3解二元一次方程组(第2课时)
- 格式:doc
- 大小:138.00 KB
- 文档页数:3
浙教版数学七年级下册2.3《解二元一次方程组》(第2课时)教学设计一. 教材分析《解二元一次方程组》是浙教版数学七年级下册第2.3节的内容,主要介绍了解二元一次方程组的基本方法和技巧。
本节课的内容是学生在学习了二元一次方程的基础上进行的,是进一步学习更复杂方程组的基础。
教材通过具体的例子引导学生掌握解二元一次方程组的方法,并能够灵活运用。
二. 学情分析七年级的学生已经掌握了二元一次方程的基本知识,对于解方程有一定的了解。
但是,解二元一次方程组相对于单个方程来说更加复杂,需要学生能够将两个方程结合起来进行求解。
因此,学生在学习本节课的内容时可能会感到有一定的困难,需要通过大量的练习来掌握解题方法。
三. 教学目标1.让学生掌握解二元一次方程组的基本方法。
2.培养学生解决实际问题的能力。
3.提高学生合作交流的能力。
四. 教学重难点1.重难点:解二元一次方程组的方法和技巧。
2.难点:如何将实际问题转化为二元一次方程组,并灵活运用解题方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决问题来学习解二元一次方程组的方法。
2.使用多媒体辅助教学,通过动画和例子来形象地展示解题过程。
3.分组讨论,让学生在合作中学习,提高学生的合作交流能力。
4.大量的练习,让学生在实践中掌握解题方法。
六. 教学准备1.准备相关的教学多媒体材料,如动画、例子等。
2.准备练习题,包括基础题和提高题。
3.准备黑板和粉笔,用于板书解题过程。
七. 教学过程1.导入(5分钟)通过一个实际问题引入二元一次方程组的概念,激发学生的学习兴趣。
2.呈现(15分钟)使用多媒体展示二元一次方程组的解法,引导学生理解解题思路。
3.操练(15分钟)让学生分组讨论,每组解决一个二元一次方程组的问题,并展示解题过程。
4.巩固(10分钟)让学生独立解决一些基础的二元一次方程组问题,巩固所学知识。
5.拓展(10分钟)引导学生思考如何将实际问题转化为二元一次方程组,并灵活运用解题方法。
第八章二元一次方程组8.2解二元一次方程组(第二课时加减消元法)精选练习答案基础篇一、单选题(共10小题)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为()A .﹣4B .4C .﹣2D .2【答案】B 【详解】试题解析:512{34a b a b +=-=①②,①+②:4a+4b=16则a+b=4,故选B .2.若|321|20x y x y --++-=,则x ,y 的值为()A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩【答案】D 【详解】详解:∵32120x y x y --++-,∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩.故选D .3.以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详解】解:解方程组21x yx y+=⎧⎨-=⎩,得1.50.5xy=⎧⎨=⎩,∴点(1.5,0.5)在第一象限.故选:A.4.用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【答案】D【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.5.方程组3276211x yx y+=⎧⎨-=⎩,的解是()A.15xy=-⎧⎨=⎩,B.12xy=⎧⎨=⎩,C.31xy,=⎧⎨=-⎩D.212xy=⎧⎪⎨=⎪⎩,【答案】D 【详解】解:327 6211x yx y+=⎧⎨-=⎩①②,①+②得:9x=18,即x=2,把x=2代入②得:y=1 2,则方程组的解为:212 xy=⎧⎪⎨=⎪⎩,故选D.6.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A .1B .3C .14-D .74【答案】D 【详解】解:3,354,x y x y +=⎧⎨-=⎩①②+①②,得447x y -=,所以74x y -=,因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=.故选D.7.若方程组31331x y ax y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为()A .﹣1B .1C .0D .无法确定【答案】A 【详解】方程组两方程相加得:4(x+y )=2+2a ,即x+y=12(1+a ),由x+y=0,得到12(1+a )=0,解得:a=-1.故选A .8.用加减法解方程组2333211x y x y +=⎧⎨-=⎩时,有下列四种变形,其中正确的是()A .4669633x y x y +=⎧⎨-=⎩B .6396222x y x y +=⎧⎨-=⎩C .6936411x y x y +=⎧⎨-=⎩D .4639611x y x y +=⎧⎨-=⎩【答案】A 【详解】解:若消去x ,则有:6996422x y x y +=⎧⎨-=⎩;若消去y ,则有:4669633x y x y +=⎧⎨-=⎩;∴用加减消元法正确的是A ;9.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为()A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩【答案】C 【详解】详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩.故选C .10.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是()A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【详解】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩,对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,提升篇二、填空题(共5小题)11.已知x 、y 满足方程组3123x y x y +=-⎧⎨+=⎩,则x y +的值为__________.【答案】1【详解】解:3123x y x y +=-⎧⎨+=⎩①②①2⨯得:262x y +=-③③-②得:55,y =-1,y ∴=-把1y =-代入①:31,x ∴-=-2,x ∴=所以方程组的解是:2,1x y =⎧⎨=-⎩1.x y ∴+=故答案为:1.12.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为.【答案】2【详解】把x 2{y 1==代入方程组mx ny 7{nx my 1+=-=,得:2m n 7{2n m 1+=-=,解得13m 5{9n 5==,∴139m 3n 3855+=+⨯=33m 3n 82+,故答案为2.13.若单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,则m-7n 的算术平方根是_________.【答案】4【详解】根据同类项定义由单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,可以得到关于m 、n 的二元一次方程4=m ﹣n ,2m+n=2,解得:m=2,n=﹣2,因此可求得m ﹣7n=16,即m ﹣7n 的算术平方根==4,故答案为4.14.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____.【答案】15x y =⎧⎨=⎩【详解】627x y x y +=⎧⎨+=⎩①②,②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为15x y =⎧⎨=⎩15.已知32x y =⎧⎨=-⎩是方程组37ax by bx ay +=⎧⎨+=-⎩的解,则代数式(a+b)(a-b)的值为_________【答案】−8【详解】解:把32x y =⎧⎨=-⎩代入方程组得:323 327a b b a -=⎧⎨-=-⎩①②,①×3+②×2得:5a =−5,即a =−1,把a =−1代入①得:b =−3,则(a+b)(a-b)=a 2−b 2=1−9=−8,故答案为−8.三、解答题(共2小题)16.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩(2)3523153232x y x y x+=⎧⎪-+⎨-=-⎪⎩【答案】(1)12x y =⎧⎨=-⎩(2)2345x y ⎧=-⎪⎪⎨⎪=⎪⎩【详解】(1)31529x y x y +=⎧⎨-=⎩①②,将①式×2+②得6529x x +=+,1111x =,解得1x =,将1x =代入①得:2y =-,故解为:12x y =⎧⎨=-⎩(2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩,将方程组整理得:()()35223135312x y x y x +=⎧⎪⎨--+=-⎪⎩即35231510x y x y +=⎧⎨--=-⎩①②,①+②得:108y -=-,解得:45y =,将45y =代入①得:23x =-,∴解为2345x y ⎧=-⎪⎪⎨⎪=⎪⎩17.用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:解法二:由②,得3(3)2x x y +-=,③由①-②,得33x =.把①代入③,得352x +=.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“⨯”.(2)请选择一种你喜欢的方法,完成解答.【答案】(1)解法一中的计算有误;(2)原方程组的解是12x y =-⎧⎨=-⎩【详解】(1)解法一中的计算有误(标记略)(2)由①-②,得:33x -=,解得:1x =-,把1x =-代入①,得:135y --=,解得:2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。
第五章 二元一次方程组2. 求解二元一次方程组(第2课时)教学内容北师大版《义务教育课程标准实验教科书·数学》八年级上册第五章第二节《解二元一次方程组》第2课时-----加减消元法.内容解析《二元一次方程组》属于《数学课程标准》中“数与代数”领域的基本内容.“一切问题都可以转化为数学问题,一切数学问题都可以转化为代数问题,而一切代数问题又都可以转化为方程.因此,一旦解决了方程,一切问题将迎刃而解.”笛卡尔的这段话虽然夸大了方程的作用,但却说明了方程作为数学的一个重要分支,是刻画现实世界的一个有效数学模型.而二元一次方程组是七年级一元一次方程的继续和发展,同时又是今后学习线性方程组和平面解析几何等知识的基础.通过本章的学习,将使学生进一步体会方程的模型思想,感受代数方法的优越性,同时也将有助于巩固有理数、整式的运算、一元一次方程等知识。
本章的主要知识有:二元一次方程和二元一次方程组的有关概念、二元一次方程组的解法、二元一次方程组的应用,其知识结构如下:方程组是方程内容的深化与发展,二元一次方程组是方程组内容的开端,用消元法解二元一次方程组的方法是解方程组的基本思想方法。
本单元的内容是学习二元一次方程组及其它方程组必备的基础知识,二元一次方程组在数学学科和实际生活中都有着广泛的应用。
在平面几何和立体几何中,方程组是计算和证明问题中一种非常重要的代数方法;在函数中,方程组是确定一次函数和二次函数的解析式的一种重要的数学方法;在解析几何中方程组是研究两曲线位置关系的一种重要手段;在实际应用问题中方程组也是解应用题的一种重要工具。
本单元要让学生通过探索、尝试、比较等活动让学生去发现二元一次方程组的解法,体会消元化归的数学思想。
⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧应用图象法加减消元法代入消元法解法含义二元一次方程组丰富的问题情境-----根据以上原因本节课的教学重点应为:用加减消元法解二元一次方程组。
而加减消元法的本质是消元,加减只是消元的基本技能,消元的过程中却蕴含着“化未知为已知”的化归思想,在教学时尤其要重视对这些数学思想方法的渗透。
8.2 消元――解二元一次方程组(第2课时)
五、精练——当堂训练,提升能力
1. 下列方程组, 消哪个未知数如何消.
(1) ⎩⎨⎧1392=--=+z x z x (2) ⎩⎨⎧15432525=+=+y x y x (3) ⎩⎨⎧10
431529=+=+y x y x (4) ⎩⎨⎧1754137=--=--y x y x
2. 解方程组:
(1) ⎩⎨⎧12392=--=+y x y x (2) ⎩⎨⎧15432525=+=+y x y x (3) ⎩⎨⎧
10431529=+=+y x y x
(4) ⎩⎨⎧1754137=--=--y x y x
总结: 解二元一次方程组.
(1) 基本思路: .
(2) 用加减法解二元一次方程组的关键步骤你认为什么?
【课堂训练】
1. 用代入法解方程⎩⎨⎧=-=+)2(52)1(243y x y x , 使用代入法化简, 比较容易的变形是 ( )
A. 由(1)得342y x -=
B. 由(1)得4
32x y -= C. 由(2)得2
5y x += D. 由(2)得y =2x -5 2. 若⎩⎨⎧=-=21y x 与⎩⎨⎧-==12y x 是方程mx +ny =5的两个解, 则m +n 等于 ( )
A. 5
B. 10
C. 12
D. -5
3. 若m 、n 满足|2m -1|+(n +2)2=0, 则mn 的值等于 ( )
A. -1
B. 1
C. -2
D. 2
4. 若方程(2a +b )x 2+2x +3y a -b =4,是关于x 、y 的二元一次方程, 则a 、b 的值是 ( )
A. ⎩⎨⎧==00b a
B. ⎩⎨⎧==11b a
C. ⎪⎪⎩⎪⎪⎨⎧-==3231b a
D. ⎪⎪⎩
⎪⎪⎨⎧=-=3231b a 5. 如图, 射线OC 的端点O 在直线AB 上, ∠1的度数x 比∠2的度数y 的2倍多10°,
则可列正确的方程组为 ( )
A. ⎩⎨⎧+==+10180y x y x
B. ⎩⎨⎧+==+102180y x y x
C. ⎩
⎨⎧-==-y x y x 210180 D. ⎩⎨⎧-==-10290x y y x 6. 在2006年德国世界杯足球赛中, 32支足球队将分成8个小组进行单循环比赛, 小组比赛规则如下: 胜
一场得3分, 平一场得1分, 负一场得0分. 若小组赛中某队的积分为5分, 则该队必是 ( )
A. 两胜一负
B. 一胜两平
C. 一胜一平一负
D. 一胜两负
7. 方程组⎩⎨⎧=+=-53122ay x by x 的解是⎩⎨⎧-==2
3y x , 则3a -2b = . 8. 若方程x +y =3, x -y =1和x -2my =0有公共解, 则m 的取值为 .
9. 若x :y =3:2, 且3x +2y =13, 则x = , y = .
10. 已知⎩⎨⎧==11y x 和⎩
⎨⎧-=-=21y x 是关于x 、y 的二元一次方程2ax -by =2的两解, 则a = , b = .
11. 解方程组:①⎩⎨⎧=+-=-.42,72y x y x ②⎩
⎨⎧=-=+.234,132y x y x
12. 某镇由于大力发展种植业和竹业加工业, 使农民今年的收入比去年多15%, 而支出比去年少10%.
已知去年收支相抵结余为400万元, 估计今年可结余860万元, 求去年的收入与支出各是多少万元?。