第6课时 圆的面积(一)
- 格式:doc
- 大小:13.00 KB
- 文档页数:1
北师大版六年级数学上册《圆的面积(一)》教案一、教材分析:本课是北师大版小学数学六年级上册第一单元圆的第6课,主要内容是圆的面积(一)。
本课主要涉及到圆的面积的含义、圆面积的计算公式及其推导过程、圆面积的计算方法以及圆面积的应用。
本课是学习圆的面积的基础,对于后续学习圆的体积、球体积等内容有很大的帮助。
二、教学目标:1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
三、教学重难点教学重点:经历圆面积计算公式的推导过程,掌握圆面积计算公式。
教学难点:能运用圆面积知识解决一些简单实际的问题。
四、学情分析:本单元是小学六年级上学期的第一单元,学生已经学习了圆的基本概念和性质,对圆有一定的了解。
但是,学生对于圆面积的概念和计算公式还不是很清楚,需要通过本课的学习来加深对圆面积的理解和掌握圆面积的计算方法。
在教学过程中,需要注意学生的基础知识和学习能力,采用多种教学方法,让学生在轻松愉悦的氛围中掌握知识。
五、教学过程:第一环节:新课导入1.教师出示一些圆形的物品,如圆盘、圆形饼干等,让学生观察并描述这些物品的特征。
教师:同学们,今天我们要学习圆的面积,首先我们来看看这些圆形的物品,你们能描述一下它们的特征吗?学生:它们都是圆形的。
教师:非常好,那么圆形物品的大小可以用什么来表示呢?学生:可以用直径或半径来表示。
2.教师引导学生思考,如何求出这个圆形的面积?教师:那么,如果我给你们一个圆形图形,请问如何求出这个圆形的面积呢?学生:用公式πr²来计算。
教师:非常好,我们接下来就来学习圆的面积公式。
第二环节:讲解新课1.拿出已剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(教师巡视),然后用电脑展示ppt圆形转化成平行四边形.让学生知道平行四边形的底相当于圆周长的一半,平行四边形的高相当于圆的半径。
《圆的面积(一)》课堂教学设计教学目标设计学习评价设计【测评内容】圆的半径在哪?圆心在哪?圆的周长在哪?圆的面积在哪?【评价方式】通过课前情景导入,了解学生对圆相关知识的掌握情况,以及激起学生的求知欲和学生学习兴趣。
【练习内容】1.应用圆的面积计算公式解决情景图中的问题。
2.已知半径求圆的面积。
3.已知直径求圆的面积。
4.判断题。
【评价方式】1.通过学生自主完成,交流,展示学生完成的结果来巩固知识2.教师及时评价,发现问题并解决。
【测评内容】1.尝试把圆转化成以前学过的平面图形----梯形。
【评价方式】1.学生拍照上传数学交流群。
2.师生一起评选“最强大脑奖”。
教学过程设计【课前导学】1.找数学信息。
2.如何求羊吃到草的最大范围的面积,也就是怎样求圆的面积。
【设计意图】通过谈话、设疑,激起学生的求知欲,激发学生的学习兴趣,自然导入新课。
【探究互动】1. 如何得到一个圆的面积呢?想一想,并与同伴交流。
(估算)2. 如何用转化的方法把圆转化成以前学过的平面图形?3 .拼成的近似的平行四边形与原来的圆之间有什么联系?。
【设计意图】1.巧设估算圆的面积这个环节,让学生对圆的面积获得十分鲜明的表象,让学生带着悬念去探究推导公式,与后面得出圆的面积计算公式的验证前后呼应,加深学生对圆的面积计算公式的理解和记忆。
2.创设问题情景,启发学生回忆平行四边形、三角形和梯形面积计算公式的推导过程。
激起学生用旧知探究新知的兴趣,并明确转化的数学思想方法。
3.通过小组合作、探究学习等不同形式,调动学生的多种感官参与学习,发挥学生的主体作用,培养学生主动探究、互助合作的精神,让学生明确圆可以转化成近似的平行四边形,渗透化曲为直的方法。
【实践拓展运用提升——1】学生自主完成情景图中的问题。
【设计意图】1.通过练习,教会学生使用圆面积公式解决实际问题。
【实践拓展运用提升——2】1.例题精讲,先练,再讲2.课本第15页练习【设计意图】通过练习提高学生运用知识的熟练程度,巩固所学知识【实践拓展运用提升——4】判断题【设计意图】让学生区分易混概念,加深对圆面积的理解【实践拓展运用提升——5】拓展练习: 1.把圆用转化的方法转化成以前学过的其他平面图形。
第6课时圆的面积(一)课时目标导航一、教学内容推导圆的面积计算公式。
(教材第14页)二、教学目标1.了解圆的面积的含义,经历估算和小组操作、讨论等探索圆的面积公式的过程。
2.理解并掌握圆的面积公式,能正确运用公式进行计算,并能解决一些简单的实际问题。
3.体验推导圆面积公式时的探索性和结论的确定性,感受“化曲为直”的数学思想和方法。
三、重点难点重点:掌握圆的面积的计算公式。
难点:理解圆的面积的计算公式的推导过程。
四、教学准备教师准备:课件PPT、被8等分的圆形纸片、被16等分和32等分的教具模型、剪刀学生准备:被8等分和16等分的圆形纸片、剪刀教学过程一、复习引入师:什么叫面积?长方形的面积计算公式是怎样的?平行四边形呢?(指名学生回答) 师生小结:长方形的面积=长×宽平形四边形的面积=底×高师:请同学们回忆一下长方形、平行四边形的面积公式是怎样推导出来的?(指名学生回答,集体订正)二、学习新课1.估算圆的面积。
师:圆的面积指什么?教师引导学生明确:圆所占平面的大小就是圆的面积。
[教师板书课题:圆的面积(一)] 师:怎样知道一个圆的面积?(课件出示下面两幅图,小组交流、讨论,教师巡视,派小组代表汇报结果)教师引导学生明确:①根据第一幅图只能求出圆内最大正方形的面积,剩下的面积只能估算出来。
②根据第二幅图可以数整方格,但不是整格的就只能估算,这样圆的面积也只能估算出来。
教师归纳:用这样的方法我们只能估算出圆的面积,根本不能知道圆的实际面积。
所以要想知道圆的面积,我们应该探究圆的面积计算公式,这样才比较准确。
2.推导圆的面积公式。
(1)师:猜一猜圆的面积与什么有关,并说说这样猜想的根据。
(指名学生回答)学生回答:①圆的面积与半径有关,因为半径决定圆的大小。
②圆的面积可能与直径有关,因为圆的大小与直径有关。
(2)师:我们之前研究平行四边形、三角形、梯形面积公式时,都是把未知的问题转化成已知的问题,那么能否将圆转化成以前学过的图形呢?(组织学生分组操作,教师巡视指导)课件出示教材第14页问题2中被8等分的圆形纸片,再拼成一个近似的平行四边形的图的过程。
《圆的面积(一)》教学设计一、教材分析:本节是北师大版小学数学六年级上册第14至17页的内容。
在学生初步认识了圆,学习掌握了圆的周长的计算方法,能熟练运用公式计算三角形、长方形、正方形等平面图形面积的基础上进行教学的。
由于以前学生所学的平面图形都是些由线段组成的多边形(如三角形、长方形、平行四边形等),而计算像圆这样的曲线图形的面积,学生还是第一次遇到,所以教材通过演示,把圆的面积转化为已学过的平行四边形的面积来计算,给学生指明了解决问题的方向。
二、学情分析:六年级学生具有一定的抽象和逻辑思维能力。
这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。
所以教师在教学过程中,应注意联系现实生活,要充分利用学具、多媒体等辅助教学工具,直观地演示由圆到方的变化过程,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,让学生找出圆与所拼成的平行四边形之间的联系,从而顺利推导出圆的面积计算公式。
三、教学目标:1、知识与技能探索并掌握圆的面积计算公式,能正确计算圆的面积,并能用公式解决实际问题。
2、过程与方法经历操作、观察、验证、讨论和归纳等数学活动过程,进一步体会“转化”的数学思想,初步接触极限思想,增强学生的空间思维能力。
3、情感态度与价值观进一步体会数学与生活的联系,感受用数学的思维解决问题的美,提高学习数学的兴趣。
四、重点难点重点:圆的面积计算公式的推导和应用。
难点:在圆的面积计算公式的推导过程中,理解圆的无限平均分割,理解“弧长”无限地接近“线段”以及将圆转化为平行四边形,平行四边形的底是圆的周长的一半,高是圆的半径。
五、教学过程(一)、创设情境,激发兴趣我们学过哪些图形?你会计算它们的面积吗?想一想,我们是怎样推导出它们面积的计算公式的?(电脑课件演示)设计意图:创设问题情境,启发学生回忆长方形、平行四边形、三角形和梯形面积的概念。
圆的面积一教学设计(优秀6篇)圆的面积课堂教学设计篇一教材分析:圆是小学数学平面图形教学中唯一的曲线图形。
本课是在学生了解和掌握圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上时行教学的。
教材将理解“化曲为直”的转化思想在活动之中。
通过一系列的活动将新数学思想纳入到学生原有的认知结构之中,从而完成新知识、的建构过程。
学好这节课的知识,对今后进行探究“圆柱圆锥”的体积起举足轻重的作用。
学情分析:学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的类比、推理的数学经验,并具有了转化的数学思想。
所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感和感受数学的价值。
教学目标:1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际的问题。
3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学过程:一、回顾旧知,引出新知1、老师引导学生回顾以前学习推导几何图形的面积公式时所用的方法。
2、学生回答后老师让学生上前展示自己的方法二、创设情境,提出问题1、教师引导观察,说说从中得到那些数学信息?2、老师引导,找出与圆的面积有关的数学问题。
3、学生回答,老师板书(圆的面积)三、探究思考,解决问题1、让学生估计圆的面积大小(1)与同桌说一说你是怎么估的(2)汇报,(3)老师引导有没有更好的方法2、探索圆面积公式(1)学生操作(2)指名汇报。
(3)操作反思(把圆等分的份数越多,拼成的圆越接近长方形。
)(4)转化思想:近似长方形的长相当于圆的那一部分?怎么用字母表示?(5)观察汇报:由长方形的面积公式推导圆形的面积计算公式,并说出你的理由。