2018年北师大版八年级数学下册第二次月考测试题含答案
- 格式:doc
- 大小:396.50 KB
- 文档页数:17
2022-2023学年北师大版八年级数学下册《1.4角平分线》同步测试题(附答案)一.选择题(共7小题,满分28分)1.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D 到边AB的距离为6,则BC的长是()A.6B.12C.18D.242.如图,O是△ABC的角平分线的交点,△ABC的面积为2,周长为4,则点O到BC的距离为()A.1B.2C.3D.无法确定3.如图,∠ACB的外角平分线与∠ABC的外角平分线相交于点P.则下列结论正确的是()A.P A平分∠CPB B.AP平分BC C.AP⊥BC D.AP平分∠CAB 4.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°5.如图,AD∥BE,点C在BE上,AC平分∠DAB,若AC=2,AB=4,则△ABC的面积为()A.3B.C.4D.6.如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC.若OA=5,AB=6,则点B到AC的距离为()A.5B.C.4D.7.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②AC=4BF;③DB=DC;④AD⊥BC,其中正确的结论共有()A.4个B.3个C.2个D.1个二.填空题(共7小题,满分28分)8.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD:DC=3:2,点D到AB的距离为6,则BC的长是.9.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若BD=10厘米,BC=8厘米,DC=6厘米,则点D到直线AB的距离是厘米.10.如图,在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC 于Q,OR⊥AB于R,AB=7,BC=8,AC=9,则BP+CQ﹣AR=.11.如图,在△ABC中,∠C=90°,BD为△ABC的角平分线,过点D作直线l∥AB,点P为直线l上的一个动点,若△BCD的面积为16,BC=8,则AP最小值为.12.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28cm2,AB=20cm,AC=8cm,则DE的长为.13.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为cm.14.在四边形ABCD中,∠ADC与∠BCD的角平分线交于点E,∠DEC=115°,过点B 作BF∥AD交CE于点F,CE=2BF,∠CBF=∠BCE,连接BE,S△BCE=4,则CE =.三.解答题(共6小题,满分64分)15.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.(1)请说明AE=AF的理由;(2)若AB﹣AC=2,CF=1,求线段BE的长.16.如图,AD∥BC,∠D=90°,∠CPB=30°,∠DAB的角平分线与∠CBA的角平分线相交于点P,且D,P,C在同一条直线上.(1)求∠P AD的度数;(2)求证:P是线段CD的中点.17.如图,△ABC中,三个内角的角平分线交于点O,OH⊥BC垂足为H.(1)求∠ABO+∠BCO+∠CAO的度数;(2)求证:∠BOD=∠COH.18.在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一动点,ME⊥BC,E为垂足,∠AME的平分线交直线AB于点F.(1)如图1,点M为边AC上一点,则BD、MF的位置关系是,并证明;(2)如图2,点M为边CA延长线上一点,则BD、MF的位置关系是,并证明;(3)如图3,点M为边AC延长线上一点,补全图形,并直接写出BD、MF的位置关系是.19.如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(1)求∠CAD的度数;(2)求证:DE平分∠ADC;(3)若AB=7,AD=4,CD=8,且S△ACD=15,求△ABE的面积.20.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角的度数的两倍,则称射线OC是∠AOB的“倍分线”.(1)如图1,若∠AOB=60°,射线OC绕点O从OB位置开始,以每秒15°的速度逆时针旋转t秒,且0≤t≤12.①当t=2秒时,OC∠AOB的“倍分线”;(填“是”或“不是”)②若射线OA是∠BOC的“倍分线”,求t的值;(2)如图2,射线AF绕点A从AB位置开始逆时针旋转α,同时射线BG绕点B从BA 的位置开始顺时针旋转β,且0<β<α<180°,两条射线相交于点C.CD、CE分别是△ABC的高和角平线,是否存在CE是∠BCD的“倍分线”的情况?若存在,请求出α与β应满足的数量关系;若不存在,请说明理由.参考答案一.选择题(共7小题,满分28分)1.解:过D作DE⊥AB于E,∵点D到边AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=6,∵CD=DB,∴DB=12,∴BC=6+12=18,故选:C.2.解:设点O到BC的距离为x,∵O是△ABC的角平分线的交点,△ABC的面积为2,周长为4,∴×4x=2,解得:x=1.∴点O到BC的距离为1.故选:A.3.解:过P点分别作AB、BC、AC的垂线,垂足分别为E、G、D,∵∠ABC、∠ACB外角的平分线相交于点P,∴EP=GP,GP=DP,∴EP=DP,∴AP平分∠BAC.故选:D.4.解:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,故选:B.5.解:过A作AF⊥BE于F,∵AD∥BE,∴∠DAC=∠ACB,∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=BC=4,设CF=x,则BF=4﹣x,由勾股定理得:AB2﹣BF2=AF2=AC2﹣CF2,∴42﹣(4﹣x)2=22﹣x2,x=,∴AF==,∴S△ABC=BC•AF=×=,故选:B.6.解:由题意可得,OC为∠MON的角平分线,∵OA=OB,OC平分∠AOB,∴OC⊥AB,设OC与AB交于点D,作BE⊥AC于点E,∵AB=6,OA=5,AC=OA,OC⊥AB,∴AC=5,∠ADC=90°,AD=3,∴CD=4,∵,∴,解得,BE=,故选:B.7.解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故③④正确,在△CDE与△DBF中,,∴△CDE≌△DBF(ASA),∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故②错误.故选:B.二.填空题(共7小题,满分28分)8.解:作DE⊥AB于E,如图,则DE=6,∵AD平分∠BAC,∴DC=DE=6,∵BD:DC=3:2,∴BD=×6=9,∴BC=BD+DC=9+6=15.故答案为15.9.解:过D作DE⊥AB,交AB于点E,∵BD平分∠ABC,DC⊥CB,DE⊥BA,∴DE=DC=6厘米,则点D到直线AB的距离是6厘米,故答案为:610.解:连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR=OQ,OR=OP,∴由勾股定理得:AR2=OA2﹣OR2,AQ2=AO2﹣OQ2,∴AR=AQ,同理BR=BP,CQ=CP,即O在∠ACB角平分线上,设BP=BR=x,CP=CQ=y,AQ=AR=z,则x=3,y=5,z=4,∴BP=3,CQ=5,AR=4,BP+CQ﹣AR=3+5﹣4=4,故答案为:4.11.解:过点D作DE⊥AB于E,∵△BCD的面积为16,BC=8,∠C=90°,∴CD=4,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD=4,当AP⊥直线l时,AP的值最小,此时四边形APDE为矩形,∴AP=DE=4,∴AP最小值为4,故答案为:4.12.解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∴S△ABC=S△ABD+S△ACD=AB•DE+AC•DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,∴×20DE+×8DF=10DE+4DF=14DE=28,解得DE=2cm.故答案为:2cm.13.解:∵P是∠AOB角平分线上的一点,∠AOB=60°,∴∠AOP=∠AOB=30°,∵PD⊥OA,M是OP的中点,DM=4cm,∴OP=2DM=8,∴PD=OP=4,∵点C是OB上一个动点,∴PC的最小值为P到OB距离,∴PC的最小值=PD=4,故答案为:4.14.解:∵∠CBF=∠BCE,∴可以假设∠BCE=4x,则∠CBF=5x,∵DE平分∠ADC,CE平分∠DCB,∴∠ADE=∠EDC,∠ECD=∠ECB=4x,设∠ADE=∠EDC=y,∵AD∥BF,∴∠A+∠ABF=180°,∴∠ADC+∠DCB+∠CBF=180°,∴2y+13x=180°①,∵∠DEC=115°,∴∠EDC+∠ECD=65°,即y+4x=65°②,由①②解得,∴∠BCF=40°,∠CBF=50°,∴∠CFB=90°,∴BF⊥EC,∵CE=2BF,设BF=m,则CE=2m,∵S△BCE=•EC•BF=4,∴×2m×m=4,∴m=2或﹣2(舍弃),∴CE=2m=4,解法二:延长BA交CB的延长线于点M.∵DE、CE平分∠ADC和∠BCD,∴∠ADC+∠BCD=2(∠EDC+∠ECD)=2(180﹣∠DEC)=130°,∴∠M=50°,∵BF∥AD,∴∠M=∠FBC=50°,∵∠CBF=∠BCE,∴∠BCE=40°,∴∠BFC=90°,∵CE=2BF,三角形BCE的面积4,∴CE=4.故答案为4.三.解答题(共6小题,满分64分)15.解:(1)∵DE、DF分别是△ABD和△ACD的高,∴DE⊥AB,DF⊥AC,∵AD是△ABC的角平分线,∴DE=DF,在Rt△ADE和Rt△ADF中,∵,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF;(2)∵AE=AF,即AB﹣BE=AC﹣CF,∴BE=AB﹣AC+CF=2+1=3.16.(1)解:∵AD∥BC,∴∠C=180°﹣∠D=180°﹣90°=90°,∵∠CPB=30°,∴∠PBC=90°﹣∠B=60°,∵PB平分∠ABC,∴∠ABC=2∠PBC=120°,∵AD∥BC,∴∠DAB+∠ABC=180°,∴∠DAB=180°﹣120°=60°,∵AP平分∠DAB,∴∠P AD=∠DAB=30°;(2)证明:过P点作PE⊥AB于E点,如图,∵AP平分∠DAB,PD⊥AD,PE⊥AB,∴PE=PD,∵BP平分∠ABC,PC⊥BC,PE⊥AB,∴PE=PC,∴PD=PC,∴P是线段CD的中点.17.(1)解:∵AD、BE、CF分别是△ABC的三个内角的角平分线,∴∠ABO=∠ABC,∠BCO=∠ACB,∠CAO=∠CAB.又∵∠ABC+∠ACB+∠CAB=180°,∴∠ABO+∠BCO+∠CAO=(∠ABC+∠ACB+∠CAB)=×180°=90°;(2)证明:∵∠BOD=∠BAO+∠ABO,∠BAO=∠CAO,∴∠BOD=∠CAO+∠ABO=(∠BAC+∠ABC)=(180°﹣∠ACB)=90°﹣∠ACB=90°﹣∠BCO.又∵OH⊥BC,∴∠OHC=90°,∴∠COH=90°﹣∠HCO.∴∠BOD=∠COH.18.解:BD∥MF,理由如下:(1)过点D作DH⊥BC,∵∠A=∠BHD=90°,∠ABD=∠CBD,BD=BD,∴△ABD≌△HBD(AAS),∴∠ADB=∠HDB,∵ME⊥BC,∴∠EMC=∠HDC,∴∠AMF=∠ADH,∴∠AMF=∠ADB,∴FM∥BD;(2)BD⊥MF,理由如下:延长MF交BD于点H,∵∠BAM=∠BEM=90°,∠AOM=∠BOE,∴∠ABC=∠CME,∴∠AMF=∠ABD.∵∠AFM=∠BFM,∴∠BHM=∠MAB=90°,∴MF⊥BD.(3)如图:MF⊥BD.证明方法同理(2).19.(1)解:∵EF⊥AB,∠AEF=50°,∴∠F AE=90°﹣50°=40°,∵∠BAD=100°,∴∠CAD=180°﹣100°﹣40°=40°;(2)证明:过点E作EG⊥AD于G,EH⊥BC于H,∵∠F AE=∠DAE=40°,EF⊥BF,EG⊥AD,∴EF=EG,∵BE平分∠ABC,EF⊥BF,EH⊥BC,∴EF=EH,∴EG=EH,∵EG⊥AD,EH⊥BC,∴DE平分∠ADC;(3)解:∵S△ACD=15,∴×AD×EG+×CD×EH=15,即×4×EG+×8×EG=15,解得,EG=EH=,∴EF=EH=,∴△ABE的面积=×AB×EF=×7×=.20.解:(1)①当t=2时,OC在∠AOB内部,且∠BOC=2×15°=30°,∴∠AOB=2∠BOC,∴OC是∠AOB的“倍分线”,故答案为:是;②(Ⅰ)当OA在∠BOC内部且∠AOB=2∠AOC时,∠AOC=30°,∴∠BOC=90°,∴t=90÷15=6;(Ⅱ)当OA在∠BOC内部且∠AOC=2∠AOB时,如图:∴∠AOC=120°,∴∠BOC=180°,∴t=180÷15=12;(Ⅲ)当OA在∠BOC内部且∠BOC=2∠AOC=2∠BOC时,如图:∴∠BOC=120°,∴t=120÷15=8,综上所述,t的值为6或12或8;(2)存在CE是∠BCD的“倍分线”的情况,理由如下:如图:由已知可得:∠BCD=90°﹣β,∠BCE=∠ACB=(180°﹣α﹣β)=90°﹣α﹣β,∴∠DCE=∠BCD﹣∠BCE=(90°﹣β)﹣(90°﹣α﹣β)=α﹣β,当∠BCD=2∠BCE时,如图:90°﹣β=2(90°﹣α﹣β),∴α=90°,当∠DCE=2∠BCE时,如图:∴α﹣β=2(90°﹣α﹣β),整理得:3α+β=360°,当∠BCE=2∠DCE时,如图:∴90°﹣α﹣β=2(α﹣β),整理得3α﹣β=180°,综上所述,α与β应满足的数量关系为:α=90°或3α+β=360°或3α﹣β=180°.。
北师大版八年级数学下册第二章测试题及答案一.选择题(每题3分,共30分)1.下列数学式子中:①﹣3<0,②2x+3y≥0,③x=1,④x2﹣2xy+y2,⑤x+1>3中,不等式有( ) A.3个B.4个C.5个D.6个2.下列各式中正确的是( )A.若a>b,则a+2>b+2B.若a>b,则a2>b2C.若a>b,且c≠0,则2ac>2bcD.若a>b,则﹣3a>﹣3b3.下列不等式的变形不一定成立的是( )A.若x>y,则﹣x<﹣y B.若x>y,则x2>y2C.若x<y,则D.若x+m<y+m,则x<y4.关于x的一元一次不等式组的解集如图所示,则它的解集是( )A.﹣1<x≤2B.﹣1≤x<2C.x≥﹣1D.x<25.若不等式组的解是x≥a,则下列各式正确的是( )A.a>b B.a≥b C.a<b D.a≤b6.某商店为了促销一种定价为20元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小颖有200元钱,那么她最多可以购买该商品( )A.5件B.6件C.7件D.11件7.若关于x的不等式2﹣m﹣x>0的正整数解共有3个,则m的取值范围是( )A.﹣1≤m<0B.﹣1<m≤0C.﹣2≤m<﹣1D.﹣2<m≤﹣18.一次函数y1=ax+b与y2=mx+n在同一平面直角坐标系内的图象如图所示,则不等式组的解集为( )A.x<﹣2B.﹣2<x<3C.x>3D.以上答案都不对9.若关于x的一元一次不等式组的解集是x≤k,且关于y的方程2y=3+k有正整数解,则符合条件的所有整数k的和为( )A.5B.8C.9D.1510.已知关于x.y的方程组,其中﹣3≤a≤1,给出下列说法:①当a=1时,方程组的解也是方程x+y=2﹣a的一个解;②当a=﹣2时,x.y的值互为相反数;③若x≤1,则1≤y≤4;④是方程组的解.其中说法错误的是( )A.①②③④B.①②③C.②④D.②③二.填空题(每题3分,共24分)11.若﹣a<﹣b,那么﹣2a+9 ﹣2b+9(填">""<"或"=").12.若关于x的不等式组的解集是x<4,则P(2﹣m,m+2)在第 象限.13.若不等式组无解,则a的取值范围是 .14.不等式(m﹣2)x<3的解集是,则m的取值范围是 .15.一次竞赛中,一共有10道题,5分,答错(或不答)一题扣1分,则小明至少答对 道题,成绩超过30分.16.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款:若一次性购买5件以上,超过部分打八折.现有32元钱,最多可以购买该商品 件.17.2019年春节期间,为提倡文明,环保祭祖,某烟花销售商拟今年不再销售烟花爆竹,改为销售鲜花,经过市场调查,发现有甲乙丙丁四种鲜花组合比较受顾客的喜爱,于是制定了进货方案,其中甲丙的进货量相同,乙丁的进货量相同,甲与丁单价相同,甲乙与丙丁的单价和均为88元/束,且甲乙的进货总价比丙丁的进货总价多800元,由于年末资金紧张,所以临时决定只进购甲乙两种组合,甲乙的进货量与原方案相同,且进货量总数不超过500束,则该经销商最多需要准备 元进货资金.18.某校奖励学生,初一获奖学生中,有一人获奖品3件,其余每人获奖品7件;初二获奖学生中,有一人获奖品4件,其余每人获奖品9件.如果两个年级获奖人数不等,但奖品数目相等,且每个年级奖品数大于50而不超过100,那么两个年级获奖学生共有 ————人.三.解答题(共66分)19.解不等式组:(1)解不等式组,并将解集在数轴上表示出来.(2)求不等式组的整数解.20.阅读下列材料:问题:已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围解:∵x﹣y=2,∴x=y+2,又∵x>1,∴y+2>1,∴y>﹣1,又∵y<0,∴﹣1<y<0①∴﹣1+2<y+2<0+2即1<x<2②①+②得﹣1+1<x+y<0+2,∴x+y的取值范围是0<x+y<2.请按照上述方法,完成下列问题:(1)已知x﹣y=5,且x>﹣2,y<0,①试确定y的取值范围;②试确定x+y的取值范围;(2)已知x﹣y=a+1,且x<﹣b,y>2b,若根据上述做法得到3x﹣5y的取值范围是﹣10<3x﹣5y<26,请直接写出a.b的值.21.已知关于x,y的方程满足方程组.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣5|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.22.已知关于x,y的二元一次方程ax+2y=a﹣1.(1)若是该二元一次方程的一个解,求a的值;(2)若x=2时,y>0,求a的取值范围;(3)不论实数a(a≠0)取何值,方程ax+2y=a﹣1总有一个公共解,试求出这个公共解.23.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:若a﹣b>0,则a>b;若a﹣b=0,则a=b;若a﹣b<0,则a<b.反之也成立.这种比较大小的方法称为"求差法比较大小".请运用这种方法尝试解决下面的问题:(1)比较4+3a2﹣2b+b2与3a2﹣2b+1的大小;(2)若2a+2b>3a+b,比较a.b的大小.24.阅读题.小明在数学课外小组活动时遇到这样一个问题:如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>3的解集,小明同学的思路如下:先根据绝对值的定义,求|x|=3时x的值,并在数轴上表示为点A,B,如图所示:观察数轴发现:以点A,B为分界点把数轴分为三部分,点A左边的点表示的数的绝对值大于3,点A.B之间的点表示的数的绝对值小于3,点B右边表示的数的绝对值大于3,因此,小明得出结论绝对值不等式|x|>3的解集为:x<﹣3或x>3参照小明的思路,解决下列问题:(1)请你直接写出下列绝对值不等式|x|>1的解集是 ;(2)求绝对值不等式|x﹣3|>4的解集;(3)求绝对值不等式|x﹣1|<2的解集.25.一个汽车零件制造车间可以生产甲,乙两种零件,生产4个甲种零件和3个乙种零件共获利120元;生产2个甲种零件和5个乙种零件共获利130元.(1)求生产1个甲种零件,1个乙种零件分别获利多少元?(2)若该汽车零件制造车间共有工人30名,每名工人每天可生产甲种零件6个或乙种零件5个,每名工人每天只能生产同一种零件,要使该车间每天生产的两种零件所获总利润超过2800元,至少要派多少名工人去生产乙种零件?26.某商场用60个A型包装袋与90个B型包装袋对甲,乙两类农产品进行包装出售(两种型号包装袋都用完),每个A型包装袋装2千克甲类农产品或装3千克乙类农产品,每个B型包装袋装3千克甲类农产品或装5千克乙类农产品,设有x个A型包装袋包装甲类农产品,有y个B型包装袋包装甲类农产品.(1)请用含x或y的代数式填空完成表:包装袋型号A B甲类农产品质量(千克)2x 乙类农产品质量(千克) 5(90﹣y)(2)若甲.乙两类农产品的总质量分别是260千克与210千克,求x,y的值.(3)若用于包装甲类农产品的B型包装袋数量是用于包装甲类农产品的A型包装袋数量的两倍,且它们数量之和不少于90个,记甲.乙两类农产品的总质量之和为m千克,求m的最小值与最大值.27.新农村实行大面积机械化种植,为了更好地收割庄稼,农田承包大户张大叔决定购买8台收割机,现有久保田和春雨两种品牌的收割机,其中每台收割机的价格.每天的收割面积如下表.销售商又宣传说,购买一台久保田收割机比购买一台春雨收割机多8万元,购买2台久保田收割机比购买3台春雨收割机多4万元.久保田收割机春雨收割机价格(万元/台)x y收割面积(亩/天)2418(1)求两种收割机的价格;(2)如果张大叔购买收割机的资金不超过125万元,那么有哪几种购买方案?(3)在(2)的条件下,若每天要求收割面积不低于150亩,为了节约资金,那么有没有一种最佳购买方案呢? 28."中国人的饭碗必须牢牢掌握在咱们自己手中".为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲.乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲.乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲.乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?答案一.选择题1.A.2.A.3.B.4.B.5.A.6.D.7.C.8.C.9.B.10.A.二.填空题11.<.12.二.13.a≥4.14.m<2.15.7.16.12.17.22400.18.25.三.解答题(共10小题)19.解:(1),解不等式①得:x>﹣4,解不等式②得:x≤2,∴不等式组的解集为:﹣4<x≤2,数轴表示如下:(2),解不等式①得:x>﹣1,解不等式②得:x≤5,∴不等式组的解集为:﹣1<x≤5,∴整数解为0,1,2,3,4,5.20.解:(1)①∵x﹣y=5,∴x=y+5,∵x>﹣2,∴y+5>﹣2,∴y>﹣7,∵y<0,∴﹣7<y<0,②由①得﹣7<y<0,∴﹣2<y+5<5,即﹣2<x<5②,∴﹣7﹣2<y+x<0+5,∴x+y的取值范围是﹣9<x+y<5;(2)∵x﹣y=a+1,∴x=y+a+1,∵x<﹣b,∴y+a+1<﹣b,∴y<﹣a﹣b﹣1,∴﹣y>a+b+1,∵y>2b,∴﹣y<﹣2b,∴a+b+1<﹣y<﹣2b①,∴10b<5y<﹣5a﹣5b﹣5,∵2b+a+1<y+a+1<﹣b,∴2b+a+1<x<﹣b,∴6b+3a+3<3x<﹣3b②,∴11b+8a+8<3x﹣5y<﹣13b,∴①+②得:5b+5a+5+6b+3a+3<3x﹣y<﹣10b﹣3b,∵3x﹣y的取值范围是﹣10<3x﹣5y<2,∴,解得:.21解:(1),①﹣②×2得:﹣x=﹣m+3,即x=m﹣3,把x=m﹣3代入②得:2m﹣6+y=m﹣1,即y=﹣m+5,把x=m﹣3,y=﹣m+5代入x﹣y=2中,得:m﹣3+m﹣5=2,即m=5;(2)由题意得:,解得:3≤m≤5,∴m﹣3≥0,m﹣5≤0,则原式=m﹣3+5﹣m=2;(3)根据题意得:s=2x﹣3y+m=2(m﹣3)﹣3(﹣m+5)+m=6m﹣21,∵3≤m≤5,∴当m=3时,s=18﹣21=﹣3;m=5时,s=30﹣21=9,则s的最小值为﹣3,最大值为9.22.解:(1)∵是ax+2y=a﹣1的一个解,∴2a﹣2=a﹣1,解得a=1;(2)x=2时,2a+2y=a﹣1,∴y=∵x=2时,y>0,∴>0,解得a<﹣1;(3)ax+2y=a﹣1变形为(x﹣1)a+2y=﹣1,∵不论实数a(a≠0)取何值,方程ax+2y=a﹣1总有一个公共解,∴x﹣1=0,此时2y=﹣1,∴这个公共解为.23.解:(1)4+3a2﹣2b+b2﹣(3a2﹣2b+1)=4+3a2﹣2b+b2﹣3a2+2b﹣1=b2+3>0,∴4+3a2﹣2b+b2>3a2﹣2b+1;(2)∵2a+2b>3a+b,∴(2a+2b)﹣(3a+b)>0,∴2a+2b﹣3a﹣b>0,∴﹣a+b>0,∴a<b.24.解:(1)根据阅读材料可知:①|x|>1的解集是x<﹣1或x>1;故答案为:x<﹣1或x>1;(2)∵|x﹣3|>4∴x﹣3<﹣4或x﹣3>4解得:x<﹣1或x>7;(3)|x﹣1|<2,∵﹣2<x﹣1<2,解得:﹣1<x<3.25.解:(1)设生产1个甲种零件获利x元,生产1个乙种零件获利y元,根据题意得:,解得:.答:生产1个甲种零件获利15元,生产1个乙种零件获利20元.(2)设要派a名工人去生产乙种零件,则(30﹣a)名工人去生产甲种零件,根据题意得:15×6(30﹣a)+20×5a>2800,解得:a>10.∵a为正整数,∴a的最小值为11.答:至少要派11名工人去生产乙种零件.26.解:(1)由题意可以填表如下:包装袋型号A B 甲类农产品质量(千克)2x3y 乙类农产品质量(千克)3(60﹣x) 5(90﹣y)故答案为:3y;3(60﹣x).(2)由题意可得,,解得.∴即x的值为40;y的值为60.(3)设有x个A型包装袋包装甲类农产品,则有y=2x个B型包装袋包装甲类农产品.∵用于包装甲类的A,B型包装袋的数量之和不少于90个,∴x+2x≥90,∴x≥30.∵90﹣2x≥0,∴x≤45;∴30≤x≤45,∴m=2x+3(60﹣x)+6x+5( 90﹣2x)=﹣5x+630,∵﹣5<0,∴当30≤x≤45时,m随x增大而减小,∴当x=45时,m有小值405,当x=30时,m有最大值480,∴m的最大值为480,最小值为405.27.解:(1)设两种收割机的价格分别为x万元,y万元,依题意得,解得故久保田收割机的价格为每台20万元,春雨收割机的价格为每台12万元;(2)设购买久保田收割机m台,依题意得20m+12(8﹣m)≤125 解得m≤3,故有以下4种购买方案:①久保田收割机3台,春雨收割机5台;②久保田收割机2台,春雨收割机6台;③久保田收割机1台,春雨收割机7台;④久保田收割机0台,春雨收割机8台;(3)由题意可得24m+18(8﹣m)≥150,解得m≥1,由(1)得购买久保田收割机越少越省钱,所以最佳购买方案为久保田收割机1台,春雨收割机7台.28.解:(1)设购进1件甲种农机具x万元,1件乙种农机具y万元.根据题意得:,解得:,答:购进1件甲种农机具1.5万元,1件乙种农机具0.5万元.(2)设购进甲种农机具m件,购进乙种农机具(10﹣m)件,根据题意得:,解得:4.8≤m≤7.∵m为整数.∴m可取5.6.7.∴有三种方案:方案一:购买甲种农机具5件,乙种农机具5件.方案二:购买甲种农机具6件,乙种农机具4件.方案三:购买甲种农机具7件,乙种农机具3件.设总资金为w万元.w=1.5m+0.5(10﹣m)=m+5.∵k=1>0,∴w随着m的减少而减少,=1×5+5=10(万元).∴m=5时,w最小∴方案一需要资金最少,最少资金是10万元.(3)设节省的资金用于再次购买甲种农机具a件,乙种农机具b件,由题意得:(1.5﹣0.7)a+(0.5﹣0.2)b=0.7×5+0.2×5,其整数解:或,∴节省的资金全部用于再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件.方案二:购买甲种农机具3件,乙种农机具7件.。
北师大版八年级数学下册期中测试题班级姓名学号得分一、选择题1.无论取何值时,下列分式一定有意义的是()A.B.C.D.2.下列因式分解正确的是()A.B.C.D.3.实数a、b、c在数轴上对应的点位置如图所示,下列式子正确的是()①b+c>0 ②a+b>a+c ③bc<ac ④ab>acA.1个B.2个C.3个D.4个4.下列运算正确的是()A. B.C. D.5、如果把分式中的 x,y都扩大7倍,那么分式的值()。
A、扩大7倍B、扩大14倍C、扩大21倍D、不变6.关的分式方程,下列说法正确的是()A.<一5时,方程的解为负数B.方程的解是x=+5C.>一5时,方科的解是正数D.无法确定7.将不等式的解集在数轴上表示出米,正确的是()a221aa+21aa+112+-aa112+-aa()222baba-=-()22224yxyx+=+()()aaa21212822-+=-()()yxyxyx44422-+=-abab11+-=+-babababa321053.02.05.0-+=-+12316+=+aaxyxyyxyx+-=+-yxx25-x15=-xmm mm⎪⎩⎪⎨⎧-≤-<+xxxx238211488.“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( ) A .B .C .D .9.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤.价格为每斤y 元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是( ) A .<B .>C .≤D .≥10.在盒子里放有三张分别写有整式+1、+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ). A .B .C .D .11.关的不等式组有四个整数解,则的取值范同是( )A .B .C .D . 二、填空题12、 一项工程,A 单独做m 小时完成。
新北师大版八年级数学下测试题及答案Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】第一章检测题一 选择题 1已知等腰三角形的两条边长是7和3,那么第三条边长是 ( )A 8B 7C 4D 32、如图,由∠1=∠2,BC=DC ,AC=EC ,得△ABC ≌△EDC 的根据是( )A 、SASB 、ASAC 、AASD 、SSS3、等腰三角形底边长为7,一腰上的中线把其周长分成两部分的差为3,则腰长是( )A 、4B 、10C 、4或10D 、以上答案都不对4、如图,△ABC 中,∠ACB=90°,BA 的垂直平分线交CB 边于D ,若AB=10,AC=5,则图中等于60°的角的个数为( ) A 、2 B 、3 C 、4 D 、5(第2题图)5.如图1,AB =AC ,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,则图中全等三角形的对数为( )A .1 B .2 C .3 D .46.在△ABC 和△DEF 中,已知∠C =∠D ,∠B =∠E ,要判定这两个三角形全等,还需要条件( )A .AB =ED B .AB =FDC .AC =FD D .∠A =∠F7.一个三角形的三边长分别为a ,b ,c ,且()()()0a b b c c a ---=,则该三角形必为( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形8.如图2所示, △ABC 为直角三角形,BC 为斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合.如果AP =3,那么PP ′的长等于( )A .3B .23C .32D .49、如图,在等边ABC ∆中,,D E 分别是,BC AC 上的点,且BD CE =,AD 与BE 相交于点P ,则12∠+∠的度数是( ).A .045B .055C .060D .075(第9题图) (第10题图)10、如图,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( ).A .1处B .2处C .3处D .4处 二、填空题1.如图3,等腰三角形ABC 的顶角为120°,腰长为10,则底边上的高AD = .2.已知等腰三角形的一个内角是100°,则其余两个角的度数分别为 .3.如图5,△ABC 中,AB =AC ,点D 在AC 边上,且BD =BC =AD ,则∠A 等于 .4.如图,D,E 分别为AB,AC 的中点,将△ABC 沿线段DE 折叠,使点A 落在点F 处,若∠B=50°,则∠BDF= .5.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其腰上的高是 .6.如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 的长为三.解答题1.已知:如图8,D 是△ABC 的边AB 上一点,AB ∥FC ,DF 交AC 于点E ,DE =FE . 求证:AE =CE .2.如图12,ABCD 是一张长方形的纸片,折叠它的一边AD ,使点D 落在BC 边上的F 点处,AB =8cm ,BC =10cm ,那么EC 等于多少3.已知:如图,∠A=∠D=90°,AC=BD. 求证:OB=OC4.如图,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM、CN交与F点。
2021-2022学年八年级数学下册第二次月考测试题(附答案)一、选择题(共30分)1.把a2﹣a分解因式,正确的是()A.a(a﹣1)B.a(a+1)C.a(a2﹣1)D.a(1﹣a)2.如图,数轴上所表示的不等式的解集是()A.x≥2B.x>2C.x<2D.x≤23.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为()A.105°B.100°C.95°D.90°5.要使分式有意义,则x的取值范围是()A.x=1B.x≠1C.x=﹣1D.x≠﹣16.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.217.若(a+3)x>a+3的解集为x<1,则a必须满足()A.a<0B.a>﹣3C.a<﹣3D.a>38.如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=()A.30°B.45°C.60°D.75°9.如图,一次函数y1=x+b与一次函数y2=kx+3的图象交于点P(1,2),则关于不等式x+b>kx+3的解集是()A.x>0B.x>1C.x<1D.x<010.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A.B.3C.4D.5二、填空题(共24分)11.分解因式:ab2﹣9a=.12.若一个多边形的每一个内角都是150°,则它是边形.13.如图所示,△DEF是由△ABC通过平移得到的,且点B,E,C,F在同一条直线上,若BF=14,EC=8,则从△ABC到△DEF的平移距离为.14.若分式有意义,则x的取值范围为.15.平行四边形ABCD中,E、F是对角线BD上不同的两点,写出一个能使四边形AECF 一定为平行四边形的条件.(用题目中的已知字母表示)16.如图,∠AOB=120°,点P为∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN;②OM+ON=OP;③四边形PMON的面积保持不变;④△PMN的周长保持不变.其中说法正确的是(填序号).三、计算题(共18分)17.解方程:.18.解不等式组并把解集在数轴上表示出来.19.先化简:,再选一个你喜欢的a的值代入求值.四、解答题(共48分)20.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于原点对称的△A1B1C1;(2)请画出△ABC绕点B逆时针旋转90°后的△A2B2C2,并写出A2的坐标.21.如图,在等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE=CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF.22.如图:在Rt△ABC中,∠A=90°,过B作BH∥AC.(1)按尺规作图要求作BC的垂直平分线,交AC于E,交BH于D,(保留作图痕迹,不写作法),连接BE、CD.(2)求证:四边形BECD是平行四边形.23.为了做好防疫工作,学校准备购进一批消毒液.已知每瓶B型消毒液比A型贵2元,用56元购A型消毒液与72元购B型消毒液的瓶数相同.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用.24.如图,在▱ABCD中,对角线AC,BD相交于点O,BD=2AD,点E在线段OC上,且OE=CE.(1)求证:∠OBE=∠ADO;(2)若F,G分别是OD,AB的中点,且BC=10,①求证:△EFG是等腰三角形;②当EF⊥EG时,求▱ABCD的面积.25.如图,在平面直角坐标系xOy中,已知点A(5,1),B(1,1),C(0,5).直线m平行于x轴且经过C,D,E三点.直线l的关系式为y=﹣2x+b.(1)若△ABD是以AB为底的等腰三角形,且直线l过点D,求b的值;(2)若b=9,直线l与▱ABDE的边DE相交时,求点E的横坐标n的取值范围;(3)若点F为▱ABDE的对角线BE与DA的交点,当直线l经过点F时,求点D的横坐标q与b之间的函数关系式.参考答案与试题解析一、选择题(共30分)1.解:a2﹣a=a(a﹣1).故选:A.2.解:∵2处是实心圆点且折线向右,∴不等式的解集是x≥2.故选:A.3.解:A.该图形既不是轴对称图形,又不是中心对称图形,故此选项不合题意;B.该图形既不是轴对称图形,又不是中心对称图形,故此选项不合题意;C.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;D.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D.4.解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°﹣50°﹣25°=105°.故选:A.5.解:∵分式有意义,∴x﹣1≠0.解得;x≠1.故选:B.6.解:由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴△ADE的周长为6×3=18,故选:C.7.解:∵(a+3)x>a+3的解集为x<1,∴a+3<0,解得:a<﹣3.故选:C.8.解:∵AC∥EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,故选:C.9.解:当x>1时,x+b>kx+3,即不等式x+b>kx+3的解集为x>1.故选:B.10.解:由作法得EF垂直平分AB,∴MB=MA,∴BM+MD=MA+MD,连接MA、DA,如图,∵MA+MD≥AD(当且仅当M点在AD上时取等号),∴MA+MD的最小值为AD,∵AB=AC,D点为BC的中点,∴AD⊥BC,∵S△ABC=•BC•AD=10,∴AD==5,∴BM+MD长度的最小值为5.二、填空题(共24分)11.解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).12.解:360÷30=12,则它是12边形.13.解:∵△DEF是由△ABC通过平移得到,∴BE=CF,∴BE=BF﹣EC,∵BF=14,EC=8,∴BE=14﹣8=3.故答案为:3.14.解:∵分式有意义,∴x2﹣4≠0,∴x≠±2.故答案为:x≠±2.15.解:连接AC交BD于点O,如图:在平行四边形ABCD中,OA=OC,OB=OD,∵AE∥CF,∴∠OAE=∠OCF,∵∠AOE=∠COF,AO=CO,∴△AOE≌COF(ASA),∴OE=OF,∴四边形AECF为平行四边形;故答案为:AE∥CF.16.解:过点P作PE⊥OA,垂足为E,过点P作PF⊥OB,垂足为F,∴∠PEO=90°,∠PFO=90°,∵∠AOB=120°,∴∠EPF=360°﹣∠AOB﹣∠PEO﹣∠PFO=60°,∵∠MPN+∠AOB=180°,∴∠MPN=180°﹣∠AOB=60°,∴∠MPN﹣∠EPN=∠EPF﹣∠EPN,∴∠MPE=∠NPF,∵OP平分∠AOB,PE⊥OA,PF⊥OB,∴PE=PF,∵∠MEP=∠NFP=90°,∴△MEP≌△NFP(ASA),∴PM=PN,ME=NF,故①正确;∵OP=OP,∴Rt△PEO≌Rt△PFO(HL),∴OE=OF,∴OM+ON=OE+ME+OF﹣NF=2OE,∵OP平分∠AOB,∴∠EOP=∠AOB=60°,∴∠EPO=90°﹣∠EOP=30°,∴PO=2OE,∴OM+ON=OP,故②正确;∵△MEP≌△NFP,∴四边形PMON的面积=四边形PEOF的面积,∴四边形PMON的面积保持不变,故③正确;∵PM=PN,∠MPN=60°,∴△PMN是等边三角形,∵MN的长度是变化的,∴△PMN的周长是变化的,故④错误;所以,说法正确的是:①②③,故答案为:①②③.三、计算题(共18分)17.解:方程两边同乘以(x+1)(x﹣1)得(x+1)2﹣6=(x+1)(x﹣1)(2分)整理,得2x=4x=2(4分)检验,把x=2代入(x+1)(x﹣1)=3≠0.所以,原方程的根是x=2.(5分)18.解:解不等式x+4≤3(x+2),得:x≥﹣1,解不等式3x﹣3<2x,得:x<3,则不等式组的解集为﹣1≤x<3,将不等式的解集表示在数轴上如下:19.解:原式=[﹣]•=•=•=,当a=﹣1时,原式=﹣1.四、解答题(共48分)20.解:(1)如图,△A1B1C1;即为所求;(2)如图,△A2B2C2即为所求,A2的坐标(﹣2,2).21.(1)解:∵△ABC是等边三角形,∴∠BCD=60°,AB=BC=AC=6,又∵AB=6,点D为AC的中点,∴CD=3,BC⊥CD,∴BD===3;(2)证明:∵△ABC是等边三角形,D为AC的中点,∴∠CBD=,又∵CE=CD,∴∠CDE=∠E,又∵∠BCD=60°,∴∠E=,∴∠CBD=∠E,∴BD=DE,又∵DF⊥BC,垂足为F.∴BF=EF.22.(1)解:如图,直线DE为所求;(2)证明:DE交BC于F,如图,∵DE垂直平分BC,∴BF=CF,EB=EC,又∵BH∥AC,∴∠1=∠2,∠3=∠4在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形.23.解:(1)设A型消毒液的单价是x元,B型消毒液的单价是y元,得,解得.答:A型消毒液的单价是7元;B型消毒液的单价是9元.(2)设购进A型消毒液a瓶,则购进B型消毒液(90﹣a)瓶,费用为w元,依题意可得:w=7a+9(90﹣a)=﹣2a+810,∵k=﹣2<0,∴w随a的增大而减小.∵B型消毒液的数量不少于A型消毒液数量的,∴90﹣a≥a.解得a≤67 ,∴当a=67时,w取得最小值,此时w=﹣2×67+810=676,90﹣a=23.答:最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶;最低费用为676元.24.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,DO=BO=BD,∴∠ADB=∠DBC,∵BD=2AD,∴AD=DO,∴BC=BO,∵E是CO中点,∴∠OBE=∠OBC,∴∠OBE=∠ADO;(2)①证明:∵BC=BO,∴△BOC是等腰三角形,∵E是CO中点,∴EB⊥CO,∴∠BEA=90°,∵G为AB中点,∴EG=AB,∵四边形ABCD是平行四边形,∴AB=CD,∵E、F分别是OC、OD的中点,∴EF=CD∴EG=EF,∴△EFG是等腰三角形;②解:由①得EF∥AB,∵EF⊥EG,∴EG⊥AB,∵G是AB的中点,∴AE=BE,设CE=x,则AO=CO=2CE=2x,∴BE=AE=3x,在Rt△BEC中,BC=10,∴EC2+BE2=BC2,即x2+(3x)2=102,解得x=,∴AC=,BE=,∴S▱ABCD=2S△ABC=.25.解:(1)∵A(5,1),B(1,1),DA=DB,∴D(3,5),将x=3,y=5代入y=﹣2x+b,∴b=11;(2)∵四边形ABDE为平行四边形,∴DE=AB=4,∵E(n,5),∴D(n﹣4,5),当5=﹣2x+9时,x=2,∵直线y=﹣2x+9与边DE有交点,∴2≤n≤6;(3)∵四边形ABDE为平行四边形,∴DF=F A,∵D(q,5),A(5,1),∴,即,将,y=3代入y=﹣2x+b,∴q=b﹣8.。
第二章 一元一次不等式(组) 单元检测卷(全卷满分100分 限时90分钟) 一.选择题:(每小题3分共36分)1. 若b a <,则下列各不等式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac < 2.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -<3.已知x y >,则下列不等式不成立的是( ).A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+ 4. 如果1-x 是负数,那么x 的取值范围是( )A .x >0B .)x <0C .x >1D .x <1 5. 若1-=aa ,则a 只能是:( ) ( )A .1-≤aB .0<aC .1-≥aD .0≤a6. 某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.一次函数y =2x -4与x 轴的交点坐标为(2,0),则一元一次不等式2x -4≤0的解集应是( )A .x ≤2B .x <2C .x ≥2D .x >28. 小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每个笔记本2元,那么小明最多能买______支钢笔.A.12B.13C.14D.159.已知关于x 的不等式组0220x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是A. 65a -<<-B. 65a -≤<-C. 65a -<≤-D. 65a -≤≤- 10. 不等式2(1)3x x +<的解集在数轴上表示出来应为 ( )11.给出四个命题:①若a>b ,c=d , 则ac>bd ;②若ac>bc ,则a>b ;③若a>b 则ac 2>bc 2;④若ac 2>bc 2,则a>b 。
2.4一元一次不等式同步练习一、单选题1、不等式5x ﹣1>2x+5的解集在数轴上表示正确的是( )A 、B 、C 、D 、2、滕州市出租车的收费标准是:起步价6元(即行驶距离不超过3千米都需付6元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地路程是x 千米,出租车费为16.5元,那么x 的最大值是( )A 、11B 、10C 、9D 、83、不等式223127-<+-x x 的负整数解有( ) A 、1个B 、2个C 、3个D 、4个4、某次数学竞赛中出了10道题,每答对一题得5分,每答错一题扣3分,若答题只有对错之分,如果至少得10分,那么至少要答对( )A 、4 题B 、5 题C 、6题D 、无法确定5、若a≠0,a ,b 互为相反数,则不等式ax+b <0的解集为( )A 、x >1B 、x <1C 、x <1或x >1D 、x <﹣1或x >﹣16、将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有﹣个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x 人,则可列不等式为( )A 、8(x ﹣1)<5x+12<8B 、0<5x+12<8xC 、0<5x+12﹣8(x ﹣1)<8D 、8x <5x+12<87、某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,则至多可打( )A 、6折B 、7折C 、8折D 、9折二、填空题8、m 的6倍与4的差不小于12,列不等式为________.9、不等式3x ﹣6>0的最小整数解是________.10、若代数式2151--+t t 的值不小于1,则t 的取值范围是________. 11、已知三个连续自然数之和小于20,则这样的自然数共有________组.12、某中学举办了“汉字听写大会”,准备为获奖的40名同学颁奖(每人一个书包或一本词典),已知每个书包28元,每本词典20元,学校计划用不超过900元钱购买奖品,则最多可以购买________个书包.13、某次数学竞赛初试有试题25道,阅卷规定:每答对一题得4分,每答错(包括未答)一题得(﹣1)分,得分不低于60分则可以参加复试.那么,若要参加复试,初试的答对题数至少为________.三、解答题14、解不等式:1223312>+-+x x ,并将解集在数轴上表示出来.15、为了丰富学生的体育生活,学校准备购进一些篮球和足球,已知篮球、足球的单价分别为100元,90元.如果该校计划购进篮球、足球共52个,总费用不超过5000元,那么至少要购买多少个足球?16、某公司为了扩大生产,决定购进6台机器,但所用资金不能超过68万元,现有甲、乙两种机器供选择,其中甲种机器每台14万元,乙种机器每台10万元,现按该公司要求有哪几种购买方案,并说明理由.17、东风商场文具部出售某种毛笔每支25元,书法练习本每本5元.为促销,该商场制定了两种优惠.方案一:买一支毛笔就赠送一本练习本;方案二:按购买金额打九折销售.某校书法兴趣小组购买这种毛笔10支,书法练习本x(x≥10)本.问:①若按方案一购买,则需要多少元,按方案二购买,需要多少元.(用含x的代数式表示)②购买多少本书法练习本时,两种方案所花费的钱是一样多?③购买多少本书法练习本时,按方案二付款更省钱?18、为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?答案解析1.A2.B3.A4.B5.C6.C7.C8.6m-4≥129.x=3 10.t≤-1 11.6 12.12 13.17题14、解:去分母得,2(2x+1)﹣3(3x+2)>6,去括号得,4x+2﹣9x﹣6>6,移项得,4x﹣9x>6+6﹣2,合并同类项得,﹣5x>10,把x的系数化为1得,x<﹣2.并在数轴上表示为:15、解:设购买足球m个,则购买篮球(52﹣m)个,根据题意,得:(52﹣m)×100+90m≤5000,解得:m≥20,答:至少要购买20个足球16、解:设甲型号的机器x台,则乙种型号的机器为(6﹣x).依题意得:14x+10(6﹣x)≤68,解得:x≤2,∵x≥0,且x为整数,∴x=0,或x=1或x=2,∴该公司共有三种购买方案如下:方案一:甲种机器0台,则购买乙种机器6台;方案二:甲种机器1台,则购买乙种机器5台;方案三:甲种机器2台,则购买乙种机器4台17、解:①按方案一购买,需付:10×25+5(x﹣10)=5x+200,按方案二购买,需付:0.9×(5x+25×10)=4.5x+225.故答案为:5x+200,4.5x+225;②依题意可得,5x+200=4.5x+225,解得:x=50.答:购买50本书法练习本时,两种方案所花费的钱是一样多;③依题意可得,5x+200>4.5x+225,解得:x>50.答:购买超过50本书法练习本时,按方案二付款更省钱18、解:(1)设甲、乙两种型号的挖掘机各需x台、y台.依题意得:,解得.答:甲、乙两种型号的挖掘机各需5台、3台;(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.依题意得:60m+80n=540,化简得:3m+4n=27.∴m=9﹣n,∴方程的解为 或 .北师大版九年级数学上册期中测试题 一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12 C.13 D.14 2. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方2C.这个方程可以化成一元二次方程的一般形式 D.这个方程可以用公式法求解 3.下列说法正确的个数是 ①菱形的对角线相等 ②对角线互相垂直的四边形是菱形; ③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形 ⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是 7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是 A.23 B.12 C.13 D.49 8.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.24013 9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342 D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.1个B.2个C.3个D.4个 二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________. 12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________. 13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________. 14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转(1)请用画树状图法或列表法列出所有可能的结果;(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)商场平均每天可能盈利1700元吗?请说明理由.20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y 与销售单价x 之间的函数关系式;(2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x.23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。
八年级上学期第一次月考综合测试卷时间:100分钟 满分:120分 考试范围:北师大版八年级上册第一章~第二章一、选择题(每小题3分,共30分)1.下列是无理数的是( )A.-13B.4C.3.141 592 6D.-π2.下列几组数中,是勾股数的是( )A.1,2,3B.0.3,0.4,0.5C.15,8,17D.35,45,13.下列各式中正确的是( )A.16=±4B.3-27=-9C.(-3)2=-3D.94=324.已知下列各式:23,0.1,35,12,6,其中不是最简二次根式的有( )A.2个B.3个C.4个D.5个5.在如图所示的数轴上,表示数3-7的点应在( )A.A ,O 之间B.O ,B 之间C.B ,C 之间D.C ,D 之间6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6km 处往东拐,仅走了1 km,就找到了宝藏,则门口A 到藏宝点B 的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.如图,一场暴雨过后,垂直于地面的一棵大树在距地面5米的C 处折断,树尖B 恰好碰到地面,经测量树尖B 与树桩A 相距12米,则大树折断前高为( )A.13米 B.17米 C.18米 D.22米8.如图,是一种筷子的收纳盒,长、宽、高分别为4 cm,3 cm,12 cm,现有一长为16 cm 的筷子插入到盒的底部,则筷子露在盒外的部分h (cm)的取值范围( )A.3<h<4 B.3≤h ≤4 C.2≤h ≤4 D.5≤h ≤69.把两块同样大小的含45°角的直角三角尺按如图所示放置,其中一块的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上,若AC=22,则CD的长是( )A.3B.5C.25+2D.23+210.如图,有一根高为2.1 m的木柱,它的底面周长为40 cm,在准备元旦联欢晚会时,为了营造喜庆的氛围,小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( ) A.1 400 cm B.350 cm C.840 cm D.300 cm二、填空题(每小题3分,共15分)11. 写出一个在3和4之间的无理数:12.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是 .13.若m,n为实数,且m=1―n+n-1+8,则mn的立方根为 .14 .如图,有一块一边长为24 m的长方形绿地,在绿地旁边B处有健身器材.由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走 步,踏草何忍”,但小颖不知应填什么数,请你帮她填上.(假设2步为1 m)15.有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,且这3个正方形所围成的三角形是直角三角形.再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”.请你算出“生长”了2 021次后形成的图形中所有的正方形的面积和是 .三、解答题(共8小题,共75分)16.(8分)把下列各数填入相应的集合内:227,π5,0,3.14,-5,0.313 131…,38,-64,7.151 551…(相邻两个1之间5的个数逐次加1).有理数集合{ …};无理数集合{ …};正数集合{ …};负数集合{ …}.17.(每小题3分,共12分)解答下列各题.(1)(x+5)2=16(2)8(x-1)3=-1258(3)48-27+13 (4)(-2+6)(-2-6)-(3-13)2.18.(8分)如图,一个梯子AB,顶端A 靠在墙AC 上,这时梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米到E 点,底端则水平滑动8米到D 点,求滑动前梯子底端与墙的距离CB 是多少.19.(8分)如图,在四边形ABDC中,∠A=90°,AB=6,AC=8,BD=5,CD2=125.(1)连接BC,求BC的长;(2)求△BCD的面积.20.(8分)已知a-2的平方根是±2,a-3b-3的立方根是3,整数c满足c<12<c+1.(1)求a,b,c的值;(2)求a2+b2+c3+17的算术平方根.21.(10分)为了积极响应国家新农村建设,某镇政府采用了移动宣讲的广播形式进行宣传.如图,笔直公路MN的一侧有一报亭A,报亭A到公路MN的距离AB 为600米,且宣讲车P周围1 000米以内能听到广播宣传,宣讲车P在公路MN 上沿PN方向行驶.(1)请问报亭的人能否听到广播宣传,并说明理由;(2)如果能听到广播宣传,已知宣讲车的速度是200米/分,那么报亭的人总共能听到多长时间的广播宣传?22.(10分)八年级某班开展了手工制作比赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的前两个步骤如下:①如图,先裁下一张长20 cm,宽16 cm 的长方形纸片ABCD;②将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处.请你根据①②步骤分别计算FC,EC 的长.23.(11分)小明在解决问题:已知a=12+3,求2a 2-8a+1的值.他是这样分析与解答的:因为a=12+3=2―3(2+3)(2-3)=2-3,所以a-2=-3.所以(a-2)2=3,即a 2-4a+4=3.所以a 2-4a=-1.所以2a 2-8a+1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:12+1= .(2)计算:12+1+13+2+14+3+…+1100+99.(3)若a=12-1,求4a 2-8a+1的值.参考答案12345678910DCDBBDCB DB11.1112.513.214.1615.2022解析:6.D 如图,过点B 作BC⊥AC ,垂足为C,过点N 作NM⊥AC ,垂足为M.由题意可知AC=AF-MF+MC=8-3+1=6(km),BC=2+6=8(km),在Rt△ACB中,AB=AC 2+BC 2=62+82=10(km).解析:9.D 如图,作AF⊥BC 于点F,∵△AED 和△ACB 是一样的等腰直角三角形,AC=22,∴BC=AD=4,∴AF=12BC=2,BF=CF=2,∴DF=AD 2-AF 2=42-22=23,∴CD=DF+CF=23+2.三、解答题16.有理数集合{227,0,3.14,0.313 131…,38,-64,…};无理数集合{π5,-5,7.151 551…(相邻两个1之间5的个数逐次加1),…};正数集合{227,π5,3.14,0.313 131…,38,7.151 551…(相邻两个1之间5的个数逐次加1),…};负数集合{-5,-64,…}.17.(1)x=-1或x=-9.(2)因为8(x-1)3=-1258,所以(x-1)3=-12564,所以x-1=-54,所以x=1-54,所以x=-14(3)原式=43-33+33=433.(4)原式=4-6-(3-2+13)=-2-43=-103.18.∵AC⊥BC ,∴AC 2+CB 2=AB 2,CE 2+CD 2=DE 2,由题意知AB=DE ,AC=24米,AE=4米,BD=8米,∴CE=24-4=20(米),CD=CB+8,∴242+CB 2=202+(CB+8)2,解得CB=7(米).答:滑动前梯子底端与墙的距离CB 是7米.19.(1)∵在△ABC 中,∠A=90°,AB=6,AC=8,∴BC 2=AB 2+AC 2=100,∴BC=10.(2)在△BCD 中,BC=10,BD=5,CD 2=125,∵BC 2+BD 2=102+52=125=CD 2,∴△BCD 是直角三角形,且∠CBD=90°,∴△BCD 的面积为12BD·BC=12×5×10=25. 20.(1)根据题意,得a-2=4,a-3b-3=27,所以a=6,b=-8.12=23≈3.46,所以3<12<4,所以c=3.(2)由(1)知a=6,b=-8,c=3,所以a 2+b 2+c 3+17=62+(-8)2+33+17=144.因为122=144,所以a 2+b 2+c 3+17的算术平方根为12.21.(1)报亭的人能听到广播宣传.理由:∵600米<1 000米,∴报亭的人能听到广播宣传.(2)如图,假设当宣讲车P 行驶到P 1点时,报亭的人开始听到广播宣传,当宣讲车P 行驶过P 2点时,报亭的人开始听不到广播宣传,连接AP 1,AP 2.易知AP 1=AP 2=1 000米,AB=600米,AB ⊥MN ,∴BP 1=BP 2=1 0002-6002=800(米),∴P 1P 2=1 600米.∵1 600÷200=8(分),∴报亭的人总共能听到8分钟的广播宣传.22.∵ 将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处,∴DE=FE ,AF=AD.在Rt△ABF 中,由勾股定理,得BF 2=AF 2-AB 2=202-162=144,∴BF=12 cm .∴FC=20-12=8(cm).设CE=x cm,则EF=DE=(16-x )cm .在Rt△CEF 中,由勾股定理,得EF 2=FC 2+CE 2,即(16-x )2=82+x 2,解得x=6,∴EC=6 cm .23.(1)2-1 解法提示:12+1=2-1(2+1)(2-1)=2-1.(2)原式=(2-1)+(3-2)+(4-3)+…+(100-99)=100-1=10-1=9.(3)因为a=12-1=2+1(2-1)(2+1)=2+1,所以a-1=2.所以(a-1)2=2,即a 2-2a +1=2.所以a 2-2a=1.所以4a 2-8a +1=4(a 2-2a )+1=4×1+1=5.。
北师大版八年级数学下册第二章综合素质评价一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列式子:①3>0;②4x +6>0;③x <2;④x 2+x ;⑤x ≠-5;⑥x +2>x +1,其中不等式有( )A .3个B .4个C .5个D .6个2.若x <y ,且(a -3)x >(a -3)y ,则a 的取值范围是( )A .a <3B .a >3C .a ≥3D .a ≤33.下列说法中,错误的是( )A .不等式x <2的正整数解只有一个B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x >-3D .不等式x <10的整数解有无数个4.已知点P (x -2,6-2x )是平面直角坐标系第二象限上一点,则x 的取值范围在数轴上表示正确的是( )5.【2021·娄底】如图,直线y =x +b 和y =kx +4与x 轴分别相交于点A (-4,0),点B (2,0),则⎩⎨⎧x +b >0,kx +4>0的解集为( )A .-4<x <2B .x <-4C .x >2D .x <-4或x >2 6.【2022·佛山南海区校级月考】某种商品的进价为400元,出售时标价为500元,由于换季,商店准备打折销售该种商品,但要保证利润率不低于10%,那么至多打( )A .8折B .8.5折C .8.8折D .9折7.已知不等式组⎩⎨⎧x +a >1,2x +b <2的解集为-2<x <3,则(a +b )2 023的值为( ) A .1 B .2 023 C .-1 D .-2 0238.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x ,则可以列不等式组为( )A.⎩⎨⎧(4x +19)-6(x -1)≥1(4x +19)-6(x -1)≤6B.⎩⎨⎧(4x +19)-6(x -1)≤1(4x +19)-6(x -1)≥6 C.⎩⎨⎧(4x +19)-6(x -1)≤1(4x +19)-6(x -1)≥5 D.⎩⎨⎧(4x +19)-6(x -1)≥1(4x +19)-6(x -1)≤59.若关于x ,y 的方程组⎩⎨⎧2x +y =4,x +2y =-3m +2的解满足x -y >-32,则m 的最小整数解为( )A .-3B .-2C .-1D .010.对于任意实数m 、n ,定义一种新运算:m ※n =mn -m -n +3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a <4※x <7,且解集中有两个整数解,则a 的取值范围是( )A .-1<a ≤4B .-1≤a <2C .-4≤a <-1D .-4<a ≤-1二、填空题:本大题共5小题,每小题3分,共15分.11.语句“x 的18与x 的和不超过5”可以表示为____________.12.若不等式(m -3)x |m -2|+2>0是关于x 的一元一次不等式,则m 的值为____________.13.不等式组⎩⎨⎧x -2<3a ,-2x >-2a +8的解集是x <a -4,则a 的取值范围是_____________. 14.对一个实数x ,按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190”为一次操作,如果操作恰好进行两次停止,那么x 的取值范围是____________.15.定义:对于实数a ,b ,符号max{a ,b }表示:当a ≥b 时,max{a ,b }=a ,当a <b 时,max{a ,b }=b .例如max{-3,5}=5,max{2,1}=2.若关于x 的函数y =max{x -2,-2x +1},则该函数的最小值为______________.三、解答题(一):本大题共3小题,每小题8分,共24分.16.【2022·宜昌】解不等式x -13≥x -32+1,并在如图所示的数轴上表示解集.17.【2022·毕节】解不等式组⎩⎪⎨⎪⎧x -3(x -2)≤8,12x -1<3-32x ,并把解集在数轴上表示出来.18.(1)解不等式5x +2≥3(x -1),并把它的解集在如下数轴上表示出来;(2)写出一个实数k ,使得不等式x <k 和(1)中的不等式组成的不等式组恰有3个整数解.四、解答题(二):本大题共3小题,每小题9分,共27分.19.已知关于x ,y 的方程组⎩⎨⎧2x +2y =4m ,x -y =3m -4,且x >0,y >0. (1)试用含m 的式子表示方程组的解;(2)求实数m 的取值范围.20.每年11月份脐橙和蜜桔进入销售旺季.某商家购进脐橙和蜜桔共1 000箱.设购进蜜桔x 箱,这两种水果的售价与进价如下表所示:(1)请用含x 的代数式表示该商家售完这1 000箱水果所获得的利润;(2)为了迎接“双11”活动,商家决定进行组合促销活动:两种水果各一箱打包成一组,售价为55元/组,其组数为购进蜜桔箱数的15,未打包的按原价出售.若这两种水果全部卖出,利润不少于6 500元,则该商家至少要购进蜜桔多少箱?21.对x ,y 定义一种新运算T ,规定:T (x ,y )=(mx +ny )(x +2y )(其中m ,n 均为非零常数).例如:T (1,1)=3m +3n .已知T (1,-1)=0,T (0,2)=8.(1)求m ,n 的值;(2)若关于p 的不等式组⎩⎨⎧T (2p ,2-p )>4,T (4p ,3-2p )≤a恰好有3个整数解,求a 的取值范围.五、解答题(三):本大题共2小题,每小题12分,共24分.22.某学校需要采购一批演出服装,A ,B 两家制衣公司都愿意成为这批服装的供应商.经了解,两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商,A 公司给出的优惠条件是全部服装按单价打七折,但校方需承担2 200元的运费;B 公司给出的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应比男生人数的2倍少100人,设参加演出的男生有x 人.(1)设学校购买A ,B 两家公司服装所付的总费用分别是y 1元,y 2元,用含x 的代数式分别表示y 1和y 2;(2)该学校购买哪家制衣公司的服装比较合算?23.先阅读下面的例题,再按要求解决问题.例题:解一元二次不等式x 2-9>0.解:∵x 2-9=(x +3)(x -3),∴(x +3)(x -3)>0.由有理数的乘法法则“两数相乘,同号得正”,有①⎩⎨⎧x +3>0,x -3>0,解不等式组①,得x >3, ②⎩⎨⎧x +3<0,x -3<0,解不等式组②,得x <-3, 故原不等式的解集为x >3或x <-3.问题:(1)求关于x 的不等式(x +1)(x -2)>0的解集;(2)求关于x 的两个多项式的商组成的不等式3x -72x -9<0的解集;(3)若a是(2)中不等式的整数解,b=4,a,b,c为△ABC的三条边长,c是△ABC中的最长的边长(△ABC非等边三角形).①求c的取值范围;②若c为整数,求这个等腰三角形ABC的周长.答案一、1.C 2.A 3.C 4.C 5.A 6.C 7.C 8.D9.C 提示:⎩⎨⎧2x +y =4,①x +2y =-3m +2,②①-②得x -y =3m +2,∵关于x ,y 的方程组⎩⎨⎧2x +y =4,x +2y =-3m +2的解满足x -y >-32,∴3m +2>-32,解得m >-76, ∴m 的最小整数解为-1.10.B 提示:根据题意,得4※x =4x -4-x +3=3x -1.∴a <3x -1<7,解得a +13<x <83.∵解集中有两个整数解,∴0≤a +13<1,解得-1≤a <2.二、11.18x +x ≤5 12.113.a ≥-3 14.22<x ≤6415.-1 提示:当x -2≥-2x +1时,解得x ≥1,此时y =x -2,且y 随x 的增大而增大,∴当x ≥1时,y ≥-1;当x -2<-2x +1时,解得x <1,此时y =-2x +1,且y 随x 的减少而增大,∴x <1时,y >-1.综上可知,函数的最小值为-1.三、16.解:x -13≥x -32+1,去分母,得2(x -1)≥3(x -3)+6,去括号,得2x -2≥3x -9+6,移项,得2x -3x ≥-9+6+2,合并同类项,得-x ≥-1,系数化为1,得x ≤1.这个不等式的解集在数轴上表示如下:17.解:⎩⎪⎨⎪⎧x -3(x -2)≤8,①12x -1<3-32x ,② 解不等式①得x ≥-1,解不等式②得x <2,∴原不等式组的解集为-1≤x <2.该不等式组的解集在数轴上表示如下:18.解:(1)5x +2≥3(x -1),去括号,得5x +2≥3x -3,移项,得5x -3x ≥-3-2,合并同类项,得2x ≥-5,两边都除以2,得x ≥-2.5,这个不等式的解集在数轴上表示为:(2)∵存在一个实数k ,使得不等式x <k 和(1)中的不等式组成的不等式组恰有3个整数解,∴0<k ≤1,∴k =1满足条件(答案不唯一).四、19.解:(1)方程组整理,得⎩⎨⎧x +y =2m , ①x -y =3m -4,② ①+②,得2x =5m -4,∴x =5m -42,①-②,得2y =-m +4,∴y =-m +42,∴原方程组的解为⎩⎪⎨⎪⎧x =5m -42,y =4-m 2;(2)∵x >0,y >0,∴⎩⎪⎨⎪⎧5m -42>0,③4-m 2>0,④解不等式③,得m >45,解不等式④,得m <4,∴不等式组的解集为45<m <4,即实数m 的取值范围为45<m <4.20.解:(1)由题意可得,售完1 000箱水果所获得的利润为(28-20)x +(31-25)×(1 000-x )=2x +6 000,即该商家售完这1 000箱水果所获得的利润为(2x +6 000)元;(2)由题意可知,购进蜜桔x 箱,则购进脐橙(1 000-x )箱,(28-20)×45x +(31-25)×(1 000-x -15x )+(55-20-25)×15x ≥6 500,解得x ≥41623,∵x 为整数,且为5的倍数,∴该商家至少要购进蜜桔420箱.21.解:(1)由题意,得⎩⎨⎧-(m -n )=0,8n =8,∴⎩⎨⎧m =1,n =1; (2)由题意,得⎩⎨⎧(2p +2-p )(2p +4-2p )>4,①(4p +3-2p )(4p +6-4p )≤a ,②解不等式①,得p >-1.解不等式②,得p ≤a -1812.∴-1<p ≤a -1812.∵恰好有3个整数解,∴2≤a -1812<3.∴42≤a <54.五、22.解:(1)由题意得y 1=0.7[120x +100(2x -100)]+2 200=224x -4 800(x ≥50),即y 1=224x -4 800(x ≥50),y 2=0.8[100(3x -100)]=240x -8 000(x ≥50),即y 2=240x -8 000(x ≥50);(2)当y 1>y 2时,即224x -4 800>240x -8 000,解得x <200,由(1)得x ≥50,∴50≤x <200;当y 1=y 2时,即224x -4 800=240x -8 000,解得x =200;当y 1<y 2时,即224x -4 800<240x -8 000,解得x >200;综上,当参加演出的男生少于200人且大于等于50人时,购买B 公司的服装比较合算;当参加演出的男生等于200人时,购买两家公司的服装总费用相同,可任选一家公司购买;当参加演出的男生多于200人时,购买A 公司的服装比较合算.23.解:(1)由有理数的乘法法则“两数相乘,同号得正”,有①⎩⎨⎧x +1>0,x -2>0,解不等式组①,得x >2, ②⎩⎨⎧x +1<0,x -2<0,解不等式组②,得x <-1, 故原不等式的解集为x >2或 x <-1;(2)∵3x -72x -9<0, ∴由“两数相除,异号得负”,有①⎩⎨⎧3x -7>0,2x -9<0,解不等式组①,得73<x <92, ②⎩⎨⎧3x -7<0,2x -9>0,解不等式组②,无解, ∴原不等式的解集为73<x <92;(3)①∵a 是(2)中不等式的整数解,∴a =3或a =4,∵c是△ABC的最大边,且△ABC非等边三角形,∴当a=3,b=4时,4≤c<7;当a=4,b=4时,4<c<8;②∵△ABC为等腰三角形,c为整数,∴当a=3,b=4时,4≤c<7,∴c=4,∴C△ABC=11;∴当a=4,b=4时,4<c<8,∴c=5或6或7,∴C△ABC=13或14或15.综上所述,这个等腰三角形ABC的周长为11或13或14或15.。
2017-2018学年八年级(下册)第二次月考数学试卷一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.28.(3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为()A.48cm B.36cm C.24cm D.18cm9.(3分)已知关于x的一次函数y=mx+2m﹣7在﹣1≤x≤5上的函数值总是正的,则m的取值范围()A.m>7 B.m>1 C.1≤m≤7 D.以上都不对10.(3分)在平行四边形ABCD中,AB=6,AD=8,∠B是锐角,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处.如果AE过BC的中点,则平行四边形ABCD的面积等于()A.48 B.10C.12D.24二、填空题(共6小题,每小题3分,计18分)11.(3分)分解因式:﹣3x2+6xy﹣3y2=.12.(3分)菱形的一个内角是60°,边长为5cm,则这个菱形较短的对角线长是cm.13.(3分)某超市从厂家以每件21元的价格购进一批商品,该超市可以自行定价,但物价局限定每件商品加价不能超过售价的20%,则这批商品的售价不能超过元.14.(3分)已知一个n边形,除去一个内角α外,其余内角和等于1500°,则这个内角α=°.15.(3分)已知关于x的不等式组的解集为3≤x<5,则的值为.16.(3分)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=,则平行四边形ABCD的周长是.三、解答题(共6小题,计52分.解答应写出过程)17.(6分)解不等式组,并把解集在数轴上表示出来.18.(6分)先化简,再求值:已知x=+2,y=﹣2,求的值.19.(6分)如图,△DEF是由△ABC通过一次旋转得到的,请用直尺和圆规画出旋转中心.20.(11分)某超市规定:凡一次购买大米180kg以上可以按原价打折出售,购买180kg(包括180kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要500元;若多买40kg,则按打折价格付款,恰巧需要也是500元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?21.(10分)已知如图所示的一张平行四边形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE.(1)求证:四边形AFCE是菱形.(2)若AB=8cm,∠B=90°,△ABF的面积为24cm2,求菱形AFCE的周长.22.(13分)已知四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图1,若P为AB边上一点以PD,PC为边作平行四边形PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.(2)若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE,请问对角线PQ的长是否也存在最小值?如果存在,请直接写出最小值,如果不存在,请说明理由.(3)如图2,若P为直线DC上任意一点,延长PA到E,使AE=AP,以PE、PB 为边作平行四边形PBQE,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形【解答】解:这个紫荆花图形既不是轴对称图形,也不是中心对称图形,故选:D.2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵a>0,b<﹣2,∴b+2<0,∴点(a,b+2)在第四象限.故选D.3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC【解答】解:A、∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形,正确,故本选项错误;B、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,正确,故本选项错误;C、根据AB=CD,AD∥BC可能得出四边形是等腰梯形,不一定推出四边形ABCD 是平行四边形,错误,故本选项正确;D、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,正确,故本选项错误;故选:C.4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④【解答】解:①经过旋转,图形上的每一点都移动了相同的距离,错误.②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度,正确.③经过旋转.对应点到旋转中心的距离相等,正确.④经过旋转,所有点到旋转中心的距离相等,错误.故选:B.5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定【解答】解:由(1)得:x<2由(2)得:x<a因为不等式组的解集是x<2∴a≥2故选:C.6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±1【解答】解:∵,∴x2﹣x=0,即x(x﹣1)=0,x=0或x=1,又∵x2﹣1≠0,∴x≠±1,综上得,x=0.故选:A.7.(3分)解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.2【解答】解;方程两边都乘(x﹣1),得x﹣3=m,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=﹣2.故选:B.8.(3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为()A.48cm B.36cm C.24cm D.18cm【解答】解:由题意得:S⑤=S四边形ABCD﹣(S①+S②+S③+S④)=4cm2,∴S菱形EFGH=14+4=18cm2,又∵∠F=30°,设菱形的边长为x,则菱形的高为sin30°x=,根据菱形的面积公式得:x•=18,解得:x=6,∴菱形的边长为6cm,而①②③④四个平行四边形周长的总和=2(AE+AH+HD+DG+GC+CF+FB+BE)=2(EF+FG+GH+HE)=48cm.故选:A.9.(3分)已知关于x的一次函数y=mx+2m﹣7在﹣1≤x≤5上的函数值总是正的,则m的取值范围()A.m>7 B.m>1 C.1≤m≤7 D.以上都不对【解答】解:根据题意,得:当x=﹣1时,y=﹣m+2m﹣7=m﹣7>0,∴m>7;当x=5时,y=5m+2m﹣7=7m﹣7>0,∴m>1,∴m的取值范围是m>7.故选:A.10.(3分)在平行四边形ABCD中,AB=6,AD=8,∠B是锐角,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处.如果AE过BC的中点,则平行四边形ABCD的面积等于()A.48 B.10C.12D.24【解答】解:设AE与BC交于O点,O点是BC的中点.∵四边形ABCD是平行四边形,∴∠B=∠D.AB∥CD,又由折叠的性质推知∠D=∠E,CE=CD∴∠B=∠E.CE=AB∴△ABO和△ECO中,,所以△ABO≌△CEO(AAS),所以AO=CO=4,OE=OB=4.∴AE=AD=8.∴△AED为等腰三角形,又C为底边中点,故三线合一可知∠ACE=90°,从而由勾股定理求得AC=.平行四边形ABCD的面积=AC×CD=12.故选:C.二、填空题(共6小题,每小题3分,计18分)11.(3分)分解因式:﹣3x2+6xy﹣3y2=﹣3(x﹣y)2.【解答】解:﹣3x2+6xy﹣3y2,=﹣3(x2﹣2xy+y2),=﹣3(x﹣y)2.故答案为:﹣3(x﹣y)2.12.(3分)菱形的一个内角是60°,边长为5cm,则这个菱形较短的对角线长是5cm.【解答】解:菱形的一个内角是60°,根据菱形的性质得,60°角所对的对角线与菱形的两边构成的三角形是一等边三角形,故这个菱形较短的对角线长是5cm.故答案为5.13.(3分)某超市从厂家以每件21元的价格购进一批商品,该超市可以自行定价,但物价局限定每件商品加价不能超过售价的20%,则这批商品的售价不能超过26.25元.【解答】解:设这批商品的售价为x元,则每件商品的加价为x﹣21.依题意得:x﹣21≤20%x解得:x≤26.25即这批商品的售价不能超过26.25元.14.(3分)已知一个n边形,除去一个内角α外,其余内角和等于1500°,则这个内角α=120°.【解答】解:∵1500°÷180°=8…60°,∴去掉的内角为180°﹣60°=120°,故答案为:120.15.(3分)已知关于x的不等式组的解集为3≤x<5,则的值为﹣2.【解答】解:不等式组由①得,x≥a+b,由②得,x<,∴,解得,∴=﹣2.故答案为﹣2.16.(3分)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=,则平行四边形ABCD的周长是8.【解答】解:∵∠EAF=45°,∴∠C=360°﹣∠AEC﹣∠AFC﹣∠EAF=135°,∴∠B=∠D=180°﹣∠C=45°,则AE=BE,AF=DF,设AE=x,则AF=2﹣x,在Rt△ABE中,根据勾股定理可得,AB=x同理可得AD=(2﹣x)则平行四边形ABCD的周长是2(AB+AD)=2[x+(2﹣x)]=8故答案为8.三、解答题(共6小题,计52分.解答应写出过程)17.(6分)解不等式组,并把解集在数轴上表示出来.【解答】解:解不等式3(x+1)>4x+2,得:x<1,解不等式≥,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,将解集表示在数轴上如下:18.(6分)先化简,再求值:已知x=+2,y=﹣2,求的值.【解答】解:原式==∵x=+2,y=﹣2时,∴x﹣y=4,xy=1∴原式=419.(6分)如图,△DEF是由△ABC通过一次旋转得到的,请用直尺和圆规画出旋转中心.【解答】解:如图所示,点P即为所求作的旋转中心.20.(11分)某超市规定:凡一次购买大米180kg以上可以按原价打折出售,购买180kg(包括180kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要500元;若多买40kg,则按打折价格付款,恰巧需要也是500元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?【解答】解:(1)由题意可得不等式140<x≤180,即小明家原计划购买大米的数量范围是140<x≤180;(2)设小明家原来准备买大米x千克,根据题意,由对应成比例得解之得x=160.经检验:x=160是原方程的解,∴x=160,答:小明家原计划购买大米是160千克.法二:(2)设小明家原来准备买大米x千克,原价为元;折扣价为元.据题意列方程为:,解之得:x=160.经检验x=160是方程的解.答:小明家原来准备买160千克大米.21.(10分)已知如图所示的一张平行四边形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE.(1)求证:四边形AFCE是菱形.(2)若AB=8cm,∠B=90°,△ABF的面积为24cm2,求菱形AFCE的周长.【解答】(1)证明:∵将平行四边形ABCD(AD>AB)折叠,使点A与点C重合,∴EF垂直平分AC,∴EA=EC,FA=FC,∴∠2=∠3,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠1=∠2,∴∠1=∠3,∵AO⊥EF,∴△AEF为等腰三角形,∴AE=AF,∴AE=EC=AF=CF,∴四边形A FCE是菱形;(2)解:在Rt△ABF中,∵AB•BF=24,AB=8cm,∴BF=6cm,∴AB2+BF2=AF2=100,∴AF=10cm,∴菱形AFCE的周长为10×4=40(cm).故菱形AFCE的周长为40cm.22.(13分)已知四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图1,若P为AB边上一点以PD,PC为边作平行四边形PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.(2)若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE,请问对角线PQ的长是否也存在最小值?如果存在,请直接写出最小值,如果不存在,请说明理由.(3)如图2,若P为直线DC上任意一点,延长PA到E,使AE=AP,以PE、PB 为边作平行四边形PBQE,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.【解答】解:(1)存在,理由如下:如图2,在平行四边形PCQD中,设对角线PQ与DC相交于点G,则G是DC的中点,过点Q作QH⊥BC,交BC的延长线于H,∵AD∥BC,AB⊥BC,∴AD⊥AB,∠ADC=∠DCH,即∠ADP+∠PDG=∠DCQ+∠QCH,∵PD∥CQ,∴∠PDC=∠DCQ,∴∠ADP=∠QCH,在△ADP和△HCQ中,,∴△ADP≌△HCQ(AAS),∴AD=HC,∵AD=1,BC=3,∴BH=4,∴当PQ⊥AB时,PQ的长最小,即为4.(2)存在,理由如下:如图3,设PQ与DC相交于点G,∵四边形PCQE是平行四边形,∴PE∥CQ,PE=CQ,∴,∵PD=DE,∴CQ=2PD,∴=∴G是DC上一定点,作QH⊥BC,交BC的延长线于H,同(2)得:∠ADP=∠QCH,∴Rt△ADP∽Rt△HCQ,∴=,∴CH=2,∴BH=BC+CH=3+2=5,∴当PQ⊥AB时,PQ的长最小,即为5.(3)存在,理由如下:如图4,设PQ与AB相交于点G,∵四边形PBQE是平行四边形,∴PE∥BQ,PE=BQ,∴,∵AE=PA,∴BQ=2PA,∴=作QH∥PD,交CB的延长线于H,过点C作CK⊥C D,交QH的延长线于K,∵AD∥BC,AB⊥BC,∴∠ADP=∠QHC,∠DAP+∠PAG=∠QBH+∠QBG=90°,∠PAG=∠QBG,∴∠QBH=∠PAD,∴△ADP∽△BHQ,∴=,∵AD=1,∴BH=2,∴CH=BH+BC=2+3=5,过点D作DM⊥BC于M,则四边形ABND是矩形,∴B M=AD=1,DM=AB=2∴CM=BC﹣BM=3﹣1=2=DM,∴∠DCM=45°,∴∠KCH=45°,∴CK=CH•cos45°=5×=,在Rt△CDM中,CD=2,∴CK>CD,∴当PQ⊥CD时,PQ的长最小,但是,P点已经不在CD上了,到延长线上了,∴当D与P重合时的PQ长就是PQ的最小值,此时Q与H重合,PQ=HD===∴最小值为。