的设备和结构中。
2. 使用防腐蚀涂层,如涂料、陶瓷和聚合物涂层等,以隔离金属表面与环境接触,减缓腐蚀速率。
3. 控制电化学环境,例如通过控制pH值、温度和溶液浓度等因素,降低金属腐蚀的风险。
4. 采用阴极保护技术,如电流阴极保护和牺牲阳极保护,以降低金属腐蚀的电流密度。
5. 定期检测和维护金属表面的状态,及时修复和更换受腐蚀的部件,以延长设备和结构的使用寿命。
综上所述,电化学腐蚀是金属与溶液或电解质相互作用下发生的一种腐蚀现象。
了解其机理和影响因素,以及采取适当的预防措施,可以有效地控制和减缓金属腐蚀,提高设备和结构的使用寿命和安全性。
杂散电流腐蚀机理及防护措施一、背景介绍在工业生产中,随着科技的进步和发展,涉及到电子器件和各种金属设备的使用越来越广泛。
然而,我们也会遇到一些意想不到的问题,比如杂散电流腐蚀现象。
杂散电流腐蚀是一种电化学腐蚀现象,由于设备中的电子学元件和电线之间的电流路径不完全主导,所以产生了这种现象。
如何减少杂散电流对设备的损害,一直是工程师们尤为关注的问题。
二、腐蚀机理1.发生杂散电流的原因在不同状态下,电子元件和金属装置之间的电位差,导致内部电流的产生,从而出现了杂散电流的产生。
并且中介物质也是电化学反应的催化剂,强化电化学反应,加速了材料的腐蚀,使设备不可避免地出现了腐蚀现象。
2.电化学反应机理杂散电流腐蚀是一种电化学反应,其机理主要有以下几个过程:1)阴阳极反应所致的腐蚀当两种不同金属的材料同时存在于同一电解质中时,其间电位差会引起电流的流动。
金属中氧化物离子的流动,有时被电位差控制,产生了腐蚀现象。
2)金属在电场作用下腐蚀当电场强度超过电解质电势时,电解质中的离子将受到电场的约束,导致发生腐蚀现象。
3)金属在呼吸的过程中腐蚀在受湿气、氧气和空气中的金属构件,经过长时间的反复潮湿和干燥的过程,加剧了腐蚀现象的发生。
三、防护措施1.设计可靠的电路我国工业生产中,设计防护电路是杂散电流腐蚀防范工作的第一步。
同时,加强电子电气设备的设计和制造工艺,防止杂散电流的发生,可以有效避免毁坏设备的情况。
2.资料选择通过电解,构建材料对抗杂散电流腐蚀的能力和耐腐蚀性能强的组合材料。
3.使用低电容端子在电子电气设备的使用中,应尽量使用低电容的端子连接。
如果端子电容过高,会导致设备的工作电压精度下降,加速杂散电流的产生。
4.防止电离击穿在电子电气设备的使用中,必须避免电离击穿的情况发生,通过选择正确的电磁材料和电容电感规格,实现平衡装置的工作状态。
四、总结杂散电流腐蚀是电子电气设备中经常出现的问题,在工业生产中会给人们带来一定的损失。
电子设备金属腐蚀机理
2.3.1金属腐蚀的定义
金属材料的腐蚀现象都是在外界腐蚀介质的存在下而发生的。
因此,金属材料与外界腐蚀介质发生作用(化学的或电化学的作用)而破坏的现象称为金属腐蚀。
金属腐蚀都是从与介质相接触的表面开始,再向金属内部或表面其他部分扩展。
发生腐蚀后,金属不再作为元素,而是变成了某种化合物,从而失去了作为为金属材料的宝贵性能。
金属腐蚀是一种化学性损坏,单纯的机械作用造成金属的物理性破坏,不能叫作金属腐蚀。
但是,有时腐蚀介质与机械因素会同时作用,两者可以互相促进,加速金属的破坏,例如,金属零件在交变应力与腐蚀介质共同作用下发生疲劳损坏(称为腐蚀疲劳)时,其疲劳强度比在空气中的疲劳强度低得多。
表征金属材料对某种腐蚀介质的抵抗能力通常用金属材料的耐蚀性来表示,金属材料的耐蚀性并非恒定的指标,而是随金属材料和腐蚀介质的种类及其他条件(如温度、湿度、应力、表面状态等)不同而异。
一种金属在某种腐蚀介质中不发生腐蚀,称其耐蚀;对于即使存在发生腐蚀的可能性,但腐蚀速度极其缓慢的材料,也可看作是耐蚀的。
2.3.2.金属腐蚀的分类
按照腐蚀作用发生的机理,金属腐蚀可以分为化学腐蚀与电化学腐蚀两类。
化学腐蚀是金属与腐蚀介质直接进行化学反应,是没有电流产生的腐蚀过程。
如果从腐蚀过程进行时的条件来考虑,化学腐蚀是在非电介质溶液或干燥气体作用下金属发生的腐蚀。
电化学腐蚀是金属与电解液发生作用所产生的腐蚀。
其特征是腐蚀过程中有电流产生,在金属表面上有隔离的阳极区和阴极区,被腐蚀的是阳极区。
电化学腐蚀的现象与原电池作用相似。
在电化学中,通常规定发生氧化反应的电极称为阳极;发生还原反应的电极称为阴极。
因此,在原电池中电位较高的正极是阴极,电位较低的负极是阳极。
根据组成腐蚀电池的电极尺寸大小及阴、阳极区分布随时间的稳定性,并考虑到促使形成腐蚀电池的影响因素和腐蚀破坏的特征,一般可将腐蚀电池分为宏观腐蚀电池和微观腐蚀电池两大类。
(1)、宏观腐蚀电池。
通常是指由肉眼可见的电极所构成的腐蚀电池,电池的阴极区和阳极区往往保持长时间的稳定,因而导致明显的局部腐蚀。
宏观腐蚀电池有以下几种。
异种金属接触电池。
即不同金属在同一电解液中相接触构成的腐蚀电池。
●浓差电池。
即同一种金属浸入不同浓度的电解液中形
成的腐蚀电池。
金属的电极电位与金属离子的浓度有关,当金属与含有不同浓度的该金属离子的溶液接触时,浓度稀处,金属电位较负;浓度高处,金属电位较正,从而稀处金属离子浓差腐蚀电池。
●温差腐蚀电池。
金属浸入电解质溶液中各部分由于温
度不同而具有不同的电位,因而稀处腐蚀电池。
(2)、微观腐蚀电池。
由于金属表面存在电化学不均匀性,使金属表面出现许多微小的电极,从而构成各种各样的微小的腐蚀电池,简称微电池。
●金属表面化学成分的不均匀性引起的微电池。
金属表
面的杂质以微电极的形式与基体金属构成的许多短路的微电池。
●金属组织不均匀性构成的微电池。
金属晶界的电位通
常比晶粒内部的电位低,成为微电池的阳极,腐蚀首先从晶界开始。
●金属物理状态不均匀性引起的微电池。
金属各部分变
形不均匀,或应力不均匀,都可引起局部微电池。
通常变形较大或受应力较大部分为阳极。
●金属表面膜不完整引起的微电池。
金属表面钝化膜或
其他具有电子导电性的膜或涂层,由于存在孔隙或破
损,该处的基体金属通常比表面膜的电位负,形成膜
-孔电池。
2.3.3.金属腐蚀的破坏形式
金属腐蚀的破坏形式有全面腐蚀及局部腐蚀两种类型。
如果腐蚀分布在金属整个表面上,则称为全面腐蚀,全面腐蚀可以是均匀的或是不均匀的。
如果腐蚀是集中在某一定区域而表面上的其它部分却几乎未遭受腐蚀,则称为局部腐蚀。
局部腐蚀又可分为斑状腐蚀、陷坑腐蚀、点腐蚀、晶间腐蚀、穿晶腐蚀和表面下腐蚀、选择腐蚀等。
金属究竟发生哪种类型的腐蚀,决定于金属与环境的各种因素的综合作用。
全面腐蚀对金属构件本身破坏程度较小,但对具有表面装饰性的金属和金属镀层,或是在利用金属表面性质的情况下,这种腐蚀是最应避免的。
局部腐蚀比全面腐蚀危害更大,因为往往在损失的金属量不大的情况下造成非常严重的机械性能的损坏,而且具有较大的隐蔽性。
2.3.4.金属腐蚀对电子设备的危害性
金属腐蚀的发生,必然影响到金属零部件、元器件的电性能,机械性能和防护性能,造成各种开关及接触件的接触不良,机械传动系统的精度降低;固定件的强度减弱;电磁元器件的参数改变等不良后果,同时,腐蚀产物还有可能造成电气上的短路、绝缘材料漏电而降低介质的电性能等,严
重地影响了电子设备的性能参数,降低使用寿命,甚至使设备损坏。
此外金属腐蚀还使得设备的维修、零件更换的次数增加,以及为采取防腐蚀措施而增加生产工序等间接损失。
实践证明,在热带、海洋、化工、工业气体等腐蚀性强的环境中,电子设备中的金属腐蚀极为严重。
因此,做好防腐设计是保证电子设备具有高度可靠性的重要环节。