信号与系统各章节知识点总结
- 格式:pdf
- 大小:1.31 MB
- 文档页数:10
信号与系统知识要点第一章 信号与系统单位阶跃信号 1,0()()0,0t t u t t ε≥⎧==⎨<⎩ 单位冲激信号 ,0()0,0()1t t t t δδ∞-∞⎧∞=⎧=⎨⎪⎪≠⎩⎨⎪=⎪⎩⎰ ()()d t t dtεδ=()()t d t δττε-∞=⎰()t δ的性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-()()(0)f t t dt f δ∞-∞=⎰00()()()f t t t dt f t δ∞-∞-=⎰()()t t δδ=-00()[()]t t t t δδ-=-- 1()()at t aδδ=001()()t at t t a aδδ-=- 单位冲激偶信号 ()t δ'()()d t t dtδδ'=()()t t δδ''=--00()[()]t t t t δδ''-=---()0t dt δ∞-∞'=⎰ ()()td t δττδ-∞'=⎰()()(0)()(0)()f t t f t f t δδδ'''=-00000()()()()()()f t t t f t t t f t t t δδδ'''-=---()()(0)f t t dt f δ∞-∞''=-⎰00()()()f t t t dt f t δ∞-∞''-=-⎰符号函数 sgn()t1,0sgn()0,01,0t t t t >⎧⎪==⎨⎪-<⎩或 sgn()()()2()1t u t u t u t =--=-单位斜坡信号 ()r t0,0()(),0t r t tu t t t <⎧==⎨≥⎩ ()()t r t u d ττ-∞=⎰ ()()dr t u t dt =门函数 ()g t τ1,()20,t g t ττ⎧<⎪=⎨⎪⎩其他取样函数sin ()tSa t t=0sin lim ()(0)lim1t t tSa t Sa t→→=== 当 (1,2,)()0t k k Sa t π==±±=时,sin ()t Sa t dt dt tπ∞∞-∞-∞==⎰⎰sin lim 0t tt →±∞=第二章 连续时间信号与系统的时域分析1、基本信号的时域描述(1)普通信号普通信号可以用一个复指数信号统一概括,即st Ke t f =)(,+∞<<∞-t 式中ωσj s +=,K 一般为实数,也可以为复数。
信号与系统重点概念公式总结Last updated on the afternoon of January 3, 2021信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jba 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n =如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集如果n i K i ,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴;在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
基本概念一维信号:信号是一个独立变量的函数时,称为一维信号。
多维信号:如果信号是n 个独立变量的函数,就称为n 维信号。
归一化能量或功率:信号(电压或电流)在单位电阻上的能量或功率。
能量信号:若信号的能量有界,则称其为能量有限信号,简称为能量信号。
功率信号:若信号的功率有界,则称其为功率有限信号,简称为功率信号。
门函数:()g t τ常称为门函数,其宽度为τ,幅度为1因果性:响应(零状态响应)不出现于激励之前的系统称为因果系统。
因果信号:把t=0时接入的信号(即在t<0时,f(t)=0的信号)称为因果信号,或有始信号。
卷积公式:1212()()*()()()f t f t f t f f t d τττ∞-∞==-⎰梳妆函数:相关函数:又称为相关积分。
意义:衡量某信号与另一延时信号之间的相似程度。
延时为0时相似程度是最好的。
1212()()()R f t f t dt ττ∞-∞==-⎰前向差分: ()(1)()f k f k f k ∆=+-后向差分:()()(1)f k f k f k ∇=--单位序列:()k δ单位阶跃序列:()k ε基本信号:时间域:连续时间系统以冲激函数为基本信号,离散时间系统以单位序列为基本信号。
任意输入信号可分解为一系列冲积函数(连续)或单位序列(离散)的加权和。
频率域:连续时间系统以正弦函数或虚指数函数jwt e 为基本信号,将任意连续时间信号表示为一系列不同频率的正弦信号或虚指数信号之和(对于周期信号)或积分(对于非周期信号)。
DTFT :离散时间信号,以虚指数函数2j kn N e π或j k e θ为基本信号,将任意离散时间信号表示为N 个不同频率的虚指数之和(对于周期信号)或积分(对于非周期信号)。
系统响应:()j t j t Ye H j Fe ωωω=正交函数集:n 个函数构成一函数集,如在区间 内满足正交特性。
复变函数的正交性均方误差:误差的均方值2ε帕斯瓦尔方程:j j j t t K C dt t f ∑⎰∞==12221)( 含义:)(t f 在区间),(21t t 信号所含能量恒等于此信号在完备正交函数集中各正交分量能量的总和。
信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f ji dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f ji dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
信号与系统_复习知识总结信号与系统是电子信息类专业中的一门重要课程,主要介绍信号与系统的基本概念、性质、表示方法、处理方法、分析方法等。
在学习信号与系统的过程中,我们需要掌握的知识非常多,下面是我对信号与系统的复习知识的总结。
一、信号的基本概念1.信号的定义:信号是随时间或空间变化的物理量。
2.基本分类:(1)连续时间信号:在整个时间区间内有无穷多个取值的信号。
(2)离散时间信号:只在一些特定时刻上有取值的信号。
(3)连续振幅信号:信号的幅度在一定范围内连续变化。
(4)离散振幅信号:信号的幅度只能取离散值。
二、信号的表示方法1.连续时间信号的表示方法:(1)方程式表示法:用数学表达式表示信号。
(2)波形表示法:用图形表示信号。
2.离散时间信号的表示方法:(1)序列表示法:用数学序列表示信号。
(2)图形表示法:用折线图表示离散时间信号。
三、连续时间系统的性质1.线性性质:(1)加性:输入信号之和对应于输出信号之和。
(2)齐次性:输入信号的倍数与输出信号的倍数相同。
2.时不变性:系统的输出不随输入信号在时间上的变化而变化。
3.扩展性:输入信号的时延会导致输出信号的时延。
4.稳定性:系统的输出有界,当输入信号有界时。
5.因果性:系统的输出只依赖于当前和过去的输入信号值。
6.可逆性:系统的输出可以唯一地反映输入信号的信息。
四、离散时间系统的性质1.线性性质:具有加性和齐次性。
2.时不变性:输入信号的时移会导致输出信号的相应时移。
3.稳定性:系统的输出有界,当输入信号有界时。
4.因果性:系统的输出只依赖于当前和过去的输入信号值。
五、连续时间系统的分类1.时不变系统:输入信号的时移会导致输出信号的相应时移。
2.线性时不变系统:具有加性和齐次性。
3.时变系统:输入信号的时移会导致输出信号的相应时移,并且系统的系数是时间的函数。
4.非线性系统:不具有加性和齐次性。
六、离散时间线性时不变系统的分类1.线性时变系统:输入信号的时移会导致输出信号的相应时移。
信号与系统第一章1。
1 连续时间与离散时间信号确知信号可以表示成一个或几个自变量的函数连续时间信号在[t1,t2]区间的能量定义为:连续时间信号在[t1,t2]区间的平均功率定义为:离散时间信号在[n1,n2]区间的能量定义为离散时间信号在[n1,n2]区间的平均功率为在无限区间上也可以定义信号的总能量:连续时间情况下:离散时间情况下:在无限区间内的平均功率可定义为: 21lim 2()TTT P dtTx t ∞-→∞=⎰能量信号——信号具有有限的总能量,即:功率信号—-信号有无限的总能量,但平均功率有限。
即:信号的总能量和平均功率都是无限的。
即:如果信号是周期信号,则或这种信号也称为功率信号,通常用它的平均功率来表征或或如果信号是非周期的,且能量有限则称为能量信号。
1.2 自变量的变换1.时移变换当时,信号向右平移时,信号向左平移当时,信号向右平移 时,信号向左平移,0E P ∞∞<∞=,E P ∞∞=∞=∞2。
反转变换信号以t=0为轴呈镜像对称。
与连续时间的情况相同。
3. 尺度变换时,是将在时间上压缩a倍,时,是将在时间上扩展1/a倍。
由于离散时间信号的自变量只能取整数值,因而尺度变换只对连续时间信号而言。
周期信号与非周期信号:周期信号:满足此关系的正实数(正整数)中最小的一个,称为信号的基波周期()。
可视为周期信号,但它的基波周期没有确定的定义。
可以视为周期信号,其基波周期。
奇信号与偶信号:对实信号而言:如果有和则称该信号是偶信号。
(镜像偶对称)如果有和则称该信号为奇信号。
(镜像奇对称)对复信号而言:如果有和则称该信号为共轭偶信号.如果有和则称为共轭奇信号。
任何信号都能分解成一个偶信号与一个奇信号之和。
对实信号有:其中其中对复信号有:其中:其中:1。
3 复指数信号与正弦信号一. 连续时间复指数信号与正弦信号其中C, a 为复数1. 实指数信号:C,a 为实数呈单调指数上升呈单调指数下降。
信号与系统知识要点第一章信号与系统, t 01,t 0(t )0, t 0单位阶跃信号(t) u(t )0 单位冲激信号0,t(t ) 1d (t ) (t )dtt( )d (t )(t ) 的性质:f (t ) (t ) f (0) (t )f (t ) (t t 0 )f (t 0 ) (t t 0 )f (t ) (t)dtf (0)f (t ) (t t 0 )dt f (t 0 )(t ) ( t )(tt 0 ) [ (t t 0 )]1 (t)(at )a(at t 0 )1 (t t)aa 单位冲激偶信号(t)(t )d (t )dt(t ) ( t)(t t 0 )[ (t t 0 )](t )dt 0t( )d (t )f (t ) (t)f (0) (t) f (0) (t)f (t ) (t t 0 )f (t 0 ) (t t 0 ) f (t 0 ) (t t 0 )f (t ) (t) dt f (0)f (t ) (t t 0 ) dtf (t 0 )符号函数 sgn(t )1,tsgn(t )0, t 0 或 sgn(t ) u(t ) u( t ) 2u(t ) 11,t单位斜坡信号r (t)0, t 0 tdr (t) r (t ) tu(t)r (t )u( )du(t)t,tdt门函数 g (t )g (t)1, t2 0, 其他取样函数 Sa(t ) sin ttsin t lim Sa(t)Sa(0) lim 1tt 0t 0当 t k(k1, 2,ggg)时, Sa(t ) 0Sa(t)dtsin t dt lim sin t 0ttt第二章连续时间信号与系统的时域分析1 、基本信号的时域描述( 1 )普通信号普通信号可以用一个复指数信号统一概括,即f (t ) Ke st ,t 式中 sj , K 一般为实数,也可以为复数。
根据与 的不同情况, f (t ) 可表示下列几种常见的普通信号。
信号与系统复习书中最重要的三大变换几乎都有。
第一章信号与系统1、信号的分类①连续信号和离散信号②周期信号和非周期信号连续周期信号f(t)满足f(t) = f(t + mT),离散周期信号f(k)满足f(k) = f(k + mN),m = 0,±1,±2,…两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。
③能量信号和功率信号④因果信号和反因果信号2、信号的基本运算(+ - ×÷)2.1信号的(+ - ×÷)2.2信号的时间变换运算(反转、平移和尺度变换)3、奇异信号3.1 单位冲激函数的性质f(t) δ(t) = f(0) δ(t) , f(t) δ(t –a) = f(a) δ(t –a)例:3.2序列δ(k)和ε(k)f(k)δ(k) = f(0)δ(k) f(k)δ(k –k0) = f(k0)δ(k –k0) 4、系统的分类与性质4.1连续系统和离散系统4.2 动态系统与即时系统 4.3 线性系统与非线性系统 ①线性性质T [af (·)] = a T [ f (·)](齐次性)T [ f 1(·)+ f 2(·)] = T[ f 1(·)]+T[ f 2(·)] (可加性) ②当动态系统满足下列三个条件时该系统为线性系统:y (·) = y f (·) + y x (·) = T[{ f (·) }, {0}]+ T[ {0},{x(0)}] (可分解性) T[{a f (·) }, {0}] = a T[{ f (·) }, {0}]T[{f 1(t) + f 2(t) }, {0}] = T[{ f 1 (·) }, {0}] + T[{ f 2 (·) }, {0}](零状态线性))0(d )()(f t t t f =⎰∞∞-δ)(d )()(a f t a t t f =-⎰∞∞-δ?d )()4sin(91=-⎰-t t t δπ)0('d )()('f t t f t -=⎰∞∞-δ)0()1(d )()()()(n n n ft t f t -=⎰∞∞-δ4)2(2])2[(d dd )(')2(0022=--=--=-==∞∞-⎰t t t t tt t t δ)(1||1)()()(t aa at n n n δδ⋅=)(||1)(t a at δδ=)(||1)(00at t a t at -=-δδ)0()()(f k k f k =∑∞-∞=δT[{0},{ax 1(0) +bx 2(0)} ]= aT[{0},{x 1(0)}] +bT[{0},{x 2(0)}](零输入线性) 4.4时不变系统与时变系统T[{0},f(t - t d )] = y f (t - t d )(时不变性质) 直观判断方法:若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。
信号与系统知识点总结一、信号与系统概念1. 信号的基本概念信号是指传输信息的载体,可以是任意形式的能量,例如声音、图像、视频等。
信号分为连续信号和离散信号两种类型。
连续信号是指在任意时间范围内都有定义的信号,离散信号是指只在某些离散点上有定义的信号。
2. 系统的概念系统是指对输入信号进行处理并产生输出信号的过程。
系统分为线性系统和非线性系统两种类型。
线性系统满足叠加原理和齐次性质,而非线性系统不满足这两个性质。
3. 信号与系统的分类信号与系统可以按照不同的分类方式进行划分。
例如,按时间域和频率域可以将信号和系统分为时域信号和系统以及频域信号和系统。
二、时域分析1. 时域中的基本概念在时域中,信号经常被表示为在时间轴上的波形。
对信号进行时域分析,可以揭示信号的变化规律和特征。
例如,信号的幅度、频率、相位等特征。
2. 时域信号的表示时域信号可以分为连续信号和离散信号两种类型。
连续信号通常可以由函数来表示,而离散信号则可以用序列或数组来表示。
3. 线性时不变系统线性时不变系统是指系统具有线性和时不变两个性质。
线性性质意味着系统满足叠加原理和齐次性质,时不变性质意味着系统的响应与输入信号的时移无关。
三、频域分析1. 傅里叶变换傅里叶变换是将信号在时域中的表示转换为频域中的表示的数学工具。
它可以将信号转换为频谱,揭示信号的频率成分和能量分布。
傅里叶变换分为连续傅里叶变换和离散傅里叶变换两种。
2. 滤波器的频域特性滤波器可以用来对信号进行频域处理。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
滤波器对不同频率成分的信号有不同的响应,能够用来滤除不需要的频率分量,或者突出需要的频率分量。
3. 抽样定理抽样定理是指在进行模拟信号的离散化表示时,需要保证抽样率足够高,以避免混叠失真。
根据抽样定理,模拟信号进行离散化表示的采样频率需要大于信号最高频率的两倍。
四、系统响应分析1. 系统的时域响应系统的时域响应是指系统对输入信号的时域响应。
《信号与系统》知识要点第一章 信号与系统1、周期信号的判断 (1)连续信号思路:两个周期信号()x t 和()y t 的周期分别为1T 和2T ,如果1122T N T N =为有理数(不可约),则所其和信号()()x t y t +为周期信号,且周期为1T 和2T 的最小公倍数,即2112T N T N T ==。
(2)离散信号思路:离散余弦信号0cos n ω(或0sin n ω)不一定是周期的,当 ①2πω为整数时,周期02N πω=;②122N N πω=为有理数(不可约)时,周期1N N =; ③2πω为无理数时,为非周期序列注意:和信号周期的判断同连续信号的情况。
2、能量信号与功率信号的判断 (1)定义连续信号 离散信号信号能量: 2|()|k E f k ∞=-∞=∑信号功率: def2221lim ()d T T T P f t t T →∞-=⎰ /22/21lim|()|N N k N P f k N →∞=-=∑(2)判断方法能量信号: P=0E <∞, 功率信号: P E=<∞∞, (3)一般规律①一般周期信号为功率信号;②时限信号(仅在有限时间区间不为零的非周期信号)为能量信号;③还有一些非周期信号,也是非能量信号。
⎰∞∞-=t t f E d )(2def3 ① ②4、信号的基本运算1) 两信号的相加和相乘 2) 信号的时间变化a) 反转: ()()f t f t →- b) 平移: 0()()f t f t t →± c) 尺度变换: ()()f t f at →3) 信号的微分和积分注意:带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。
正跳变对应着正冲激;负跳变对应着负冲激。
5、阶跃函数和冲激函数 (1)单位阶跃信号00()10t u t t <⎧=⎨>⎩0t =是()u t 的跳变点。
(2)单位冲激信号定义:性质:()1()00t dt t t δδ∞-∞⎧=⎪⎨⎪=≠⎩⎰ t1)取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞-∞∞-∞=-=⎰⎰()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-2)偶函数 ()()t t δδ=-3)尺度变换 ()1()at t aδδ=4)微积分性质 d ()()d u t t tδ= ()d ()t u t δττ-∞=⎰(3)冲激偶 ()t δ'性质: ()()(0)()(0)()f t t f t f t δδδ'''=-()()d (0)f t t t f δ∞-∞''=-⎰()d ()tt t t δδ-∞'=⎰()()t t δδ''-=- ()d 0t t δ∞-∞'=⎰(4)斜升函数 ()()()d tr t t t εεττ-∞==⎰(5)门函数 ()()()22G t t t τττεε=+--6、系统的特性 (重点:线性和时不变性的判断) (1)线性1)定义:若同时满足叠加性与均匀性,则称满足线性性质。
考研《信号与系统》考研重点考点归纳第1章信号与系统1.1考点归纳一、信号的描述及分类1.信号的定义信号是指消息的表现形式与传送载体。
2.信号的分类及特性(1)确定信号与随机信号确定信号:由确定系统产生、具有确定参数、按确定方式变化的信号。
随机信号:具有不可预知的不确定性信号。
实际中的信号绝大部分都是随机信号。
(2)连续信号与离散信号连续信号:在定义的时间区域内任意时间点上都有定义的信号。
离散信号:只在某些不连续时间值上给定函数值的信号。
(3)周期信号与非周期信号周期信号:=,n∈Z非周期信号:≠,n∈Z(4)奇信号与偶信号偶信号:或。
奇信号:或。
任何信号=一个偶信号+一个奇信号,其中偶部和奇部分别为:(5)功率信号与能量信号功率信号:信号平均功率为非零的有限值。
能量信号:信号总能量为非零的有限值。
3.信号的能量与功率表1-1 能量与功率计算公式说明:(1)总能量有限的信号,平均功率为零;(2)平均功率有限的信号,能量无穷大。
二、信号的运算1.信号的相加与相乘同一时刻两信号之值对应相加减乘:或2.信号的延时信号延时后的信号:式中,>0,波形在保持信号形状不变的同时,右移的距离;<0则向左移动。
3.信号的反褶与尺度变换(1)信号的反褶形式:,波形对称于纵坐标轴的反褶。
(2)信号的尺度变换形式:,有以下规则:①,波形为的波形在时间轴上压缩为原来的;②,波形为的波形在时间轴上扩展为原来的。
③,波形为的波形反转并压缩或展宽至。
4.形如的波形变换(1)先向右(左)平移b个单位,再在此基础上压缩或扩展原来的;(2)先压缩或扩展原来的,再向右(左)平移个单位。
三、指数信号与正弦信号1.连续时间复指数信号与正弦信号连续时间复指数信号具有如下形式:其中C和α一般为复数。
(1)实指数信号实指数信号:C和α都是实数的x(t)。
α的正负对波形的影响:①若α是正实数,x(t)随t的增加而呈指数增长;②若α是负实数,x(t)随t的增加而呈指数衰减。
信号与系统知识点整理第⼀章1.什么是信号?是信息的载体,即信息的表现形式。
通过信号传递和处理信息,传达某种物理现象(事件)特性的⼀个函数。
2.什么是系统?系统是由若⼲相互作⽤和相互依赖的事物组合⽽成的具有特定功能的整体。
3.信号作⽤于系统产⽣什么反应?系统依赖于信号来表现,⽽系统对信号有选择做出的反应。
4.通常把信号分为五种:连续信号与离散信号偶信号和奇信号周期信号与⾮周期信号确定信号与随机信号能量信号与功率信号5.连续信号:在所有的时刻或位置都有定义的信号。
6.离散信号:只在某些离散的时刻或位置才有定义的信号。
通常考虑⾃变量取等间隔的离散值的情况。
7.确定信号:任何时候都有确定值的信号。
8.随机信号:出现之前具有不确定性的信号。
可以看作若⼲信号的集合,信号集中每⼀个信号出现的可能性(概率)是相对确定的,但何时出现及出现的状态是不确定的。
9.能量信号的平均功率为零,功率信号的能量为⽆穷⼤。
因此信号只能在能量信号与功率信号间取其⼀。
10.⾃变量线性变换的顺序:先时间平移,后时间变换做缩放.注意:对离散信号做⾃变量线性变换会产⽣信息的丢失!11.系统对阶跃输⼊信号的响应反映了系统对突然变化的输⼊信号的快速响应能⼒。
(开关效应)12.单位冲激信号的物理图景:持续时间极短、幅度极⼤的实际信号的数学近似。
对于储能状态为零的系统,系统在单位冲激信号作⽤下产⽣的零状态响应,可揭⽰系统的有关特性。
例:测试电路的瞬态响应。
13.冲激偶:即单位冲激信号的⼀阶导数,包含⼀对冲激信号,⼀个位于t=0-处,强度正⽆穷⼤;另⼀个位于t=0+处,强度负⽆穷⼤。
要求:冲激偶作为对时间积分的被积函数中⼀个因⼦,其他因⼦在冲激偶出现处存在时间的连续导数.14.斜升信号:单位阶跃信号对时间的积分即为单位斜率的斜升信号。
15.系统具有六个⽅⾯的特性:1、稳定性2、记忆性3、因果性4、可逆性5、时变性与⾮时变性6、线性性16.对于任意有界的输⼊都只产⽣有界的输出的系统,称为有界输⼊有界输出(BIBO )意义下的稳定系统。