计算机视觉中的多视图几何第二章 3D射影几何和变换
- 格式:ppt
- 大小:334.50 KB
- 文档页数:23
空间几何的射影变换在日常生活中,我们经常面对空间的变换,如照相机拍摄的照片、镜子中的影像等。
这些现象都与几何变换密切相关,其中,射影变换是其中一个重要的变换类型。
在本文中,我们将讨论空间几何的射影变换及其应用。
一、射影变换的基本概念射影几何是解决欧几里德几何中所无法解决的问题的一种方法,它不要求平行线有相交点,也不要求垂直线相交成直角。
在射影几何中,平行线也可能相交,万物是相互联系的,没有孤立的存在。
被称为射影变换的变换是由一组变换组成的,这些变换可以通过投影、切比雪夫变换和对合来定义。
它们可以将几何图形中的点、直线和平面进行映射,并保持它们的基本性质。
射影变换也被称为单个射影坐标系到另一个射影坐标系的变换。
二、射影变换的应用射影变换在计算机视觉、计算机图形学、航空航天技术和游戏开发等领域中经常被使用。
它是许多计算机视觉算法的重要组成部分,如物体检测、目标跟踪和姿态估计等。
在游戏开发中,射影变换用于创建虚拟世界中的相机视图,使玩家可以观察到游戏场景中的不同角度和位置。
另一个重要的应用是医学成像,如CT和MRI。
这些成像技术可以创建三维图像,从而更好地诊断疾病和故障。
射影变换在这些成像技术中扮演着重要的角色,因为它可以将成像平面与三维物体之间建立对应关系,从而实现准确的成像。
三、空间几何的射影变换实现在实现空间几何的射影变换时,需要使用矩阵变换来表示变换矩阵。
通常使用4×4的矩阵表示射影变换,其中前三行表示旋转和缩放,第四行表示平移和尺度变化。
假设有一个点(x,y,z,1)在进行变换时,只需将其分别乘以变换矩阵的每一行即可得到变换后的坐标。
在实际应用中,常用的射影变换包括投影变换、剪裁变换、变换到相机坐标系等。
投影变换用于将三维场景投影到一个二维平面上,常用于计算机图形学和计算机视觉中。
剪裁变换用于筛选出场景中实际可见的区域,同时去掉不必要的区域。
变换到相机坐标系用于将物体的坐标与相机的坐标建立对应关系,从而计算其在视角下的表现形式。
第一章大数据财务决策概论一、数字影像的概念?常见的数字影像的类型有哪些?物理世界的物体针对不同频段的电磁波具有不同的辐射、吸收和透射特性。
通常数字影像的成像过程是传感器将接收到的辐射、反射或透射的电磁波,从光信号转换为电信号,再转换为数字信号的过程。
彩色影像、灰度影像、二值影像、深度图影像、多光谱影像、伪彩色影像。
二、摄影几何的意义以及摄影几何数学表达的优点有哪些?射影几何学也叫投影几何学,在经典几何学中,射影几何处于一个特殊的地位,通过它可以把其他一些几何学联系起来。
在射影几何学中,把无穷远点视为“理想点”。
欧氏直线再加上一个无穷点就是射影几何中的直线,如果一个平面内的两条直线平行,那么这两条直线就交于这两条直线共有的无穷远点。
使用射影几何进行数学表达的优点包括:(1)提供了一个统一的框架来表示几何图元,如点、线和平面;(2)可以在无穷远处以直接的方式操作点、线和平面;(3)为许多几何操作(如构造、交集和变换)提供了线性表示方式。
三、为了描述光学成像的过程,通常需要引入几种坐标系,分别进行说明。
1.世界坐标系为了描述观测场景的空间位置属性,第一个需要建立的基本的三维坐标系是世界坐标系,也被称为全局坐标系。
2.像空间辅助坐标系第二类坐标系是像空间辅助坐标系,也被称为相机空间坐标系。
它类似于摄影测量学中的像空间辅助坐标系,是以摄像机为分析基准的坐标系,也是从三维空间转换到二维空间的一个桥梁。
3.像平面坐标系第三个重要的坐标系是像平面坐标系。
摄像机对三维场景拍照,属于透视投影变换,是将观测点的坐标值从三维空间转换到二维空间的射影变换。
四、基于不同的测量原理,主动式扫描仪系统可以分为几类?1.飞行时间扫描仪TOF类型的扫描仪通过测量从发射端发出的辐射波到目标表面的往返时间来计算目标表面点的距离。
2.相移扫描仪相移扫描仪利用正弦调制的强度随时间变换的激光束进行测量。
通过观测发射信号和反射信号的相位差,计算目标与传感器之间的往返距离。
计算机视觉中的多视几何多视几何是计算机视觉领域中的一个重要分支,它研究如何从多个视角的图像中获取三维物体的信息。
本文将介绍多视几何的基本概念、常见方法以及应用。
一、多视几何的基本概念多视几何主要研究相机之间的空间关系及其对图像的几何变换。
在多视几何中,通常假设相机遵循针孔相机模型,即相机投影是通过沿光线将三维点投影到成像平面上的方式实现的。
这种假设简化了多视几何问题的数学表述。
在多视几何中,存在着多个视角或相机,每个视角拍摄到的图像都包含了一部分目标物体的信息。
不同视角下的图像可以通过几何变换相互对应,从而形成更全面的物体描述。
多视几何的目标是通过对多个视角下的图像进行分析和匹配,获得物体的三维结构和姿态。
二、多视几何的常见方法1.立体视觉立体视觉是多视几何的一个重要分支,它主要关注于从成对的立体图像中恢复场景中物体的深度信息。
立体视觉的主要任务是进行视差估计,即在两个视图中找到对应的特征点,并通过视差值计算物体的深度。
常用的立体视觉方法包括基于特征点匹配的方法、基于区域的方法以及基于能量优化的方法。
2.三维重建三维重建是多视几何的另一个重要研究方向,它旨在通过多个视角下的图像恢复出物体的三维结构。
三维重建的主要任务是通过多视图几何的理论和方法,将多个二维图像中的特征点或特征区域对应起来,并通过三角剖分和立体校正等技术进行三维重建。
常见的三维重建方法包括基于立体匹配的方法、基于结构光的方法以及基于视差图的方法。
3.多视图几何与运动恢复多视图几何与运动恢复关注的是相机的运动估计和3D结构恢复问题。
例如,基于特征点匹配的方法可以通过计算相邻帧之间的运动矩阵来估计相机的运动。
通过多个相机的视角,可以利用多视图的几何关系计算出物体的相对位置和运动轨迹。
三、多视几何的应用1.3D建模与重建多视几何可以用于三维建模与重建,例如通过从多个视角拍摄的图像生成三维模型。
这在虚拟现实、游戏开发、建筑设计等领域都有广泛的应用。
第六章 三维图形变换第一节 三维图形变换基础一、三维坐标系xyzxyz右手坐标系左手坐标系三维图形学中习惯上通常是采用右手坐标系。
xy 平面对应于视平面,z 轴垂直于视平面,指向视平面之外。
二、三维齐次坐标及变换矩阵三维图形变换也是基于矩阵运算进行。
矩阵运算的维数被扩展为四维。
三维坐标点采用4元齐次坐标表示:(x , y , z , 1),三维坐标与三维齐次坐标的相互转换如下:三维坐标(x , y ,z )——齐次坐标(x , y ,z , 1) 齐次坐标(x , y ,z , h )——二维坐标(x /h , y /h ,z /h ) 变换矩阵则为4X4的矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s nm kr j i h q f e d p c b a 其中:平移变换第二节 三维几何变换一、三维基本变换 1. 平移变换⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1010000100001nmk T )1,,,()1,,,(n z m y k x T z y x +++=⋅2. 比例变换)1,,,()1,,,(1000000000000jz ey ax T z y x j e a T =⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 3. 旋转变换三维的基本旋转变换分为三种,即绕三个坐标轴的旋转变换。
(1)绕z 轴旋转γ角旋转后z 值不变,x,y 值将发生改变,x,y 值的计算公式与平面旋转相同,即:zz y x y y x x ='+='-='γγγγcos sin sin cos 则变换矩阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=1000010000cos sin 00sin cos γγγγT 有:)1,1,cos sin ,sin cos ()1,,,(γγγγy x y x z y x +-=T(2)绕x 轴旋转α角则旋转后x 的坐标值不变,y 和z 的坐标值将改变,相当于在yz 平面上绕平面原点进行旋转变换。
平面转转变换的公式为:ααααcos sin sin cos y x y y x x +='-='对应而来,这里y 对应于x ,z 对应y ,有:ααααcos sin sin cos z y z z y y +='-='则变换矩阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=10000cos sin 00sin cos 00001ααααT )1,cos sin ,sin cos ,()1,,,(ααααz y z y x z y x +-=T(3)绕y 轴旋转β角这时,z 对应于x ,x 对应于y 。