数学史概论 第五讲.
- 格式:ppt
- 大小:3.70 MB
- 文档页数:32
《数学史概论》教学大纲课程编号:024ZX002课程名称(中文):数学史概论课程名称(英文):学分:3 总学时:54 实验学时:适应专业:数学与应用数学(选修)先修课程:数学分析,高等代数,概率统计一、课程的性质和任务数学史是师范本科数学专业必修的重要基础课程之一。
任何一门科学都有它自己的产生和发展的历史,数学史就是研究数学的发生、发展过程及其规律的一门学科。
它主要讨论的是数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。
数学是非常古老而又有着巨大发展潜力的科学,其历史的足迹也就更漫长而艰辛。
数学的每一阶段性成果都有着它的产生背景:为何提出,如何解决,如何进一步改进。
这其中体现的思想方法或思维过程对数学专业的学生,甚至是对教师来说,无论是知识的丰富,还是其创造能力的发挥都是重要的。
讲授本课程要贯彻“夯实基础,拓宽视野,培养能力,提高素质”的教育方针,依据“有用、有效、先进”的教改指导原则,对原教材要进行彻底清理,重点放在培养学生的实践能力和创新能力上,同时深刻理解本课程与初等数学的内在联系以指导中学数学的教学。
二、课程基本要求数学史研究的主要对象是历史上的数学成果和影响数学发展的各种因素,如“数学年代”;数学各分支内部发展规律;数学家列传;数学思想方法的历史考察;数学论文杂志和数学经典著作的述评。
该课程要培养学生辩证唯物主义观点,使学生了解数学思想的形成过程,并指导当前的工作,要培养学生学习兴趣,要充分发挥数学史的教育功能。
通过本课程的学习要求学生掌握数学史的分期阶段,对数学的发展各时期有一个大致的了解;了解数学的起源与早期发展;了解古希腊数学对世界数学发展产生的积极影响;要求学生基本掌握中国数学史的分期及各时期的主要数学家与成果,特别是西方数学传入后,中西数学合流产生的影响,较为详细地了解中国现代数学发展概要。
基本掌握外国数学史的分期及各时期的主要成果;要详细了解数学史上的三次危机,掌握代数学、分析学、几何学的主要发展历程以及在这些发展过程中近代哪些数学家起了决定性的作用;了解数学与社会发展、经济发展、文化发展的关系。
《数学史概论》教案第一章:数学史的概述1.1 数学史的定义与意义1.2 数学发展的大致历程1.3 数学史的研究方法与资料来源1.4 数学史与数学教育的关联第二章:古代数学2.1 古代数学的背景与文化环境2.2 埃及数学与巴比伦数学2.3 古希腊数学:毕达哥拉斯学派与欧几里得2.4 中国古代数学:勾股定理与算盘第三章:中世纪数学3.1 印度数学:阿拉伯数字与零的概念3.2 伊斯兰数学家:阿尔·花拉子米与代数学的发展3.3 欧洲中世纪数学:数学符号与运算规则的改进3.4 中国宋元数学:天元术与代数学的进展第四章:文艺复兴与科学革命时期的数学4.1 欧洲文艺复兴时期的数学发展4.2 哥白尼、开普勒与牛顿的数学贡献4.3 解析几何的诞生:笛卡尔与费马4.4 微积分的创立:牛顿与莱布尼茨第五章:现代数学的发展5.1 17至18世纪数学:欧拉与拉格朗日5.2 19世纪数学:非欧几何与群论5.3 20世纪初数学:集合论、数理逻辑与泛函分析5.4 现代数学的多元化发展:计算机科学与数学的交叉第六章:中国的数学成就(续)6.1 明清时期的数学发展6.2 数学著作《数书九章》与《算法统宗》6.3 清朝的数学教育与科举中的数学考试6.4 中国数学对日本及朝鲜数学的影响第七章:欧洲启蒙时期的数学7.1 启蒙运动与数学的关系7.2 莱布尼茨与微积分的发展7.3 伯努利兄弟与概率论的兴起7.4 欧拉与数学分析的进一步发展第八章:19世纪的数学突破8.1 非欧几何的发现8.2 群论与域论的建立8.3 数学符号与逻辑的完善8.4 19世纪数学的其他重要进展第九章:20世纪的数学革命9.1 集合论与数理逻辑的进展9.2 泛函分析与谱理论的发展9.3 拓扑学与微分几何的新成就9.4 计算机科学与数学的关系第十章:数学史的教育意义与应用10.1 数学史在数学教育中的作用10.2 数学史如何激发学生对数学的兴趣10.3 数学史在数学课程设计中的应用10.4 数学史与跨学科研究的结合第十一章:数学与科技的互动11.1 计算机科学与数学的关系11.2 信息技术与数学软件的发展11.3 数学在生物科学、物理学等领域的应用11.4 数学模型与模拟在科学研究中的作用第十二章:数学哲学与数学思想12.1 数学哲学的基本问题12.2 形式主义、直觉主义与逻辑实证主义12.3 数学基础危机与集合论的困境12.4 数学思想在数学发展中的影响第十三章:数学与社会文化13.1 数学与文化的交融13.2 数学在民族志与人类学中的应用13.3 数学传播与教育的发展13.4 数学与社会公正、性别平等的关系第十四章:数学史的国际视角14.1 非洲、拉丁美洲数学史14.2 亚洲数学史:印度、日本与伊斯兰世界14.3 数学交流与比较数学史的研究14.4 数学史的国际会议与出版物第十五章:数学史的展望与挑战15.1 数学史的研究现状与趋势15.2 数字人文与数学史的结合15.3 跨学科研究在数学史中的应用15.4 数学史的未来挑战与机遇重点和难点解析本《数学史概论》教案涵盖了数学史的基本概念、古代数学、中世纪数学、文艺复兴与科学革命时期的数学、现代数学的发展、中国的数学成就、欧洲启蒙时期的数学、19世纪的数学突破、20世纪的数学革命、数学史的教育意义与应用、数学与科技的互动、数学哲学与数学思想、数学与社会文化、数学史的国际视角以及数学史的展望与挑战。
《数学史概论》教案一、教学目标1. 知识与技能:(1)使学生了解数学发展的历史背景和主要成就;(2)培养学生对数学史的兴趣和好奇心;(3)提高学生运用数学知识解决实际问题的能力。
2. 过程与方法:(1)通过查阅资料、讨论交流等方式,学会分析数学问题;(2)培养学生团队合作精神,提高研究性学习的能力。
3. 情感态度与价值观:(1)使学生认识数学与人类文明发展的密切关系;(2)培养学生尊重和热爱数学的情感;(3)引导学生关注数学在社会、科技和经济发展中的应用。
二、教学内容1. 中国古代数学:(1)中国古代数学的发展历程;(2)古代数学家及他们的主要成就;(3)举例介绍《九章算术》和《周髀算经》等古代数学著作。
2. 欧洲古代数学:(1)古希腊数学的发展历程;(2)古希腊数学家及他们的主要成就;(3)举例介绍欧几里得《几何原本》等古代数学著作。
3. 印度数学:(1)印度数学的发展历程;(2)印度数学家及他们的主要成就;(3)举例介绍阿瑜博达等印度数学家的贡献。
4. 阿拉伯数学:(1)阿拉伯数学的发展历程;(2)阿拉伯数学家及他们的主要成就;(3)举例介绍花拉子米等阿拉伯数学家的贡献。
5. 近现代数学:(1)近现代数学的主要发展历程;(2)近现代数学家及他们的主要成就;(3)举例介绍牛顿、莱布尼茨、欧拉等近现代数学家的贡献。
三、教学重点与难点1. 教学重点:(1)中国古代、欧洲古代、印度、阿拉伯以及近现代数学的主要发展历程;(2)各个时期著名数学家及他们的主要成就。
2. 教学难点:(1)近现代数学的发展历程及数学家的贡献;(2)如何引导学生理解数学发展与人类文明的密切关系。
四、教学方法1. 讲授法:讲解各个时期数学发展的历史背景、主要成就和著名数学家;2. 讨论法:组织学生分组讨论,分享对数学史的理解和感悟;3. 案例分析法:举例分析具体数学家的贡献和影响。
五、教学评价1. 平时成绩:考查学生课堂参与度、讨论交流和作业完成情况;2. 期中考试:测试学生对数学史知识的掌握和理解;3. 课程论文:引导学生深入研究某一时期或数学家的贡献,培养学生的研究能力。
《数学史概论》教案一、教学目标1. 让学生了解数学的发展历程,掌握数学的基本概念、原理和方法。
2. 通过数学史的学习,培养学生的逻辑思维能力、创新意识和团队协作能力。
3. 增强学生对数学学科的兴趣和自信心,提高数学素养。
二、教学内容1. 数学的起源与发展古代数学:中国、古埃及、古希腊、印度等中世纪数学:欧洲数学的发展近现代数学:笛卡尔、牛顿、莱布尼茨等2. 数学基本概念与原理自然数、整数、分数、实数、虚数等集合、映射、函数、极限、微积分等3. 数学方法与技巧几何作图、勾股定理、欧几里得算法等代数解方程、费马大定理、数论等概率论、统计学、运筹学等4. 数学在实际应用中的案例物理学、工程学、计算机科学等领域的数学应用经济学、生物学、社会学等领域的数学模型5. 数学家与数学成果毕达哥拉斯、欧几里得、阿基米德、牛顿、莱布尼茨等希尔伯特、康托尔、哥德尔、图灵等三、教学方法1. 讲授法:讲解数学的发展历程、基本概念、原理和方法。
2. 案例分析法:分析数学在实际应用中的案例,培养学生解决问题的能力。
3. 小组讨论法:分组讨论数学问题,培养学生的团队协作能力和创新意识。
4. 研究性学习法:引导学生自主探究数学知识,提高学生的自主学习能力。
四、教学资源1. 教材:《数学史概论》2. 课件:PowerPoint或其他教学软件3. 互联网资源:相关数学史网站、论文、视频等4. 数学工具:计算器、绘图软件等五、教学评价1. 平时成绩:课堂参与度、小组讨论、作业等2. 期中考试:考查学生对数学基本概念、原理和方法的掌握程度3. 期末考试:考查学生对数学史的了解、数学思维能力和实际应用能力4. 综合评价:结合平时成绩、考试成绩,全面评价学生的学习效果六、教学安排1. 课时:共计32课时,每课时45分钟。
2. 教学计划:第1-4课时:数学的起源与发展第5-8课时:数学基本概念与原理第9-12课时:数学方法与技巧第13-16课时:数学在实际应用中的案例第17-20课时:数学家与数学成果七、教学策略1. 激发兴趣:通过讲述数学史的趣味故事,引发学生对数学的兴趣。