信号与系统各章节知识点总结
- 格式:pdf
- 大小:1.31 MB
- 文档页数:10
信号与系统知识要点第一章 信号与系统单位阶跃信号 1,0()()0,0t t u t t ε≥⎧==⎨<⎩ 单位冲激信号 ,0()0,0()1t t t t δδ∞-∞⎧∞=⎧=⎨⎪⎪≠⎩⎨⎪=⎪⎩⎰ ()()d t t dtεδ=()()t d t δττε-∞=⎰()t δ的性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-()()(0)f t t dt f δ∞-∞=⎰00()()()f t t t dt f t δ∞-∞-=⎰()()t t δδ=-00()[()]t t t t δδ-=-- 1()()at t aδδ=001()()t at t t a aδδ-=- 单位冲激偶信号 ()t δ'()()d t t dtδδ'=()()t t δδ''=--00()[()]t t t t δδ''-=---()0t dt δ∞-∞'=⎰ ()()td t δττδ-∞'=⎰()()(0)()(0)()f t t f t f t δδδ'''=-00000()()()()()()f t t t f t t t f t t t δδδ'''-=---()()(0)f t t dt f δ∞-∞''=-⎰00()()()f t t t dt f t δ∞-∞''-=-⎰符号函数 sgn()t1,0sgn()0,01,0t t t t >⎧⎪==⎨⎪-<⎩或 sgn()()()2()1t u t u t u t =--=-单位斜坡信号 ()r t0,0()(),0t r t tu t t t <⎧==⎨≥⎩ ()()t r t u d ττ-∞=⎰ ()()dr t u t dt =门函数 ()g t τ1,()20,t g t ττ⎧<⎪=⎨⎪⎩其他取样函数sin ()tSa t t=0sin lim ()(0)lim1t t tSa t Sa t→→=== 当 (1,2,)()0t k k Sa t π==±±=时,sin ()t Sa t dt dt tπ∞∞-∞-∞==⎰⎰sin lim 0t tt →±∞=第二章 连续时间信号与系统的时域分析1、基本信号的时域描述(1)普通信号普通信号可以用一个复指数信号统一概括,即st Ke t f =)(,+∞<<∞-t 式中ωσj s +=,K 一般为实数,也可以为复数。
信号与系统重点概念公式总结Last updated on the afternoon of January 3, 2021信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jba 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n =如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集如果n i K i ,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴;在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
基本概念一维信号:信号是一个独立变量的函数时,称为一维信号。
多维信号:如果信号是n 个独立变量的函数,就称为n 维信号。
归一化能量或功率:信号(电压或电流)在单位电阻上的能量或功率。
能量信号:若信号的能量有界,则称其为能量有限信号,简称为能量信号。
功率信号:若信号的功率有界,则称其为功率有限信号,简称为功率信号。
门函数:()g t τ常称为门函数,其宽度为τ,幅度为1因果性:响应(零状态响应)不出现于激励之前的系统称为因果系统。
因果信号:把t=0时接入的信号(即在t<0时,f(t)=0的信号)称为因果信号,或有始信号。
卷积公式:1212()()*()()()f t f t f t f f t d τττ∞-∞==-⎰梳妆函数:相关函数:又称为相关积分。
意义:衡量某信号与另一延时信号之间的相似程度。
延时为0时相似程度是最好的。
1212()()()R f t f t dt ττ∞-∞==-⎰前向差分: ()(1)()f k f k f k ∆=+-后向差分:()()(1)f k f k f k ∇=--单位序列:()k δ单位阶跃序列:()k ε基本信号:时间域:连续时间系统以冲激函数为基本信号,离散时间系统以单位序列为基本信号。
任意输入信号可分解为一系列冲积函数(连续)或单位序列(离散)的加权和。
频率域:连续时间系统以正弦函数或虚指数函数jwt e 为基本信号,将任意连续时间信号表示为一系列不同频率的正弦信号或虚指数信号之和(对于周期信号)或积分(对于非周期信号)。
DTFT :离散时间信号,以虚指数函数2j kn N e π或j k e θ为基本信号,将任意离散时间信号表示为N 个不同频率的虚指数之和(对于周期信号)或积分(对于非周期信号)。
系统响应:()j t j t Ye H j Fe ωωω=正交函数集:n 个函数构成一函数集,如在区间 内满足正交特性。
复变函数的正交性均方误差:误差的均方值2ε帕斯瓦尔方程:j j j t t K C dt t f ∑⎰∞==12221)( 含义:)(t f 在区间),(21t t 信号所含能量恒等于此信号在完备正交函数集中各正交分量能量的总和。
信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f ji dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f ji dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
信号与系统_复习知识总结信号与系统是电子信息类专业中的一门重要课程,主要介绍信号与系统的基本概念、性质、表示方法、处理方法、分析方法等。
在学习信号与系统的过程中,我们需要掌握的知识非常多,下面是我对信号与系统的复习知识的总结。
一、信号的基本概念1.信号的定义:信号是随时间或空间变化的物理量。
2.基本分类:(1)连续时间信号:在整个时间区间内有无穷多个取值的信号。
(2)离散时间信号:只在一些特定时刻上有取值的信号。
(3)连续振幅信号:信号的幅度在一定范围内连续变化。
(4)离散振幅信号:信号的幅度只能取离散值。
二、信号的表示方法1.连续时间信号的表示方法:(1)方程式表示法:用数学表达式表示信号。
(2)波形表示法:用图形表示信号。
2.离散时间信号的表示方法:(1)序列表示法:用数学序列表示信号。
(2)图形表示法:用折线图表示离散时间信号。
三、连续时间系统的性质1.线性性质:(1)加性:输入信号之和对应于输出信号之和。
(2)齐次性:输入信号的倍数与输出信号的倍数相同。
2.时不变性:系统的输出不随输入信号在时间上的变化而变化。
3.扩展性:输入信号的时延会导致输出信号的时延。
4.稳定性:系统的输出有界,当输入信号有界时。
5.因果性:系统的输出只依赖于当前和过去的输入信号值。
6.可逆性:系统的输出可以唯一地反映输入信号的信息。
四、离散时间系统的性质1.线性性质:具有加性和齐次性。
2.时不变性:输入信号的时移会导致输出信号的相应时移。
3.稳定性:系统的输出有界,当输入信号有界时。
4.因果性:系统的输出只依赖于当前和过去的输入信号值。
五、连续时间系统的分类1.时不变系统:输入信号的时移会导致输出信号的相应时移。
2.线性时不变系统:具有加性和齐次性。
3.时变系统:输入信号的时移会导致输出信号的相应时移,并且系统的系数是时间的函数。
4.非线性系统:不具有加性和齐次性。
六、离散时间线性时不变系统的分类1.线性时变系统:输入信号的时移会导致输出信号的相应时移。
信号与系统第一章1。
1 连续时间与离散时间信号确知信号可以表示成一个或几个自变量的函数连续时间信号在[t1,t2]区间的能量定义为:连续时间信号在[t1,t2]区间的平均功率定义为:离散时间信号在[n1,n2]区间的能量定义为离散时间信号在[n1,n2]区间的平均功率为在无限区间上也可以定义信号的总能量:连续时间情况下:离散时间情况下:在无限区间内的平均功率可定义为: 21lim 2()TTT P dtTx t ∞-→∞=⎰能量信号——信号具有有限的总能量,即:功率信号—-信号有无限的总能量,但平均功率有限。
即:信号的总能量和平均功率都是无限的。
即:如果信号是周期信号,则或这种信号也称为功率信号,通常用它的平均功率来表征或或如果信号是非周期的,且能量有限则称为能量信号。
1.2 自变量的变换1.时移变换当时,信号向右平移时,信号向左平移当时,信号向右平移 时,信号向左平移,0E P ∞∞<∞=,E P ∞∞=∞=∞2。
反转变换信号以t=0为轴呈镜像对称。
与连续时间的情况相同。
3. 尺度变换时,是将在时间上压缩a倍,时,是将在时间上扩展1/a倍。
由于离散时间信号的自变量只能取整数值,因而尺度变换只对连续时间信号而言。
周期信号与非周期信号:周期信号:满足此关系的正实数(正整数)中最小的一个,称为信号的基波周期()。
可视为周期信号,但它的基波周期没有确定的定义。
可以视为周期信号,其基波周期。
奇信号与偶信号:对实信号而言:如果有和则称该信号是偶信号。
(镜像偶对称)如果有和则称该信号为奇信号。
(镜像奇对称)对复信号而言:如果有和则称该信号为共轭偶信号.如果有和则称为共轭奇信号。
任何信号都能分解成一个偶信号与一个奇信号之和。
对实信号有:其中其中对复信号有:其中:其中:1。
3 复指数信号与正弦信号一. 连续时间复指数信号与正弦信号其中C, a 为复数1. 实指数信号:C,a 为实数呈单调指数上升呈单调指数下降。
信号与系统知识要点第一章信号与系统, t 01,t 0(t )0, t 0单位阶跃信号(t) u(t )0 单位冲激信号0,t(t ) 1d (t ) (t )dtt( )d (t )(t ) 的性质:f (t ) (t ) f (0) (t )f (t ) (t t 0 )f (t 0 ) (t t 0 )f (t ) (t)dtf (0)f (t ) (t t 0 )dt f (t 0 )(t ) ( t )(tt 0 ) [ (t t 0 )]1 (t)(at )a(at t 0 )1 (t t)aa 单位冲激偶信号(t)(t )d (t )dt(t ) ( t)(t t 0 )[ (t t 0 )](t )dt 0t( )d (t )f (t ) (t)f (0) (t) f (0) (t)f (t ) (t t 0 )f (t 0 ) (t t 0 ) f (t 0 ) (t t 0 )f (t ) (t) dt f (0)f (t ) (t t 0 ) dtf (t 0 )符号函数 sgn(t )1,tsgn(t )0, t 0 或 sgn(t ) u(t ) u( t ) 2u(t ) 11,t单位斜坡信号r (t)0, t 0 tdr (t) r (t ) tu(t)r (t )u( )du(t)t,tdt门函数 g (t )g (t)1, t2 0, 其他取样函数 Sa(t ) sin ttsin t lim Sa(t)Sa(0) lim 1tt 0t 0当 t k(k1, 2,ggg)时, Sa(t ) 0Sa(t)dtsin t dt lim sin t 0ttt第二章连续时间信号与系统的时域分析1 、基本信号的时域描述( 1 )普通信号普通信号可以用一个复指数信号统一概括,即f (t ) Ke st ,t 式中 sj , K 一般为实数,也可以为复数。
根据与 的不同情况, f (t ) 可表示下列几种常见的普通信号。