第05讲 抛物线-2023年高二数学(人教A版2019选择性必修第一册)(解析版)
- 格式:docx
- 大小:8.73 MB
- 文档页数:57
3.3 抛物线考纲要求1.掌握抛物线的定义、几何图形、标准方程及简单的几何性质(范围、对称性、顶点、准线).(重点) 2.能根据几何性质求最值,能利用抛物线的定义进行灵活转化,并能理解数形结合思想,掌握抛物线的简单应用.(难点)知识解读知识点①抛物线的概念平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 知识点①抛物线的标准方程和几何性质标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 x 轴y 轴焦点 F ⎝⎛⎭⎫p 2,0F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p2 离心率 e =1准线方程 x =-p 2x =p 2 y =-p2y =p 2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右 向左 向上 向下 焦半径(其中P (x 0,y 0))|PF |=x 0+p2|PF |=-x 0+p2|PF |=y 0+p2|PF |=-y 0+p2知识点①必记结论1.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝⎛⎭⎫p 2,0的距离|PF |=x 0+p2,也称为抛物线的焦半径. 2.y 2=ax (a ≠0)的焦点坐标为⎝⎛⎭⎫a 4,0,准线方程为x =-a4.3.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角).(3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长等于2p ,通径是过焦点最短的弦.题型讲解题型一、抛物线的定义及其应用例1.已知点F ⎝⎛⎭⎫14,0,直线l :x =-14,点B 是l 上的动点.若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( ) A .双曲线 B .椭圆 C .圆 D .抛物线【答案】D【解析】由已知得|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.例2.若抛物线y 2=4x 上一点P 到其焦点F 的距离为2,O 为坐标原点,则∈OFP 的面积为( ) A .12B .1C .32D .2 【答案】B【解析】设P (x P ,y P ),由题可得抛物线焦点为F (1,0),准线方程为x =-1.又点P 到焦点F 的距离为2,∈由定义知点P 到准线的距离为2. ∈x P +1=2,∈x P =1.代入抛物线方程得|y P |=2,∈∈OFP 的面积为S =12·|OF |·|y P |=12×1×2=1. 例3.设P 是抛物线y 2=4x 上的一个动点,若B (3,2),则|PB |+|PF |的最小值为________. 【答案】4【解析】如图,过点B 作BQ 垂直准线于点Q ,交抛物线于点P 1,则|P 1Q |=|P 1F |,则有|PB |+|PF |≥|P 1B |+|P 1Q |=|BQ |=4,即|PB |+|PF |的最小值为4. 题型二、抛物线的标准方程 例1.[易错题]抛物线y =-116x 2的焦点坐标为( ) A .⎝⎛⎭⎫-164,0 B .()-4,0 C .⎝⎛⎭⎫0,-164 D .()0,-4【答案】D【解析】∈y =-116 x 2,∈x 2=-16y ,因此焦点坐标为()0,-4 .例2.已知点()1,1 在抛物线C :y 2=2px ()p >0 上,则C 的焦点到其准线的距离为( ) A .14B .12C .1D .2【答案】B【解析】由点()1,1 在抛物线上,易知1=2p ,p =12 ,故焦点到其准线的距离为12.例3.若抛物线C 顶点在原点,焦点在y 轴上,且过点(2,1),则C 的标准方程是___________. 【答案】x 2=4y【解析】因为抛物线C 顶点在原点,焦点在y 轴上,故设抛物线方程为x 2=my , 又抛物线过点(2,1),所以22=m ,即m =4,所以抛物线方程为x 2=4y .例4.如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的标准方程为________.【答案】y 2=3x【解析】分别过点A ,B 作AA 1∈l ,BB 1∈l ,且垂足分别为A 1,B 1,由已知条件|BC |=2|BF |,得|BC |=2|BB 1|,所以∈BCB 1=30°.又|AA 1|=|AF |=3,所以|AC |=2|AA 1|=6,所以|CF |=|AC |-|AF |=6-3=3,所以F 为线段AC 的中点.故点F 到准线的距离为p =12|AA 1|=32,从而抛物线方程为y 2=3x .例5.已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,点A 是抛物线C 上一点,AD ∈l ,交l 于D .若|AF |=4,∈DAF =60°,则抛物线C 的方程为( ) A .y 2=8x B .y 2=4x C .y 2=2x D .y 2=x【答案】B【解析】根据抛物线的定义可得|AD |=|AF |=4, 又∈DAF =60°,所以|AD |-p =|AF |cos 60°=12|AF |,所以4-p =2,解得p =2, 所以抛物线C 的方程为y 2=4x . 题型三、抛物线的简单几何性质例1.过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( ) A .9 B .8 C .7 D .6【答案】B【解析】抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.例2.已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线的焦点坐标为( ) A .(-1,0) B .(1,0) C .(0,-1)D .(0,1)【答案】B【解析】抛物线y 2=2px (p >0)的准线为x =-p 2 ,由准线过点(-1,1),得-p2 =-1,解得p =2.所以抛物线的焦点坐标为(1,0).例3.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,则∈ABP 的面积为( ) A .18 B .24 C .36 D .48【答案】C【解析】以抛物线的顶点为原点,水平方向为x 轴,竖直方向为y 轴,建立平面直角坐标系(图略). 设抛物线的方程为y 2=2px (p >0),则焦点坐标为(p 2 ,0).将x =p2 代入y 2=2px ,可得y 2=p 2.所以|AB |=2p ,即2p =12,所以p =6.因为点P 在准线上,所以点P 到AB 的距离为p =6, 所以∈ABP 的面积为12×12×6=36.例4.抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,∈MFO 的面积为43,则抛物线的方程为( ) A .y 2=6x B .y 2=8x C .y 2=16x D .y 2=15x2【答案】B【解析】设M (x ,y ),因为|OF |=p 2,|MF |=4|OF |,所以|MF |=2p ,由抛物线定义知x +p 2=2p ,所以x =32p ,所以y =±3p . 又∈MFO 的面积为43,所以12×p2×3p =43,解得p =4(p =-4舍去).所以抛物线的方程为y 2=8x .例5.若抛物线y 2=2px (p >0)上一点到焦点和到抛物线对称轴的距离分别为10和6,则抛物线的方程为( ) A .y 2=4x B .y 2=36xC .y 2=4x 或y 2=36xD .y 2=8x 或y 2=32x 【答案】C【解析】因为抛物线y 2=2px (p >0)上一点到抛物线的对称轴的距离为6, 所以若设该点为P ,则P (x 0,±6).因为P 到抛物线的焦点F ⎝⎛⎭⎫p 2,0 的距离为10,所以由抛物线的定义得x 0+p2 =10.∈ 因为P 在抛物线上,所以36=2px 0.∈由∈∈解得p =2,x 0=9或p =18,x 0=1,则抛物线的方程为y 2=4x 或y 2=36x .例6.(2022·山东淄博一模)若抛物线y 2=2px ()p >0 上的点A ()x 0,-2 到其焦点的距离是点A 到y 轴距离的3倍,则p 等于___________. 【答案】22【解析】抛物线y 2=2px ()p >0 开口向右,准线为x =-p2 ,将A 的坐标代入抛物线方程得4=2px 0,x 0=2p,由于抛物线y 2=2px ()p >0 上的点A ()x 0,-2 到其焦点的距离是点A 到y 轴距离的3倍, 根据抛物线的定义有x 0+p 2 =3x 0,所以2p +p 2 =3×2p ,p 2 =4p ,p 2=8,p =22 .题型四、直线与抛物线的位置关系例1.(2018·全国卷∈)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →=( ) A .5 B .6 C .7 D .8【答案】D【解析】由题意知直线MN 的方程为y =23(x +2),联立直线与抛物线的方程,得⎩⎪⎨⎪⎧y =23x +2,y 2=4x ,解得⎩⎪⎨⎪⎧ x =1,y =2或⎩⎪⎨⎪⎧x =4,y =4.不妨设M 为(1,2),N 为(4,4).又∈抛物线焦点为F (1,0),∈FM →=(0,2),FN →=(3,4). ∈FM →·FN →=0×3+2×4=8.例2.已知抛物线C 的顶点是原点O ,焦点F 在x 轴的正半轴上,经过F 的直线与抛物线C 交于A 、B 两点,如果OA →·OB →=-12,那么抛物线C 的方程为( ) A .x 2=8y B .x 2=4y C .y 2=8x D .y 2=4x【答案】C【解析】由题意,设抛物线方程为y 2=2px (p >0),直线方程为x =my +p2,联立⎩⎪⎨⎪⎧y 2=2px ,x =my +p2,消去x 得y 2-2pmy -p 2=0, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=-p 2,得OA →·OB →=x 1x 2+y 1y 2=(my 1+p 2)·(my 2+p 2)+y 1y 2=m 2y 1y 2+pm 2(y 1+y 2)+p 24+y 1y 2=-34p 2=-12∈p =4,即抛物线C 的方程为y 2=8x .例3.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2 【答案】B【解析】∈y 2=2px (p >0)的焦点坐标为(p2,0),∈过焦点且斜率为1的直线方程为y =x -p2,即x =y +p2,将其代入y 2=2px ,得y 2=2py +p 2,即y 2-2py -p 2=0.设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=2p ,∈y 1+y 22=p =2,∈抛物线的方程为y 2=4x ,其准线方程为x =-1.例4.已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8. (1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求∈F AB 的面积.【答案】(1)y 2=8x (2)245【解析】(1)易知直线与抛物线的交点坐标为(8,-8), ∈(-8)2=2p ×8,∈2p =8, ∈抛物线C 的方程为y 2=8x .(2)直线l 2与l 1垂直,故可设直线l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .由⎩⎪⎨⎪⎧y 2=8x ,x =y +m ,得y 2-8y -8m =0, Δ=64+32m >0,∈m >-2.y 1+y 2=8,y 1y 2=-8m ,∈x 1x 2=y 21y 2264=m 2.由题意可知OA ∈OB ,即x 1x 2+y 1y 2=m 2-8m =0, ∈m =8或m =0(舍去),∈直线l 2:x =y +8,M (8,0). 故S ∈F AB =S ∈FMB +S ∈FMA =12·|FM |·|y 1-y 2|=3()212214y y y y -+=245.达标训练1.已知抛物线的准线方程为y =-2,则其标准方程为( ) A .x 2=8y B .x 2=-8y C .y 2=8x D .y 2=-8x【答案】A【解析】因为抛物线的准线方程为y =-2,所以抛物线的焦点在y 轴正半轴上,且p2=2,即p =4,所以抛物线的方程为x 2=8y .2.点M (5,3)到抛物线y =ax 2(a ≠0)的准线的距离为6,那么抛物线的方程是( ) A .y =12x 2 B .y =12x 2或y =-36x 2 C .y =-36x 2 D .y =112x 2或y =-136x 2【答案】D【解析】分两类a >0,a <0,可得y =112x 2或y =-136x 2.3.(全国卷∈)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx (k >0)与C 交于点P ,PF ∈x 轴,则k =( )A .12B .1C .32D .2【答案】D【解析】∈y 2=4x ,∈F (1,0).又∈曲线y =kx (k >0)与C 交于点P ,PF ∈x 轴,∈P (1,2).将点P (1,2)的坐标代入y =kx(k >0),得k =2.4.(2021·山东烟台一模)已知F 为抛物线C :y 2=8x 的焦点,直线l 与C 交于A ,B 两点,若AB 中点的横坐标为4,则|| AF +||BF =( ) A .8 B .10 C .12 D .16【答案】C【解析】抛物线C :y 2=8x 的焦点为F ,直线l 与抛物线C 交于A ,B 两点, 若AB 的中点的横坐标为4,设A (x 1,y 1),B (x 2,y 2),x 1+x 2=8, 则|AF |+|BF |=x 1+x 2+p =8+4=12.5.已知F 为抛物线y 2=4x 的焦点,P ()x 0,y 0 是该抛物线上的一点.若||PF >2,则( ) A .x 0∈()0,1 B .x 0∈(1,+∞) C .y 0∈(2,+∞) D .y 0∈(-∞,2) 【答案】B【解析】由条件可知p2=1,根据焦半径公式||PF =x 0+1>2,解得x 0>1.6.(2021·广东茂名二模)设O 为坐标原点,F 为抛物线C :x 2=8y 的焦点,P 为C 上一点,若||PF =6,则∈POF 的面积为( ) A .2 B .42 C .43 D .4【答案】B【解析】∈抛物线C :x 2=8y ,∈F (2,0),准线y =-2.由||PF =6,即P 到准线的距离为6.设P (x 0,y 0),||PF =y 0+2=6,解得y 0=4, 代入抛物线方程x 2=8y ,得x 0=±42 .S ∈POF =12 ||OF ||x 0 =12×2×42 =42 .7.设抛物线的顶点为O ,焦点为F ,准线为l ,P 是抛物线上异于O 的一点,过P 作PQ ∈l 于Q .则线段FQ 的垂直平分线( ) A .经过点O B .经过点P C .平行于直线OP D .垂直于直线OP【答案】B【解析】连接PF (图略),由题意及抛物线的定义可知|PQ |=|FP |,则∈QPF 为等腰三角形,故线段FQ 的垂直平分线经过点P .8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和l 2的距离之和的最小值为( )A .3716B .115C .3D .2 【答案】D【解析】直线l 2:x =-1是抛物线y 2=4x 的准线, 抛物线y 2=4x 的焦点为F (1,0),则点P 到直线l 2:x =-1的距离等于|PF |, 过点F 作直线l 1:4x -3y +6=0的垂线, 和抛物线的交点就是点P ,所以点P 到直线l 1:4x -3y +6=0的距离和直线l 2:x =-1的距离之和的最小值就是点F (1,0)到直线l 1:4x -3y +6=0的距离,所以最小值为|4-0+6|32+42=2,故选D.8.(2020·新高考全国∈)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=________. 【答案】163【解析】如图,由题意得,抛物线的焦点为F (1,0),设直线AB 的方程为y =3(x -1).由⎩⎨⎧ y =3x -1,y 2=4x ,得3x 2-10x +3=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=103, 所以|AB |=x 1+x 2+2=163. 9.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=________.【答案】12【解析】焦点F 的坐标为⎝⎛⎭⎫34,0,方法一 直线AB 的斜率为33, 所以直线AB 的方程为y =33⎝⎛⎭⎫x -34, 即y =33x -34,代入y 2=3x ,得13x 2-72x +316=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=212, 所以|AB |=x 1+x 2+p =212+32=12. 方法二 由抛物线焦点弦的性质可得|AB |=2p sin 2θ=3sin 230°=12. 10.已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B ,若AM →=MB →,则p =________.【答案】2【解析】如图, 由AB 的斜率为3,知∈α=60°,又AM →=MB →,∈M 为AB 的中点.过点B 作BP 垂直准线l 于点P ,则∈ABP =60°,∈∈BAP =30°,∈|BP |=12|AB |=|BM |. ∈M 为焦点,即p 2=1,∈p =2. 11.已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若|AF |+|BF |=4,求l 的方程;(2)若AP →=3PB →,求|AB |.【答案】(1)y =32x -78 (2)4133【解析】设直线l :y =32x +t , A (x 1,y 1),B (x 2,y 2).(1)由题设得F ⎝⎛⎭⎫34,0,故|AF |+|BF |=x 1+x 2+32. 又|AF |+|BF |=4,所以x 1+x 2=52. 由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x ,可得9x 2+12(t -1)x +4t 2=0, 则x 1+x 2=()9112--t . 从而()9112--t =52,得t =-78. 所以l 的方程为y =32x -78.(2)由AP →=3PB →可得y 1=-3y 2.由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x ,可得y 2-2y +2t =0, 所以y 1+y 2=2,从而-3y 2+y 2=2,故y 2=-1,y 1=3.代入C 的方程得x 1=3,x 2=13, 即A (3,3),B ⎝⎛⎭⎫13,-1.故|AB |=4133. 12.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证:(1)y 1y 2=-p 2,x 1x 2=p 24; (2)1|AF |+1|BF |为定值; (3)以AB 为直径的圆与抛物线的准线相切.【答案】见解析【解析】证明 (1)由已知得抛物线焦点坐标为(p 2,0). 由题意可设直线方程为x =my +p 2,代入y 2=2px , 得y 2=2p ⎝⎛⎭⎫my +p 2,即y 2-2pmy -p 2=0.(*) 则y 1,y 2是方程(*)的两个实数根,所以y 1y 2=-p 2.因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2,所以x 1x 2=y 21y 224p 2=p 44p 2=p 24. (2)1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2x 1+x 2+p 24. 因为x 1x 2=p 24,x 1+x 2=|AB |-p ,代入上式, 得1|AF |+1|BF |=|AB |p 24+p 2|AB |-p +p 24=2p(定值). (3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N ,则|MN |=12(|AC |+|BD |)=12(|AF |+|BF |)=12|AB |. 所以以AB 为直径的圆与抛物线的准线相切.课后提升1.设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的标准方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x【答案】C【解析】由题意知,F ⎝⎛⎭⎫p 2,0 ,抛物线的准线方程为x =-p 2, 则由抛物线的定义知,x M =5-p 2,设以MF 为直径的圆的圆心为⎝⎛⎭⎫52,y M 2 , 所以圆的方程为⎝⎛⎭⎫x -52 2 +⎝⎛⎭⎫y -y M 2 2 =254,又因为圆过点(0,2),所以y M =4, 又因为点M 在C 上,所以16=2p ⎝⎛⎭⎫5-p 2 ,解得p =2或p =8, 所以抛物线C 的标准方程为y 2=4x 或y 2=16x .2.(多选)(2022·潍坊模拟)已知抛物线x 2=12y 的焦点为F ,M (x 1,y 1),N (x 2,y 2)是抛物线上两点,则下列结论正确的是( )A .点F 的坐标为⎝⎛⎭⎫18,0B .若直线MN 过点F ,则x 1x 2=-116C .若MF →=λNF →,则|MN |的最小值为12D .若|MF |+|NF |=32,则线段MN 的中点P 到x 轴的距离为58【答案】BCD【解析】易知点F 的坐标为⎝⎛⎭⎫0,18,选项A 错误; 根据抛物线的性质知,MN 过焦点F 时, x 1x 2=-p 2=-116,选项B 正确; 若MF →=λNF →,则MN 过点F ,则|MN |的最小值即抛物线通径的长,为2p ,即12,选项C 正确; 抛物线x 2=12y 的焦点为⎝⎛⎭⎫0,18, 准线方程为y =-18, 过点M ,N ,P 分别作准线的垂线MM ′,NN ′,PP ′,垂足分别为M ′,N ′,P ′(图略),所以|MM ′|=|MF |,|NN ′|=|NF |.所以|MM ′|+|NN ′|=|MF |+|NF |=32, 所以线段|PP ′|=|MM ′|+|NN ′|2=34, 所以线段MN 的中点P 到x 轴的距离为|PP ′|-18=34-18=58,选项D 正确. 3.(多选)已知抛物线C :y 2=2px (p >0)过点P (1,1),则下列结论正确的是( )A .点P 到抛物线焦点的距离为32B .过点P 作过抛物线焦点的直线交抛物线于点Q ,则∈OPQ 的面积为532C .过点P 与抛物线相切的直线方程为x -2y +1=0D .过点P 作两条斜率互为相反数的直线交抛物线于M ,N 两点,则直线MN 的斜率为定值【答案】BCD【解析】因为抛物线C :y 2=2px (p >0)过点P (1,1),所以p =12,所以抛物线方程为y 2=x ,焦点坐标为F ⎝⎛⎭⎫14,0. 对于A ,|PF |=1+14=54,错误; 对于B ,k PF =43,所以l PF :y =43⎝⎛⎭⎫x -14,与y 2=x 联立得4y 2-3y -1=0,所以y 1+y 2=34,y 1y 2=-14, 所以S ∈OPQ =12|OF |·|y 1-y 2|=12×14×y 1+y 22-4y 1y 2=532,正确; 对于C ,依题意斜率存在,设直线方程为y -1=k (x -1),与y 2=x 联立得ky 2-y +1-k =0,Δ=1-4k (1-k )=0,即4k 2-4k +1=0,解得k =12,所以切线方程为x -2y +1=0,正确; 对于D ,依题意斜率存在,设l PM :y -1=k (x -1),与y 2=x 联立得ky 2-y +1-k =0,所以y M +1=1k ,即y M =1k -1,则x M =⎝⎛⎭⎫1k -12,所以点M ⎝⎛⎭⎫⎝⎛⎭⎫1k -12,1k -1,同理N ⎝⎛⎭⎫⎝⎛⎭⎫-1k -12,-1k -1, 所以k MN =1k -1-⎝⎛⎭⎫-1k -1⎝⎛⎭⎫1k -12-⎝⎛⎭⎫-1k -12=2k -4k=-12,正确. 4.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A 、B 两点.若MA →·MB →=0,则k =________.【答案】2【解析】抛物线C 的焦点为F (2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0.设点A (x 1,y 1),B (x 2,y 2).则x 1+x 2=4+8k 2,x 1x 2=4. 所以y 1+y 2=k (x 1+x 2)-4k =8k, y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16.因为MA → ·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=x 1x 2+2(x 1+x 2)+y 1y 2-2(y 1+y 2)+8=0,将上面各个量代入,化简得k 2-4k +4=0,所以k =2.5.(2022·沈阳模拟)已知抛物线C :x 2=2py (p >0),其焦点到准线的距离为2,直线l 与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线C 的切线l 1,l 2,且l 1与l 2交于点M .(1)求p 的值;(2)若l 1∈l 2,求∈MAB 面积的最小值.【答案】(1)p =2 (2)4【解析】(1)由题意知,抛物线焦点为⎝⎛⎭⎫0,p 2, 准线方程为y =-p 2, 焦点到准线的距离为2,即p =2.(2)由(1)知抛物线的方程为x 2=4y ,即y =14x 2,所以y ′=12x , 设A (x 1,y 1),B (x 2,y 2),l 1:y -x 214=x 12(x -x 1), l 2:y -x 224=x 22(x -x 2), 由于l 1∈l 2,所以x 12·x 22=-1, 即x 1x 2=-4.设直线l 的方程为y =kx +m ,与抛物线方程联立, 得⎩⎪⎨⎪⎧y =kx +m ,x 2=4y , 所以x 2-4kx -4m =0,Δ=16k 2+16m >0, x 1+x 2=4k ,x 1x 2=-4m =-4,所以m =1, 即l :y =kx +1.联立方程⎩⎨⎧y =x 12x -x 214,y =x 22x -x 224, 得⎩⎪⎨⎪⎧ x =2k ,y =-1,即M (2k ,-1). M 点到直线l 的距离d =|k ·2k +1+1|1+k 2=2|k 2+1|1+k 2, |AB |=()()[]21221241x x x x k -++ =4(1+k 2),所以S =12×4(1+k 2)×2|k 2+1|1+k 2322=4(1+)4k ≥,当k =0时,∈MAB 的面积取得最小值4.。
第1页共27页2022-2023学年高二上数学选择性必修第一册:抛物线及其标准方程【考点梳理】考点一抛物线的定义1.定义:平面内与一定点F 和一条定直线l (不经过点F )距离相等的点的轨迹.2.焦点:定点F .3.准线:定直线l .考点二抛物线的标准方程图形标准方程焦点坐标准线方程y 2=2px (p >0)p 2,0x =-p 2y 2=-2px (p >0)-p 2,0x =p 2x 2=2py (p >0)0,p 2y =-p 2x 2=-2py (p >0)0,-p 2y =p 2重难点技巧:p 的几何意义是焦点到准线的距离.【题型归纳】题型一:抛物线的定义(方程、最值)1.(2022·全国高二课时练习)若抛物线24y x =上一点M 到该抛物线的焦点F 的距离||5MF =,则点M 到y 轴的距离().A .1B .22C .23D .4第2页共27页2.(2021·东城·北京二中高二月考)抛物线2:2C y px =上一点()01,y 到其焦点的距离为3,则抛物线C 的方程为()A .24y x =B .28y x =C .212y x=D .216y x=3.(2022·全国高二课时练习)已知A (3,2),点F 为抛物线22y x =的焦点,点P 在抛物线上移动,为使PA PF +取得最小值,则点P 的坐标为()A .(0,0)B .(2,2)C .()1,2D .1,12⎛⎫⎪⎝⎭题型二:抛物线的四种标准方程4.(2022·全国高二课时练习)以x 轴为对称轴,顶点为坐标原点,焦点与原点之间的距离为2的抛物线方程是()A .28y x=B .28y x=-C .28y x =或28y x=-D .28x y =或28x y=-5.(2021·吉林农安·高二期末(理))已知抛物线C :22x py =(0p >)的准线为l ,圆M :()()22129x y -+-=与l 相切,则p =()A .1B .2C .3D .46.(2021·四川省内江市第六中学(理))已知抛物线22x y =的焦点与椭圆2212y x m +=的一个焦点重合,则m =()A .74B .12764C .94D .12964第3页共27页题型三:抛物线焦半径的公式7.(2021·全国)已知抛物线24y x =的焦点为F ,M ,N 是抛物线上两个不同的点,若5MF NF +=,则线段MN 的中点到y 轴的距离为()A .3B .32C .5D .528.(2022·全国高二课时练习)过抛物线()2:20C y px p =>的焦点F 的直线交C 于A ,B 两点,若33AF BF ==,则p =()A .3B .2C .32D .19.(2022·全国高二课时练习)已知抛物线C :y 2=4x 的焦点为F ,设A 和B 是C 上的两点,且M 是线段AB 的中点,若|AB |=6,则M 到y 轴的距离的最小值是()A .2B .4C .6D .8题型四:抛物线的方程常见求法10.(2021·东城·北京二中高二月考)己知过点(1, 2)的抛物线方程为22(0)y px p =>,过此抛物线的焦点的直线与抛物线交于A ,B 两点,且||5AB =.(1)求抛物线的方程、焦点坐标、准线方程;(2)求AB 所在的直线方程.11.(2021·哈密市第十五中学(理))根据条件求下列方程.(1)顶点在原点,准线方程是2x =的抛物线方程;(2)已知双曲线C 过点()4,2A 并且与22142x y -=有共同的渐近线,求双曲线C 的标准方程.12.(2021·全国高二专题练习)根据下列条件求抛物线的标准方程.(1)抛物线的焦点是双曲线16x 2-9y 2=144的左顶点;(2)过点P (2,-4);第4页共27页(3)抛物线的焦点在x 轴上,直线y =-3与抛物线交于点A ,|AF |=5.【双基达标】一、单选题13.(2021·山西平城·大同一中高二月考)若抛物线x 2=8y 上一点P 到焦点的距离为8,则点P 的纵坐标为()A .6B .6±C .7D .43±14.(2022·全国高二课时练习)在抛物线()220y px p =>上,横坐标为4的点到焦点的距离为5,则p 的值为()A .12B .2C .1D .415.(2022·全国高二课时练习)如果抛物线2y ax =的准线是直线1x =,那么它的焦点坐标为()A .(1,0)B .(2,0)C .(3,0)D .()1,0-16.(2021·绥德中学高二月考(文))已知抛物线22(0)x py p =>上一点P 到焦点的距离与到x 轴的距离之差为1,则p =()A .1B .2C .3D .417.(2022·全国高二课时练习)若抛物线22(0)y px p =>上一点M 到准线及对称轴的距离分别为10和6,则点M 的横坐标和p 的值分别为()A .9,2B .1,18C .9,2或1,18D .9,18或1,218.(2022·全国高二课时练习)已知抛物线2:2(0)C y px p =>的焦点F 到其准线的距离为2,过点(4,0)E 的直线l 与抛物线C 交于A ,B 两点,则||2||AF BF +的最小值为()A .223+B .823+C .178D .919.(2022·全国高二课时练习)已知M 是抛物线()2:20C y px p =>上一点,F 是抛物线第5页共27页C 的焦点,过M 作抛物线C 的准线的垂线,垂足为N ,若120MFO ∠=︒(O 为坐标原点),MNF 的周长为12,则||NF =()A .4B .17C .32D .520.(2021·富宁县第一中学高二月考(文))已知抛物线()220y px p =>第一象限内一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为()A .3B .±1C .3±D .33±21.(2021·云南省楚雄天人中学高二月考(理))O 为坐标原点,F 为抛物线2:42C y x =的焦点,P 为C 上一点,若22PF =,则POF 的面积为()A .2B .22C .23D .422.(2022·全国高二课时练习)如图,过抛物线22y px =()0p >的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,准线与对称轴交于点M ,若2BC BF =,且3AF =,则此抛物线的方程为()A .232y x =B .23y x =C .292y x =D .29y x=【高分突破】一:单选题23.(2021·全国高二单元测试)若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3第6页共27页C .4D .824.(2020·河北易县中学高二月考)O 为坐标原点,F 为抛物线2:4C y x =的焦点,P 为C 上一点,若4PF =,则POF 的面积为A .2B .3C .2D .325.(2022·全国高二课时练习)已知点M 是抛物线24x y =上的一动点,F 为抛物线的焦点,A 是圆C :22(1)(4)1x y -+-=上一动点,则||||MA MF +的最小值为A .3B .4C .5D .626.(2021·全国高二专题练习)已知F 为抛物线2y x =的焦点,,A B 是该抛物线上的两点,3AF BF +=,则线段AB 的中点到y 轴的距离为A .34B .1C .54D .7427.(2021·泉州鲤城北大培文学校高二期中)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线的准线交于,A B 两点,43AB =;则C 的实轴长为A .2B .22C .4D .828.(2020·高台县第一中学高二期中(文))已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上且满足PA m PF =,若m 取最大值时,点P 恰好在以,A F 为焦点的双曲线上,则双曲线的离心率为A .31+B .21+C .512+D .212+29.(2020·福建省南安市柳城中学高二期中)已知椭圆2215y x +=与抛物线2x ay =有相同的焦点为,F O 原点,点P 是抛物线准线上一动点,点A 在抛物线上,且4AF =,则PA PO +的最小值为A .213B .42C .313D .4630.(2019·河南宛城·南阳中学高二月考(理))抛物线28x y =的焦点为F ,过点F 的直线第7页共27页交抛物线于M 、N 两点,点P 为x 轴正半轴上任意一点,则)()OP PM PO PN +⋅-=(A .20-B .12C .-12D .20二、多选题31.(2021·全国高二专题练习)已知抛物线()220y px p =>上一点M 到其准线及对称轴的距离分别为3和22,则p 的值可以是A .2B .6C .4D .832.(2020·如皋市第一中学高二月考)泰戈尔说过一句话:世界上最远的距离,不是树枝无法相依,而是相互了望的星星,却没有交会的轨迹;世界上最远的距离,不是星星之间的轨迹,而是纵然轨迹交会,却在转瞬间无处寻觅.已知点()10M ,,直线l :2x =-,若某直线上存在点P ,使得点P 到点M 的距离比到直线l 的距离小1,则称该直线为“最远距离直线”,则下列结论正确的是()A .点P 的轨迹曲线是一条线段B .点P 的轨迹与直线'l :1x =-是没有交会的轨迹(即两个轨迹没有交点)C .26y x =+不是“最远距离直线”D .112y x =+是“最远距离直线”33.(2021·全国高二期中)已知双曲线1C :()222210,0x y a b a b -=>>的实轴长是2,右焦点与抛物线2C :28y x =的焦点F 重合,双曲线1C 与抛物线2C 交于A 、B 两点,则下列结论正确的是()A .双曲线1C 的离心率为23B .抛物线2C 的准线方程是2x =-C .双曲线1C 的渐近线方程为3y x=±D .203AF BF +=34.(2020·广东实验中学越秀学校高二期中)设抛物线22(0)y px p =>的焦点为F ,P 为第8页共27页其上一动点,当P 运动到(2,)t 时,4PF =,直线l 与抛物线相交于,A B 两点,点()4,1M ,下列结论正确的是()A .抛物线的方程为24y x =B .PM PF +的最小值为6C .存在直线l ,使得A 、B 两点关于60x y +-=对称D .当直线l 过焦点F 时,以AF 为直径的圆与y 轴相切35.(2020·江苏高二专题练习)设抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,A 为C 上一点,以F 为圆心,|FA |为半径的圆交l 于B ,D 两点.若∠ABD =90°,且△ABF 的面积为93,则()A .|BF |=3B .△ABF 是等边三角形C .点F 到准线的距离为3D .抛物线C 的方程为y 2=6x36.(2022·全国高二课时练习)已知抛物线()2:20C y px p =>的焦点为F ,过F 的直线l 交抛物线C 于点,A B ,且,4p A a ⎛⎫⎪⎝⎭,32AF =.下列结论正确的是()A .4p =B .2a =±C .3BF =D .△AOB 的面积为322三、解答题37.(2021·全国高三专题练习(文))已知点1,06F ⎛⎫⎪⎝⎭,直线1:6l x =-,动点P 到点F 与到直线l 的距离相等,求动点P 的轨迹C 的方程.38.(2022·全国高二课时练习)已知抛物线的顶点为坐标原点,对称轴为x 轴,且与圆224x y +=相交的公共弦长为23,求抛物线的方程.39.(2022·全国高二课时练习)已知椭圆2244x y +=的左、右焦点分别为1F ,2F ,抛物线第9页共27页()20y px p =>与椭圆在第一象限的交点为Q ,若1260FQF ∠=︒.(1)求三角形12F QF 的面积;(2)求此抛物线方程.40.(2021·江西科技学院附属中学高二月考(理))已知抛物线的顶点是坐标原点O ,焦点F 在x 轴的正半轴上,Q 是抛物线上的点,点Q 到焦点F 的距离为1,且到y 轴的距离是38.(1)求抛物线的标准方程;(2)假设直线l 通过点()3,1M ,与抛物线相交于A ,B 两点,且OA OB ⊥,求直线l 的方程.41.(2021·上海市新场中学高二期中)已知一条曲线C 在y 轴右边,C 上每一点到点(1,0)F 的距离等于它到x =-1的距离.(1)求曲线C 的方程;(2)求直线1y x =-被曲线C 截得线段长.42.(2021·浙江湖州·)已知抛物线21:4C y x =,圆()222:34C x y -+=,F 是抛物线的焦点,过点F 的直线与抛物线1C 交于A 、B 两点,与圆2C 交于点D ,点D 是线段AB 的中点.(1)求抛物线的准线方程;(2)求OAB 的面积.43.(2021·广西河池·(文))已知椭圆22110y x +=的一个焦点与抛物线C :22x py =(0)p >的焦点(0)p >重合,点A 是抛物线的准线与y 轴的交点.(1)求抛物线C 的方程;(2)过点A 的直线l 与曲线C 交于M ,N ,若FMN 的面积为72,求直线l 的方程.第10页共27页2022-2023学年高二上数学选择性必修第一册:抛物线及其标准方程【答案详解】1.D 【详解】因为抛物线24y x=所以抛物线焦点(10),,准线方程1x =-,点M 到准线距离为5,到y 轴距离514-=,故选:D 2.B 【详解】因抛物线2:2C y px =上一点()01,y 到其焦点的距离为3,则p >0,抛物线准线方程为2px =-,由抛物线定义得:1()32p--=,解得4p =,所以抛物线C 的方程为:28y x =.故选:B 3.B 【详解】如图所示:设点P 到准线的距离为d ,准线方程为12x =-,所以17322PA PF PA d AB +=+≥=+=,当且仅当点P 为AB 与抛物线的交点时,PA PF +取得最小值,此时点P 的坐标为()2,2.故选:B .4.C 【详解】依题意设抛物线方程为()220y px p =±>.因为焦点与原点之间的距离为2,所以22p=,所以28p =,所以抛物线方程为28y x =或28y x =-.故选:C .5.B【详解】解:抛物线2:2(0)C x py p =>的准线:2p l y =-与圆22:(1)(2)3M x y -+-=相切,可得232p +=,解得2p =.故选:B .6.C【详解】抛物线22x y =的焦点坐标为1(0,)2,所以椭圆2212y x m +=中12c =,2122m ⎛⎫-= ⎪⎝⎭,94m =.故选:C .7.B【详解】由抛物线方程24y x =,得其准线方程为1x =-.设()11,M x y ,()22,N x y ,由抛物线的定义,得12115MF NF x x +=+++=,即123x x +=,所以线段MN 中点的横坐标为12322x x +=,线段MN 的中点到y 轴的距离为32.故选:B.8.C【详解】方法一:如图,分别过点A ,B 作准线l 的垂线1AA ,1BB ,垂足分别为1A ,1B ,过点B 作1BD AA ⊥于点D ,BD 交x 轴于点E .由已知条件及抛物线的定义,得11BB BF ==,13AA AF ==,所以312AD =-=.在Rt ADB 中,因为AB 4=,2AD =,所以30ABD ∠=︒,所以1122EF BF ==,所以焦点F 到准线的距离为13122+=,即32p =.方法二:依题意,直线AB 不与x 轴垂直,设直线AB 的方程为2p y k x ⎛⎫=- ⎪⎝⎭,将其代入抛物线C 的方程22y px =,得()22222204k p k x p k x -++=.设()11,A x y ,()22,B x y ,则2124p x x =.因为33AF BF ==,所以123322p p x x ⎛⎫+=+= ⎪⎝⎭,即132p x =-,212p x =-,所以231224p p p ⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭,解得32p =.故选:C.9.A解:因为C 的方程为y 2=4x ,所以F (1,0),过A 作准线x =﹣1的垂线,垂足为E ,过B 作准线的垂线,垂足为D ,过M 作准线的垂线,垂足为K ,根据抛物线定义可得:|AF |+|BF |=|AE |+|BD |≥|AB |=6,则|MK |=12(|AE |+|BD |)≥3,所以,线段MN 的中点M 到C 的准线x =﹣1的距离最小值为3,故点M 到y 轴的距离最小值为3﹣1=2.故选:A.10.(1)抛物线的方程为24y x =,焦点(1,0)F ,准线方程为1x =-;(2)220x y --=或220x y +-=.【详解】(1)因点(1, 2)在抛物线方程22y px =上,则2p =,所以抛物线的方程为24y x =,焦点(1,0)F ,准线方程为:1x =-;(2)显然,直线AB 不垂直y 轴,设直线AB 方程为:1x my =+,由214x my y x=+⎧⎨=⎩消去x 得:2440y my --=,设1122(,),(,)A x y B x y ,则有12124,4y y m y y +==-,于是得2222121212||1||1()44(1)5AB m y y m y y y y m =+-=+⋅+-=+=,解得12m =±,即直线AB :112x y =±+,所以AB 所在的直线方程:220x y --=或220x y +-=.11.(1)28y x =-;(2)22184x y -=.【详解】(1)∵抛物线的顶点在原点,准线方程是2x =,∴可设抛物线的方程为22y px =-,且p =4,∴抛物线的标准方程为28y x =-,(2)∵双曲线C 与双曲线22142x y -=有共同的渐近线,∴可设双曲线C 方程为2242x y λλ-=≠(0),又双曲线C 过点()4,2A ,∴16442λ-=,∴=2λ,故双曲线C 的标准方程22184x y -=.12.(1)y 2=-12x ;(2)y 2=8x 或x 2=-y ;(3)y 2=±2x 或y 2=±18x .【详解】(1)双曲线方程为221916x y -=,其左顶点为(-3,0),由题意设抛物线方程为y 2=-2px (p >0),则抛物线焦点为(,0)2p -,32p -=-,解得p =6,所以所求抛物线方程为为y 2=-12x ;(2)由于P (2,-4)在第四象限且抛物线的对称轴为坐标轴,可设方程为y 2=mx 或x 2=ny ,将P 点坐标代入方程求得m =8,n =-1,所以所求抛物线方程为y 2=8x 或x 2=-y ;(3)设所求焦点在x 轴上的抛物线方程为:y 2=2px (p ≠0),A (m ,-3),则抛物线准线为2p x =-,由抛物线定义得|5|2p AF m ==+,又(-3)2=2pm ,显然p ,m 同号,从而得29210m p m p ⋅=⎧⎨+=⎩或29210m p m p ⋅=⎧⎨+=-⎩,解得p =±1或p =±9,所以所求抛物线方程为y 2=±2x 或y 2=±18x .13.A【详解】设点(),P x y ,因为抛物线方程为x 2=8y ,所以其准线方程为2y =-,又因为抛物线上点P 到焦点的距离为8,由抛物线的定义得:()28y --=,交点6y =,所以点P 的纵坐标为6,故选:A14.B解:由题意可得抛物线22(0)y px p =>开口向右,焦点坐标(2p,0),准线方程2p x =-,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4()52p --=,解之可得2p =.故选:B.15.D【详解】由于抛物线的准线是直线1x =,所以它的焦点为()1,0-.故选:D16.B【详解】由题意P 到准线的距离减去P 到x 轴距离等于1,所以12p =,2p =.故选:B .17.C【详解】因为点M 到对称轴的距离为6,所以不妨设()0,6M x .因为点M 到准线的距离为10,所以20062102px p x ⎧=⎪⎨+=⎪⎩,解得092x p =⎧⎨=⎩或0118x p =⎧⎨=⎩,故选:C .18.B【详解】因为抛物线2:2(0)C y px p =>的焦点F 到其准线的距离为2,所以2p =,抛物线C 的方程为24y x =.设直线l 的方程为4x my =+,将此方程代入24y x =,整理得24160y my --=.设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫ ⎪⎝⎭,则1216y y =-,所以222222121212||2||12132382344428y y y y y y AF BF ⎛⎫⎛⎫+=+++=++≥+=+ ⎪ ⎪⎝⎭⎝⎭,当且仅当221242y y =,即22122y y =时等号成立.故选:B .19.A【详解】因为120MFO ∠=︒,所以60FMN ∠=︒.又M 是抛物线C 上一点,所以||||FM MN =,则FMN 是等边三角形.又FMN 的周长为12,所以12||43NF ==,故选:A20.A【详解】抛物线焦点为,02p F ⎛⎫ ⎪⎝⎭,因为点M 到抛物线的焦点的距离为2p ,所以点M 到抛物线的准线的距离为2p ,则点M 的横坐标为32p ,将32M p x =代入抛物线方程得23232M p y p y p =⋅⇒=,即3,32p M p ⎛⎫ ⎪⎝⎭,所以直线MF 的斜率为303322p p p -=-.故选:A21.A【详解】因为抛物线2:42C y x =,所以22p =,由抛物线的定义得:2222p p p PF x x =+=+=,解得2p x =,则42222p y =±⨯=±,所以POF 的面积为11222222p S OF y =⋅=⨯⨯=,故选:A22.B【详解】由抛物线定义,BF 等于B 到准线的距离,因为2BC BF =,所以30BCM ∠=︒,又3AF =,从而333,222p A ⎛⎫+ ⎪ ⎪⎝⎭,又因为A 在抛物线上,代入抛物线方程22y px =,解得32p =.故抛物线方程为23y x =.故选:B23.D【详解】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2p p p -=,解得8p =,故选D .24.B【详解】由24y x =可得抛物线的焦点F (1,0),准线方程为1x =-,如图:过点P 作准线1x =-的垂线,垂足为M ,根据抛物线的定义可知PM =PF =4,设(,)P x y ,则(1)4x --=,解得3x =,将3x =代入24y x =可得23y =±,所以△POF 的面积为1||2y OF ⋅=123132⨯⨯=.故选B .25.B 【详解】如图所示,利用抛物线的定义知:MP MF=当,,M A P 三点共线时,MA MF +的值最小,且最小值为1CP r CP -=- 抛物线的准线方程:1y =-,()1,4C 415CP ∴=+=()min 514MA MF ∴+=-=本题正确选项:B26.C【详解】抛物线的准线为1:4l x =-,过,A B 作准线的垂线,垂足为,E G ,AB 的中点为M ,过M 作准线的垂线,垂足为MH ,因为,A B 是该抛物线上的两点,故,AE AF BG BF ==,所以3AE BG AF BF +=+=,又MH 为梯形的中位线,所以32MH =,故M 到y 轴的距离为315244-=,故选C.27.C【详解】设C :22x a -22y a=1.∵抛物线y 2=16x 的准线为x =-4,联立22x a -22y a=1和x =-4得A(-4,216a -),B(-4,-216a -),∴|AB|=2216a -=43,∴a =2,∴2a =4.∴C 的实轴长为4.28.B【详解】过P 作准线的垂线,垂足为N ,则由抛物线的定义可得|PN|=|PB|,∵|PA|=m|PB|,∴|PA|=m|PN|∴1||||PN m PA =,设PA 的倾斜角为α,则1sin mα=,当m 取得最大值时,sin α最小,此时直线PA 与抛物线相切,设直线PA 的方程为y=kx ﹣1,代入x 2=4y ,可得x 2=4(kx ﹣1),即x 2﹣4kx+4=0,∴△=16k 2﹣16=0,∴k=±1,∴P (2,1),∴双曲线的实轴长为PA ﹣PB=2(2﹣1),∴双曲线的离心率为2212(21)=+-.故选B .29.A【详解】由题意,椭圆2221,5145y x c +=∴=-=,即2c =,则椭圆的焦点为()0,2±,不妨取焦点()0,2,F 抛物线244a x ay y ⎛⎫== ⎪⎝⎭,∴抛物线的焦点坐标为0,4a ⎛⎫ ⎪⎝⎭,Q 椭圆2215y x +=与抛物线2x ay =有相同的焦点F ,24a ∴=,即8a =,则抛物线方程为28x y =,准线方程为2y =-,4AF =,由抛物线的定义得:A ∴到准线的距离为4,24y +=,即A 点的纵坐标2y =,又点A 在抛物线上,4x ∴=±,不妨取点A 坐标()4,2A ,A 关于准线的对称点的坐标为()4,6B -,则PA PO PB PO OB +=+≥,即,,O P B 三点共线时,有最小值,最小值为()2246163652213OB =+-=+==,故选A.30.B【详解】分析:设()()1122,,,M x y N x y ,则()()OP PM PO PN OM NO +⋅-=⋅ ()()11221212,,x y x y x x y y =⋅--=--,由22281608y kx x kx x y-=⎧⇒--=⎨=⎩利用韦达定理求解即可.详解:设()()1122,,,M x y N x y ,()()OP PM PO PN OM NO ∴+⋅-=⋅ ()()11221212,,x y x y x x y y =⋅--=--28x y = 的焦点()0,2F ,设过点F 的直线为2y kx -=,22281608y kx x kx x y-=⎧⇒--=⎨=⎩1216x x ⇒=-,128x x k +=,()()()2121212122224y y kx kx k x x k x x =++=+++2162844k k k =-+⨯+=,()()OP PM PO PN OM NO ∴+⋅-=⋅ ()121216412x x y y =--=---=,故选B.31.AC【详解】设M 的横坐标为x ,由题意,32p x +=,28px =,解得2p =或4p =.故选:AC32.BCD【详解】由题意可得,点P 到点M 的距离比到直线l 的距离小1,即等价于“点P 到点M 的距离等于到直线'l :1x =-的距离”故P 点轨迹是以()10M ,为焦点,直线'l :1x =-为准线的抛物线,其方程是24y x =,故A 错误;点P 的轨迹方程是抛物线24y x =,它与直线'l 没交点,即两者是没有交会的轨迹,故B 正确;要满足“最远距离直线”则必须满足与上述抛物线24y x =有交点,把26y x =+代入抛物线24y x =,消去y 并整理得2590x x ++=因为25419110∆=-⨯⨯=-<,无解,所以26y x =+不是“最远距离直线”,故C 正确;把112y x =+代入抛物线24y x =,消去y 并整理得21240x x -+=,因为()2124141280∆=--⨯⨯=>,有解,所以112y x =+是“最远距离直线”,故D 正确.故选:BCD .33.BC【详解】由双曲线1C :()222210,0x y a b a b -=>>的实轴长为2,可得1a =,又由抛物线2C :28y x =的焦点F 重合,可得双曲线的右焦点为(2,0),即2c =,则2223b c a =-=,可知双曲线1C :2213y x -=,所以双曲线1C 的离心率为2c e a==,抛物线2C 的准线方程是2x =-,双曲线1C 的渐近线方程为3y x =±,所以A 不正确;B 、C 正确,联立方程组222833y x x y ⎧=⎨-=⎩,解得326x y =⎧⎪⎨=±⎪⎩,所以33410A B AF BF x x p +=++=++=,所以D 不正确.故选:BC.34.BD【详解】22(0)y px p =>,故242p PF =+=,4p =,故28y x =,A 错误;过P 作PE 垂直于准线于E ,则6PM PF PM PE +=+≥,当PEM 共线时等号成立,故B 正确;设()11,A x y ,()22,B x y ,设AB 中点()00,D x y 则2118y x =,2228y x =,相减得到()()()1212128y y y y x x +-=-,即028AB y k ⋅=,故04y =,故02x =,点()2,4在抛物线上,不成立,故不存在,C 错误;如图所示:G 为AF 中点,故()111222DG OF AQ AC AF =+==,故AF 为直径的圆与y 轴相切,故D 正确;故选:BD .35.BCD【详解】根据题意,作图如下:因为|FA |为半径的圆交l 于B ,D 两点,所以||||FA FB =,又||||FA AB =,所以ABF 为等边三角形,B 正确;∠ABD =90°,//AB x ,过F 作FC ⊥AB 交于C ,则C 为AB 的中点,C 的横坐标为2p ,B 的横坐标为2p -,所以A 的横坐标为3,||22p AB p =,2233493,344ABC S AB p p ∴==⨯==△,||||26BF AB p ===,所以A 不正确,焦点到准线的距离为3p =,所以C 正确;抛物线的方程为:y 2=6x ,所以D 正确.故选:BCD .36.BCD【详解】选项A.由抛物线的定义可得32422A p p p AF x =+=+=,解得2p =,所以A 不正确.选项B.所以1,2A a ⎛⎫ ⎪⎝⎭,()1,0F ,抛物线方程为24y x =将点1,2A a ⎛⎫ ⎪⎝⎭坐标代入抛物线方程,得21422a =⨯=,所以2a =±,所以B 正确选项C.当2a =时,则2022112l k -==--,则直线l 的方程为:()221y x =--则()22214y x y x⎧=--⎪⎨=⎪⎩,得282080x x -+=,解得112x =或22x =所以2B x =,则2132B p BF x =+=+=,同理当2a =时,可得3BF =,所以C 正确.选项D.由上可知当2a =时,()1,22,222A B ⎛⎫- ⎪⎝⎭,121132132222AOB S OF y y =⋅-=⨯⨯= 同理当2a =时,322AOB S =,所以D 正确.故选:BCD37.223y x =解:设点(,)P x y ,根据题意得:221166x y x ⎛⎫-+=+ ⎪⎝⎭,化简得动点P 的轨迹方程为223y x =38.23y x =或23y x =-.【详解】由题意,设所求抛物线的方程为22y px =,交点()11,A x y ,()()2212,0,0B x y y y ><,因为抛物线与圆224x y +=相交的公共弦长为23,则1223y y +=,即1223y y -=.由对称性知21y y =-,代入上式,解得13y =,把13y =代入224x y +=,解得11x =±,当11x =时,点(1,3)在抛物线22y px =上,所以32p =;当11x =-时,点(1,3)-在抛物线22y px =上,所以32p =-.于是所求抛物线的方程为23y x =或23y x =-.故答案为:23y x =或23y x =-.39.(1)33;(2)2224y x =.【详解】(1)椭圆2244x y +=即221,2,1,34x y a b c +====,()()123,0,3,0F F -=,设12,QF m QF n ==,则()2222422cos 60m n a c m n mn +==⎧⎪⎨=+-︒⎪⎩,即()22244,312123m n m n mn mn m n mn +=⎧+-=⇒=⎨+-=⎩,所以三角形12F QF 的面积为11433sin 6022323mn ︒=⨯⨯=.(2)设()00,Q x y ,Q 在第一象限,12120001313,233F QF S F F y y y =⨯⨯=== ,2200042143x y x +=⇒=,所以421,33Q ⎛⎫ ⎪ ⎪⎝⎭,代入抛物线方程得214223324p p ⎛⎫=⨯⇒= ⎪⎝⎭,所以抛物线方程为2224y x =.40.(1)252y x =;(2)250x y --=.【详解】(1)由己知,可设抛物线的方程为22y px =,又Q 到焦点F 的距离是1,∴点Q 到准线的距离是1,又Q 到y 轴的距离是38,∴3128p =-,解得54p =,则抛物线方程是252y x =.(2)假设直线l 的斜率不存在,则直线l 的方程为3x =,与252y x =联立可得交点A 、B 的坐标分别为303,2⎛⎫ ⎪⎝⎭,303,2⎛⎫- ⎪⎝⎭,易得32OA OB ⋅= ,可知直线OA 与直线OB 不垂直,不满足题意,故假设不成立,∴直线l 的斜率存在.设直线l 为()13y k x -=-,整理得31y kx k =-+,设()11,A x y ,()22,B x y ,联立直线l 与抛物线的方程得23152y kx k y x =-+⎧⎪⎨=⎪⎩,消去y ,并整理得222256296102k x k k x k k ⎛⎫ --+-⎝++⎭=⎪,于是2122961k k x x k -+⋅=,21225622k k x x k -++=,∴2212121212155(31)(31)(31)()(31)2k y y kx k kx k k x x k k x x k k-+⋅=-+-+=--+++=,又OA OB ⊥,因此0OA OB ⋅= ,即12120x x y y ⋅+⋅=,∴2296115502k k k k k-+-++=,解得13k =或2k =.当13k =时,直线l 的方程是13y x =,不满足OA OB ⊥,舍去.当2k =时,直线l 的方程是()123y x -=-,即250x y --=,∴直线l 的方程是250x y --=.41.(1)24y x =;(2)8【详解】(1)一条曲线C 在y 轴右边,C 上每一点到点(1,0)F 的距离等于它到x =-1的距离,所以该曲线是以点(1,0)F 为焦点,以x =-1为准线的抛物线,设其方程为22,1,22p y px p ===,所以24y x =;(2)设直线1y x =-与曲线C 交于()()1122,,,A x y B x y ,联立方程241y x y x ⎧=⎨=-⎩,整理得2610x x -+=,1212320,6,1x x x x ∆=>+==,()212121142328AB x x x x =+⨯+-=⨯=.所以直线1y x =-被曲线C 截得线段长为8.42.(1)1x =-;(2)22.【详解】(1)因为抛物线21:4C y x =,所以准线方程为1x =-;(2)设直线:1l x my =+,()11,A x y ,()22,B x y 联立直线与抛物线214x my y x=+⎧⎨=⎩得2440y my --=,由韦达定理可得124y y m +=,故()21212242x x m y y m +=++=+,∴()221,2D m m +,将D 点坐标代入圆方程得()22211m m -+=,解得1m =±(0舍去).根据抛物线的对称性,不妨设1m =,联立214x y y x =+⎧⎨=⎩,消去y 得2610x x -+=,所以126x x +=所以12122822p p AB x x x x =+++=++=,坐标原点到直线10x y --=的距离12d =,所以1222OAB S AB d =⋅=△.43.(1)212x y =;(2)53y x =±-.解:(1)因为椭圆22110y x +=的焦点坐标为(0,3)-,(0,3).又因为椭圆的焦点与抛物线C :22x py =(0)p >的焦点F 重合,所以32p =,即6p =,所以抛物线方程为212x y =.(2)由(1)知(0,3)A -,设l 的方程为3y kx =-,联立2312y kx x y=-⎧⎨=⎩,消去y 得212360x kx -+=,由2(12)4360k ∆=-⨯>得1k <-或1k >.设()11,M x y ,()11N x y ,,由韦达定理知1212x x k +=,1236x x =,所以222212||(1)()1211MN k x x k k =+-=+⋅-,点F 到 l 直线的距离261d k =+所以FMN 的面积为21||3612MN d k ⋅=-,因为963QMN S =△,所以236172k -=,解得5k =±,因为1k <-或1k >,所以5k =±满足条件,所以所求直线 l 的方程为53y x =±-.。
第05讲抛物线【考点目录】【知识梳理】知识点1 抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.注:①在抛物线定义中,若去掉条件“l不经过点F”,点的轨迹还是抛物线吗?不一定是,若点F在直线l上,点的轨迹是过点F且垂直于直线l的直线.②定义的实质可归纳为“一动三定”一个动点M;一个定点F(抛物线的焦点);一条定直线(抛物线的准线);一个定值(点M到点F的距离与它到定直线l的距离之比等于1).知识点2抛物线的标准方程和几何性质焦点在x轴上时,方程的右端为±2px,左端为y2;焦点在y轴上时,方程的右端为±2py,左端为x2.p的几何意义:焦点F到准线l的距离.标准方程y 2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形顶点O(0,0)知识点3 直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km -p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个交点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.注:(1)直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.(2)研究直线与抛物线的关系时要注意直线斜率不存在的情况.知识点4 弦长问题过抛物线y2=2px(p>0)的焦点的直线交抛物线于A(x1,y1),B(x2,y2)两点,那么线段AB叫做焦点弦,如图:设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则|AB|=x1+x2+p.注:(1)x 1·x 2=p 24.(2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2psin 2α (α是直线AB 的倾斜角).(4)1|AF |+1|BF |=2p 为定值(F 是抛物线的焦点). (5)求弦长问题的方法①一般弦长:|AB |=1+k 2|x 1-x 2|,或|AB |=1+1k2|y 1-y 2|. ②焦点弦长:设过焦点的弦的端点为A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p .考点一 抛物线的标准方程(一)求抛物线的标准方程1.(2022春·北京海淀·高二校考阶段练习)抛物线的焦点在x 轴正半轴上,且准线与焦点轴间的距离为3,则此抛物线的标准方程为( ) A .26y x = B .23y x = C .26x y = D .23x y =【答案】A【分析】利用抛物线的性质,求出p ,然后求得抛物线方程即可.【详解】解:焦点在x 轴正半轴上的抛物线标准方程为()220y px p =>,又准线与焦点轴间的距离为3,可得3p =,所以抛物线的标准方程为26y x =.故选:A.2.(2022春·辽宁本溪·高二校考阶段练习)以坐标轴为对称轴,焦点在直线45100x y -+=上的抛物线的标准方程为( ) A .210x y =或28y x =-B .210x y =-或28y x =【考点剖析】C .210y x =或28x yD .210y x =-或28x y =【答案】D【分析】直线45100x y -+=与坐标轴的交点即为焦点,根据焦点可求出p ,可得答案. 【详解】直线45100x y -+=与坐标轴的交点为()5,0,0,22⎛⎫- ⎪⎝⎭,当抛物线的焦点为5,02⎛⎫- ⎪⎝⎭时,其标准方程为210y x =-;当抛物线的焦点为()0,2时,其标准方程为28x y =. 故选:D.3.(2022秋·上海黄浦·高二上海市向明中学校考期末)过点1,2,且焦点在y 轴上的抛物线的标准方程是( ) A .24y x = B .24y x =-C .212=-x yD .212x y =【答案】C【分析】设抛物线方程为2x my =,代入点的坐标,即可求出m 的值,即可得解; 【详解】解:依题意设抛物线方程为2x my =,因为抛物线过点1,2, 所以()212m =⨯-,解得12m =-,所以抛物线方程为212=-x y ;故选:C(二)抛物线的几何性质的应用4.(2022·全国·高二假期作业)抛物线26y x =的准线方程为( ) A .124y =-B .112y =-C .y =-6D .=3y -【答案】A【分析】先把抛物线化成标准方程,求出p ,即可得到准线方程.【详解】抛物线26y x =的标准方程为:216x y =,令2126x y py ==,得112p =,于是该抛物线的准线为:124y =-.5.(2022春·山东临沂·高二临沂第四中学校考阶段练习)若抛物线22y px =的焦点与双曲线221x y -=的右焦点重合,则p =( )A .2B .4C .D 【答案】C【分析】先求出双曲线221x y -=的右焦点,此焦点是抛物线22y px =的焦点,求出.p【详解】在双曲线221x y -=中,2112c =+=,所以右焦点)2F ,2F 是抛物线22y px =的焦点,2pp ∴== 故选:C6.(2022春·黑龙江哈尔滨·高二哈九中校考阶段练习)已知圆22:(1)1C x y -+=与抛物线22(0)y px p =>的准线相切,则p =( )A .18B .14C .8D .2【答案】A【分析】根据给定条件,求出抛物线的准线方程,再利用点到直线距离公式求解作答.【详解】圆22:(1)1C x y -+=的圆心(1,0)C ,半径1,抛物线212x y p =的准线为18y p=-, 依题意,118p =,解得18p =, 所以18p =. 故选:A7.(2022·全国·高二假期作业)已知抛物线()2:0C x ay a =≠,则抛物线C 的焦点坐标为( )A .1,04a ⎛⎫ ⎪⎝⎭B .1,04a ⎛⎫± ⎪⎝⎭C .()0,4aD .()0,4a ±【答案】A【分析】将抛物线方程化为标准方程,判断焦点的位置,求出p ,即可得焦点坐标.【详解】已知()20x ay a =≠,则标准方程为21y x a=,焦点在x 轴上, 所以1122p p a a=⇒=, 所以焦点坐标为1,04a ⎛⎫⎪⎝⎭,8.(2022春·江苏泰州·高二统考期中)若抛物线2y mx =上一点(),2t 到其焦点的距离等于4,则( ) A .14m =B .18m =C .4m =D .8m =【答案】B【分析】由抛物线的定义求解即可【详解】因为抛物线2y mx =的标准方程为21x y m=,其准线方程为14y m =-,由于抛物线上一点(),2t 到其焦点的距离等于4, 由抛物线的定义可得,1244m +=,解得18m =. 故选:B9.(2022秋·湖北咸宁·高二统考期末)已知O 是坐标原点,F 是抛物线C :()220y px p =>的焦点,()0,4P x 是C 上一点,且4=PF ,则POF 的面积为( ) A .8 B .6 C .4 D .2【答案】C【分析】根据条件求出p 的值,然后可算出答案.【详解】由题可知0042162p x px ⎧+=⎪⎨⎪=⎩,解得024x p =⎧⎨=⎩,所以POF 的面积为12442⨯⨯=,故选:C考点二 抛物线定义的应用(一)利用抛物线的定义求距离或点的坐标10.(2022秋·新疆乌鲁木齐·高二乌市八中校考期末)抛物线26y x =上一点()11,M x y 到其焦点的距离为92,则点M 到坐标原点的距离为( ) A.B.CD .2【答案】A【分析】由抛物线方程求得焦点坐标及准线方程,再由()11,M x y 到其焦点的距离求得M 横坐标,进一步求得M 纵坐标,则答案可求.【详解】由题意知,焦点坐标为3,02⎛⎫⎪⎝⎭,准线方程为32x =-,由()11,M x y 到焦点距离等于到准线距离,得13922x +=,则13x =,2118y ∴=故选:A.11.(2022·高二单元测试)已知曲线C 上任意一点P 到定点()2,0F 的距离比点P 到直线3x =-的距离小1,M ,N 是曲线C 上不同的两点,若10MF NF +=,则线段MN 的中点Q 到y 轴的距离为( ) A .3 B .4C .5D .6【答案】A【分析】根据抛物线的定义求出曲线C 的方程,再根据抛物线的性质计算可得;【详解】解:依题意曲线C 上任意一点P 到定点()2,0F 的距离和点P 到直线2x =-的距离相等, 由抛物线的定义可知:曲线C 是以()2,0F 为焦点,2x =-为准线的抛物线,所以曲线C 的方程为28y x =.分别设点M 、N 、Q 到准线2x =-的距离分别为1d ,2d ,d , 则12522MF NFd d d ++===,所以中点Q 到y 轴的距离为3, 故选:A .12.(2022·高二课时练习)若()00,P x y 是抛物线232y x =-上一点,F 为抛物线的焦点,则PF =( ). A .08x + B .08x -C .08x -D .016x +【答案】C【分析】根据抛物线定义,得到PF 等于点00(,)P x y 到准线的距离,即PF PM =,即可求解. 【详解】由抛物线232y x =-,可得其焦点在x 轴上,且8p =,准线方程为8x =, 因为点00(,)P x y 是抛物线232y x =-上一点,F 为抛物线的焦点,根据抛物线定义,可得PF 等于点00(,)P x y 到准线的距离,即PF PM =, 如图所示,所以08PF x =-.故选:C13.(2022·高二课时练习)已知抛物线C :22y x =的焦点为F ,()00,A x y 是C 上一点,054AF x =,则0x =( ) A .1 B .2C .4D .5【答案】B【分析】先求出抛物线的准线方程,进而将点到焦点的距离转化为到准线的距离即可求得答案.【详解】由抛物线C :22y x =可得1p =,则准线方程为12x =-,于是00015224p AF x x x =+=+=,解得02x =.故选:B .14.(2022秋·新疆喀什·高二新疆维吾尔自治区喀什第二中学校考期中)已知A ()4,2-,F 为抛物线28y x =的焦点,点M 在抛物线上移动,当MA MF +取最小值时,点M 的坐标为( )A .()0,0B .(1,-C .()2,2-D .1,22⎛⎫- ⎪⎝⎭【答案】D【分析】过M 点作准线l 的垂线,垂足为E ,由抛物线定义,知MF ME =,当M 在抛物线上移动时,当,,A M E 三点共线时,ME MA +最小,由此即可求出结果.【详解】如图所示,过M 点作准线l 的垂线,垂足为E ,由抛物线定义,知MF .ME =当M 在抛物线上移动时,ME MA +的值在变化,显然M 移动到M '时,,,A M E 三点共线,ME MA +最小,此时//AM Ox ',把=2y -代入28y x =,得12x =,所以当MA MF +取最小值时,点M 的坐标为1,22⎛⎫- ⎪⎝⎭.故选:D.15.(2022春·湖北武汉·高二华中师大一附中阶段练习)已知抛物线2:2(0)C y px p =>的焦点为F ,点M 在抛物线C 的准线l 上,线段MF 与y 轴交于点A ,与抛物线C 交于点B ,若||3||3MA AB ==,则p =( ) A .1 B .2C .3D .4【答案】C【分析】由题知点A 为MF 的中点,结合已知得||6,||2,||4MF BF BM ===,过点B 作BQ l ⊥,由抛物线的定义即可求解.【详解】设l 与x 轴的交点为H ,由O 为FH 中点,知点A 为MF 的中点, 因为||3||3MA AB ==,所以||6,||2,||4MF BF BM ===.过点B 作BQ l ⊥,垂足为Q ,则由抛物线的定义可知||||2BQ BF ==, 所以||2||BM BQ =,则||2||6MF FH ==,所以||3p FH ==. 故选:C16.(2022春·福建·高二福建师大附中校考期末)如图,过抛物线()220y px p =>的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,准线与对称轴交于点M ,若3BC BF=,且3AF =,则p 为( )A .1B .2C .3D .4【答案】B【分析】分别过点A 、B 作准线的垂线,垂足分别为点E 、D ,设BF a =,根据抛物线的定义以及图象可得sin sin sin BCD ACE FCM ∠=∠=∠,结合已知条件求得,a p ,即可. 【详解】如图,分别过点A 、B 作准线的垂线,垂足分别为点E 、D ,设BF a =,则由己知得3BC a =,由抛物线的定义得BD a =, 故1sin 33BD a BCD BC a ∠===, 在直角三角形ACE 中,3AF =,34AC a =+, 又因为31sin sin 343AE BCD ACE AC a ∠=∠===+, 则349a +=,从而得32a =, 又因为1sin sin 463MF p p BCD FCM FC a ∠=∠====, 所以2p =. 故选:B.(二)与抛物线定义有关的最大(小)值问题17.(2022·高二单元测试)已知圆C 经过点()1,0P ,且与直线=1x -相切,则其圆心到直线30x y -+=距离的最小值为( )A .3B .2 CD【答案】D【分析】利用已知可推出圆心C 的轨迹为抛物线,利用抛物线的几何性质求解即可.【详解】解:依题意,设圆C 的圆心(),C x y ,动点C 到点P 的距离等于到直线=1x -的距离, 根据抛物线的定义可得圆心C 的轨迹方程为24y x =, 设圆心C 到直线30x y -+=距离为d,d ====当2y =时,min d ,故选:D .18.(2022春·四川泸州·高二四川省泸县第一中学校考期末)已知抛物线C :212y x =-的焦点为F ,抛物线C 上有一动点P ,()4,2Q -,则PF PQ +的最小值为( )A .5B .6C .7D .8 【答案】C【分析】抛物线的准线l 的方程为3x =,过P 作PM l ⊥于M ,根据抛物线的定义可知PF PM =,则当,,Q P M 三点共线时,可求PM PQ +得最小值,答案可得.【详解】解:抛物线C :212y x =-的焦点为()3,0F -,准线l 的方程为3x =,如图,过P作PM l ⊥于M ,由抛物线的定义可知PF PM =,所以PF PQ PM PQ +=+则当,,Q P M 三点共线时,PM PQ +最小为()347--=. 所以PF PQ +的最小值为7.故选:C.19.(2022秋·江西赣州·高二校联考期中)已知抛物线216y x =的焦点为F ,P 点在抛物线上,Q 点在圆()()22:624C x y -+-=上,则PQ PF +的最小值为( ) A .4B .6C .8D .10【答案】C 【分析】利用抛物线定义,将抛物线上的点到焦点的距离转化为点到准线的距离,再根据三点共线求最小距离.【详解】如图,过点P 向准线作垂线,垂足为A ,则PF PA =,当CP 垂直于抛物线的准线时,CP PA +最小,此时线段CP 与圆C 的交点为Q ,因为准线方程为4x =-,()6,2C ,半径为2,所以PQ PF +的最小值为21028AQ CA =-=-=.故选:C20.(2022春·黑龙江哈尔滨·高二哈尔滨三中校考期中)设点P 是抛物线1C :24x y =上的动点,点M 是圆2C :22(5)(4)4x y -++=上的动点,d 是点P 到直线=2y -的距离,则||d PM +的最小值是( )A .2B .1C .D .1【答案】B 【分析】根据题意画出图像,将d 转化为抛物线上点到准线的距离再加1,也即是抛物线上点到焦点的距离加1,若求||d PM +的最小值,转化为抛物线上点到焦点距离和到圆上点的距离再加1即可,根据三角形两边之和大于第三边,即当112,,,F P M C 共线时,||d PM +取最小值为21FC r +-,算出结果即可.【详解】解:由题知圆2C :22(5)(4)4x y -++=,()25,4,2C r ∴-=()0,1F 为抛物线焦点,1y =-为抛物线准线,则过点P 向1y =-作垂线垂足为D ,如图所示:则1d PD =+, 根据抛物线定义可知=PD PF ,1d PF ∴=+,||d PM ∴+=1PF PM ++,若求||d PM +的最小值,只需求PF PM +的最小值即可,连接2FC 与抛物线交于点1P ,与圆交于点1M ,如图所示,此时PF PM +最小,为2FC r -,()2min 1d PM FC r +=+-,()()220,1,5,4,F C FC -∴=()2min 11d PM FC r ∴+=+-=.故选:B21.(2022春·北京·高二人大附中校考期末)已知直线1:4360l x y -+=和直线2:1l x =-,则抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( )A .3716B .115C .2D .74【答案】C【分析】由=1x -是抛物线24y x =的准线,推导出点P 到直线1:4360l x y -+=的距离和到直线2:1l x =-的距离之和的最小值即为点P 到直线1:4360l x y -+=的距离和点P 到焦点的距离之和,利用几何法求最值.【详解】1x =-是抛物线24y x =的准线,P ∴到=1x -的距离等于PF .过P 作1PQ l ⊥于 Q ,则P 到直线1l 和直线2l 的距离之和为PF PQ +抛物线24y x =的焦点(1,0)F∴过F 作11Q F l ⊥于1Q ,和抛物线的交点就是1P , ∴111PF PQ PF PQ +≤+(当且仅当F 、P 、Q 三点共线时等号成立)∴点P 到直线1:4360l x y -+=的距离和到直线2:1l x =-的距离之和的最小值就是(1,0)F 到直线4360x y -+=距离,∴最小值1FQ 2==.故选:C .考点三 抛物线的轨迹问题22.(2022·高二课时练习)已知点(2,2)M ,直线:10l x y --=,若动点P 到l 的距离等于PM ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .直线【答案】C【分析】由抛物线的定义求解即可.【详解】由抛物线的定义(平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线)可知,点P 的轨迹是抛物线.故选:C23.(2022春·四川成都·高二成都七中校考阶段练习)已知圆22:1O x y +=,点00(,0),(0)A x x ≥,动圆M 经过点A 且与圆O 相切,记动圆圆心M 的轨迹为E ,有下列几个命题:①00x =,则轨迹E 表示圆,②001x <<,则轨迹E 表示椭圆,③01x =,则轨迹E 表示抛物线,④01x >,则轨迹E 表示双曲线,其中,真命题的个数为( )A .1B .2C .3D .4【答案】C【分析】设动圆M 圆心(),M x y ,半径为r ,根据圆与圆内切和外切两种情况,结合圆,抛物线,椭圆和双曲线的定义,依次判断每个选项得到答案.【详解】设动圆M 圆心(),M x y ,半径为r ,当00x =时,动圆M 与圆O 内切,故1MO r =-,即1MO MO =-,12MO =,轨迹为圆,①正确; 当001x <<时,动圆M 与圆O 内切,故1MO r =-,即1MO MA AO +=>,故轨迹为椭圆,②正确; 当01x =时,动圆M 与圆O 内切时,1MO r =-,1MO MA AO +==,轨迹为线段OA ;动圆M 与圆O 外切时,1MO r =+,1MO MA AO -==,轨迹为射线,③错误;当01x >时,动圆M 与圆O 外切,1MO r =+,即1MO MA AO -=<,故轨迹为双曲线,④正确. 故选:C24.(2022秋·福建福州·高二统考期中)在平面直角坐标系xOy 中,动点(),P x y 到直线1x =的距离比它到定点()2,0-的距离小1,则P 的轨迹方程为( )A .22y x =B .24y x =C .24y x =-D .28y x =-【答案】D【分析】根据抛物线的定义判断轨迹,再由抛物线焦点、准线得到方程即可.【详解】由题意知动点(),P x y 到直线2x =的距离与定点()2,0-的距离相等,由抛物线的定义知,P 的轨迹是以()2,0-为焦点,2x =为准线的抛物线,所以4p =,轨迹方程为28y x =-,故选:D25.(2022春·广东江门·高二新会陈经纶中学校考阶段练习)已知点()1,0F ,过直线=1x -上一动点P 作与y 轴垂直的直线,与线段PF 的中垂线交于点Q ,则Q 点的轨迹方程为( )A .221x y +=B .221x y -=C .22y x =D .24y x = 【答案】D 【分析】根据中垂线性质得到QF QP =,结合抛物线的定义判断出Q 点的轨迹是抛物线,由此求解出轨迹方程.【详解】设(),Q x y ,因为PF 的中垂线经过点Q ,所以QF QP =,又因为PQ y ⊥轴,所以QP 表示Q 到直线=1x -的距离, 且QF 表示Q 点到F 点的距离,F 点不在直线=1x -上,由抛物线的定义可知:Q 点的轨迹是以F 为焦点,以直线=1x -为准线的抛物线,设轨迹方程为()220y px p =>,所以12p =,所以2p =, 所以轨迹方程为24y x =.故选:D.26.(2022秋·山东青岛·高二青岛二中校考阶段练习)已知动圆M 与直线y =2相切,且与定圆2231()C x y =:++ 外切,则动圆圆心M 的轨迹方程为( )A .212x y =-B .212x y =C .212y x =D .212y x =-【答案】A 【分析】根据动圆M 与直线y =2相切,且与定圆2231()C x y =:++外切,可得动点M 到C (0,-3)的距离与到直线y =3的距离相等,由抛物线的定义知,点M 的轨迹是抛物线,由此易得轨迹方程.【详解】设动圆圆心为M (x ,y ),半径为r ,由题意可得M 到C (0,-3)的距离与到直线y =3的距离相等, 由抛物线的定义可知,动圆圆心的轨迹是以C (0,-3)为焦点,以y =3为准线的一条抛物线, 所以3,2122p p ==,其方程为212.x y =-, 故选:A27.(2022·高二课时练习)若动点(,)M x y 满足3412x y =-+,则点M 的轨迹是( ) A .圆B .椭圆C .双曲线D .抛物线 【答案】D34125x y -+=,结合抛物线的定义,即可求解.【详解】由题意,动点(,)M x y 满足3412x y -+,34125x y -+=, 即动点(,)M x y 到定点(1,2)的距离等于动点(,)M x y 到定直线34120x y -+=的距离,又由点(1,2)不在直线34120x y -+=上,根据抛物线的定义,可得动点M 的轨迹为以(1,2)为焦点,以34120x y -+=的抛物线.故选:D.考点四 直线与抛物线的位置关系(一)直线与抛物线位置关系的判断及应用28.(2022春·上海浦东新·高二上海市建平中学校考阶段练习)过定点()0,1P 且与抛物线28y x =有且仅有一个公共点的直线有( )A .1条B .2条C .3条D .4条【答案】C【分析】根据题意,考虑直线斜率不存在和存在两种情况,由直线与抛物线位置关系,联立直线与抛物线方程求解,即可得出结果.【详解】当斜率不存在时,直线方程为0x =,只有一个公共点,符合题意;当斜率存在时,设为k ,则直线方程为1y kx =+,联立218y kx y x=+⎧⎨=⎩,得22(28)10k x k x +-+=, ①当0k =时,直线方程为1y =,只有一个公共点,符合题意;②当0k ≠时,令22(28)40k k ∆=--=,解得2k =,即直线与抛物线有一个公共点.所以满足题意的直线有3条.故选:C29.(2022·高二课时练习)直线()12y k x =-+与抛物线24x y =的位置关系为( )A .相交B .相切C .相离D .不能确定【答案】A【分析】直线()12y k x =-+过定点()1,2,在抛物线24x y =内部,即可得出结论.【详解】直线()12y k x =-+过定点()1,2,∴2142<⨯,∴()1,2在抛物线24x y =内部,∴直线()12y k x =-+与抛物线24x y =相交,故选:A .30.(2022春·江苏连云港·高二期末)已知直线l 过点()1,2且与抛物线24y x =只有一个公共点,则直线l 的方程是( )A .2y =B .10x y -+=C .1x =D .2y =或10x y -+= 【答案】D【分析】先判断点()1,2在抛物线上,再分直线的斜率不存在,直线的斜率为0和直线的斜率存在且不为0,三种情况讨论求解即可.【详解】将点(1,2)的坐标代入抛物线方程得2241=⨯,即该点在抛物线上.①若直线的斜率不存在,直线l 的方程为:1l x =,当直线l 与抛物线有两个交点,不合题意; ②若直线的斜率为0,则直线:2l y =平行于x 轴,则满足题意;③若直线的斜率存在且不为0,设()():210l y k x k -=-≠,联立方程组22(1)4y k x y x -=-⎧⎨=⎩, 将21y x k k =-+代入24y x =化简得24840y y k k-+-=, 则248Δ()4(4)01k k k =---=⇒=,此时:2110l y x x y -=-⇒-+=.综上,直线l 的方程为2y =或10x y -+=.故选:D .31.(2022春·江苏南京·高二校联考阶段练习)过抛物线24x y =的焦点F 作直线交抛物线于,A B 两点,且点A 在第一象限,则当2AF FB =时,直线AB 的斜率为( )AB.C.D.±【答案】A【分析】首先设直线AB ,把直线与抛物线联立,结合2AF FB =,找到12x x + 与12x x 关系式,计算即可得到斜率.【详解】由题意知()0,1F ,设直线AB :1y kx =+,()()1122,,,A x y B x y联立方程214y kx x y =+⎧⎨=⎩, 可得2440x kx --=,即得121244x x k x x +=⎧⎨=-⎩ ① 又因为2AF FB =,可得122x x =-,②结合①②()212122x x x x =-+,24216k -=-⨯ 可得21=8k , 因为122x x =-,1>0x ,20x <又因12=4x x k +所以0k >即可得k 故选:A .32.(2022春·江苏连云港·高二校考期中)过抛物线2:C y x =上定点(P 作圆()22:21M x y -+=的两条切线,分别交抛物线C 于另外两点A 、B ,则直线AB 的方程为( ) A.10x -+= B.10x ++= C.20x -+= D.20x ++=【答案】B【分析】设过点P 且与圆M相切的直线的方程为()2y k x =-,根据该直线与圆M 相切求出k 的值,设点()211,A y y 、()222,B y y ,求出1y 、2y 的值,求出直线AB 的斜率,利用点斜式可得出所求直线的方程.【详解】圆M 的圆心为()2,0M ,半径为1,易知PM x ⊥轴,所以,直线PA 、PB 的斜率必然存在, 设过点P 且与圆M相切的直线的方程为()2y k x =-,即20kx y k -+=,1=,解得1k =±,设点()211,A y y 、()222,B y y ,不妨设直线PA 、PB 的斜率分别为1、1-,则11PA k ==,可得11y =同理1PB k ==-,可得21y =-直线AB的斜率为122212121AB y y k y y y y -===-+ 易知点A的坐标为(3-, 所以,直线AB的方程为(13y x -=-+,即10x ++=. 故选:B.33.(2022秋·安徽·高二校联考期末)已知抛物线2:12C x y =的焦点为F ,其准线与y 轴的交点为A ,点B 为抛物线上一动点,当AB FB取得最大值时,直线AB 的倾斜角为( )A .4π B .3π C .6π或56π D .4π或34π【答案】D【分析】过点B 作抛物线C 的准线的垂线BM ,垂足为点M ,分析可得cos BF BAF AB =∠,当AB FB取得最大值时,BAF ∠最大,此时AB 与抛物线C 相切,设出直线AB 的方程,将抛物线C 的方程,由Δ0=可求得直线AB 的斜率,即可求得直线AB 的倾斜角.【详解】抛物线C 的准线为2:12l x y =,焦点为()0,3F ,易知点()0,3A -,过点B 作BM l ⊥,垂足点为M ,由抛物线的定义可得BM BF =,易知//BM y 轴,则BAF ABM ∠=∠,所以,cos cos BF BMABM BAF AB AB==∠=∠, 当AB FB取得最大值时,cos BAF ∠取最小值,此时BAF ∠最大,则直线AB 与抛物线C 相切,由图可知,直线AB 的斜率存在,设直线AB 的方程为3y kx =-,联立2123x yy kx ⎧=⎨=-⎩可得212360x kx -+=,则21441440k ∆=-=,解得1k =±,因此,直线AB 的倾斜角为4π或34π. 故选:D.(二)弦长问题34.(2022春·四川成都·高二树德中学校考阶段练习)已知抛物线2:8C y x =的焦点为F ,过点F 且倾斜角为π4的直线l 与抛物线C 交于A ,B 两点,则AB =( ).A .8B .C .16D .32【分析】根据过抛物线焦点的弦长公式求得正确答案. 【详解】焦点()2,0F ,直线l 的方程为2y x =-,由228y x y x=-⎧⎨=⎩,消去y 并化简得21240,144161280x x -+=∆=-=>, 设()()1122,,,A x y B x y ,所以1212x x +=, 所以1212416AB x x p =++=+=. 故选:C35.(2022春·湖北·高二校联考阶段练习)根据抛物线的光学性质,从抛物线的焦点发出的光,经抛物线反射后光线都平行于抛物线的轴,已知抛物线22y x =,若从点()3,2Q 发射平行于x 轴的光射向抛物线的A 点,经A 点反射后交抛物线于B 点,则AB =( ) A .258B .2516C .259D .2518【答案】A【分析】由题意求出A 点的坐标,由于直线AB 过焦点,利用点斜式方程求出直线AB 为4320x y --=,联立抛物线方程,得23102y y --=,根据韦达定理求出B 点坐标,利用两点间距离公式可求出AB . 【详解】由条件可知AQ 与x 轴平行,令2y =,可得2A x =,故A 点坐标为()2,2, 因为AB l 经过抛物线焦点1,02F ⎛⎫⎪⎝⎭,所以AB l 为20101222y x -⎛⎫-=- ⎪⎝⎭-,整理得4320x y --=, 联立224320y x x y ⎧=⎨--=⎩,得23102y y --=,()2325411024⎛⎫∆=--⨯⨯-=> ⎪⎝⎭,所以32A B y y +=,又2A y =,所以12B y =-,2111228B x ⎛⎫=⨯-= ⎪⎝⎭,所以258AB =,36.(2022春·山东济南·高二山东省济南市莱芜第一中学校考阶段练习)已知椭圆22154x y +=的右焦点F 是抛物线()220y px p =>的焦点,则过F 作倾斜角为45°的直线分别交抛物线于A ,B (A 在x 轴上方)两点,则AFBF的值为( )A.3+B .2+C .3D .4【答案】A【分析】先根据椭圆方程求抛物线的方程,分别过A ,B 作准线的垂线,得到直角梯形11AA B B ,结合抛物线的定义在梯形中求2ABAP ,即得结果.【详解】依题意,()1,0F 是抛物线()220y px p =>的焦点,故12p=,则2p =,24y x =. 根据已知条件如图所示,A 在x 轴上方,分别过A ,B 作准线的垂线,垂足为11,A B , 过B 作1AA 的垂线,垂足为P ,设,BF x AF kx ==,根据抛物线的定义知11,BB x AA kx ==,所以直角梯形11AA B B 中1A P x =,()111AP AA A P k x =-=-,()1AB k x =+,又直线AB 的倾斜角45,故121k xk x ,解得3k =+3AFBF=+ 故选:A.37.(2022·山东青岛·高二山东省莱西市第一中学学业考试)设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为30°的直线交抛物线C 于A ,B 两点,O 为坐标原点,则OAB 的面积为( )A .94B C .98D【分析】联立直线与抛物线方程消去x 得1212,y y y y +, 121||||2OAB OAF OFB S S S OF y y =+=-△△△代入计算可得结果.【详解】由题意知,3(,0)4F∴过A 、B的直线方程为3)4y x =-,即:34x =+22349034y xy x ⎧=⎪⇒--=⎨+⎪⎩设1122,,()()A x y B x y ,,则121294y y y y +==-∴1212113||||||224OAB OAF OFB S S S OF y y y y =+=-=⨯-△△△3984== 故选:A.38.(2022春·河南·高二校联考期中)已知抛物线2:4C y x =的焦点为,F N 为C 上一点,且N 在第一象限,直线FN 与C 的准线交于点M ,过点M 且与x 轴平行的直线与C 交于点P ,若||2||MN NF =,则MPF △的面积为( ) A .8 B .12C.D.【答案】C【分析】过N 作准线的垂线,垂足为Q ,准线与x 轴交于点E ,进而根据几何关系得MPF △为等边三角形,34MF NF ==,再计算面积即可.【详解】解:如图,过N 作准线的垂线,垂足为Q ,准线与x 轴交于点E , 所以,NF NQ =,2EF =. 因为MQN MEF △△∽, 所以23QN MN MQ EF MF ME ===,43QN NF ==,34MF NF ==. 所以1cos 2EF MFE MF ∠==,60MFE PMF ∠=︒=∠.又因为PM PF =,所以60PFM PMF ∠=∠=︒,所以MPF △为等边三角形,所以2MPF S ==△ 若M 在第三象限,结果相同. 故选:C39.(2022秋·河南许昌·高二统考期末)已知直线l 过点()2,0,且垂直于x 轴.若l 被抛物线24y ax =截得的线段长为 ) A .()1,0 B .()0,1 C .()1,2 D .()2,1【答案】A【分析】将2x =代入24y ax =可得交点坐标,结合弦长为a ,进而得到抛物线的焦点坐标即可【详解】当2x =时,28y a =,显然0a >,解得y =±(-=,解得1a =,故抛物线24y x =,焦点坐标为()1,0故选:A40.(2022秋·河南·高二校联考开学考试)已知A ,B 为抛物线2:C y x =,上的两点,且2AB =,则AB 的中点横坐标的最小值为( ). A .14B .12C .34D .1【分析】根据抛物线的弦长公式,结合基本不等式进行求解即可. 【详解】设直线AB 的方程为()0x ky b b =+≥,()11,A x y ,()22,B x y ,联立方程组2y xx ky b ⎧=⎨=+⎩,得20y ky b --=,则12y y k +=,12y y b =-,240k b ∆=+>.因为2AB ,所以()()22144k k b ++=,得22114k b k =-+.因为()2121222x x k y y b k b +=++=+,所以AB 的中点的横坐标2221202211112241414x x k k k x b k k ++==+=+=+-++.因为2211141k k ++≥=+, 当且仅当221141k k +=+,即1k =±时,等号成立, 所以当1k =±时,0x 取得最小值34. 故选:C41.(2022秋·广东深圳·高二深圳市罗湖外语学校校考阶段练习)已知圆()2220x y r r +=>与抛物线23y x=相交于M ,N ,且MN =r =( )A B .2 C .D .4【答案】B【分析】由圆与抛物线的对称性及MN =M 点纵坐标,代入抛物线得横坐标,求出||OM 即可得解.【详解】因为圆()2220x y r r +=>与抛物线23y x =相交于M ,N ,且MN =由对称性,不妨设(M x ,代入抛物线方程,则33x =,解得1x =,所以M ,故||2r OM ==(三)焦点弦问题42.(2022春·湖南长沙·高二湘府中学校考阶段练习)设F 为抛物线2:2C y x =的焦点,点M 在C 上,点N 在准线l 上,满足//MN OF ,NF MN =,则MF =( )A .12 B C .2 D 【答案】C【分析】由抛物线方程可知p ,焦点坐标及准线方程,设准线l 与x 轴交点为E ,画出图象,由抛物线定义及NF MN =可知MNF 是正三角形,结合平行关系可判断60EFN ∠=︒,利用直角三角形性质即可求解. 【详解】由题,1p =,抛物线焦点F 为1,02⎛⎫⎪⎝⎭,准线l 为12x =-,设准线l 与x 轴交点为E ,如图所示, 由题知MN l ⊥,由定义可知MN MF =, 因为NF MN =,所以MNF 是正三角形,则对Rt NEF ,因为//MN OF ,所以60EFN MNF ∠=∠=︒, 所以222MF NF EF p ====, 故选:C43.(2022·全国·高二假期作业)已知抛物线2:4C y x =的焦点为F ,N 为C 上一点,且N 在第一象限,直线FN 与C 的准线交于点M ,过点M 且与x 轴平行的直线与C 交于点P ,若2MN NF =,则直线PF 的斜率为( ) A .1 B .2C .43D 【答案】D【分析】过N 作准线的垂线,垂足为Q ,根据抛物线的定义以及两直线平行内错角相等、等腰三角形的性质可得30NMQ ∠=,通过直线的倾斜角为πPFM MFO -∠-∠即可得结果. 【详解】如图,过N 作准线的垂线,垂足为Q ,则||||NF NQ =. 又因为||||PM PF =,所以PFM PMF MFO MNQ ∠=∠=∠=∠. 因为||2||MN NF =,即||2||MN NQ = 所以30NMQ ∠=,即60MNQ ∠=︒.直线PF的斜率为tan(π)tan 60PFM MFO -∠-∠=︒= 故选:D.44.(2022春·四川绵阳·高二四川省绵阳南山中学校考期中)已知直线l 过抛物线2:4E y x =的焦点F ,且与抛物线交于A ,B 两点,与抛物线的准线交于C 点,若2AB BC =,则||||AF BF 等于( ) A .2 B .3C .12D .13【答案】B【分析】过点A 作1AA 垂直于准线交准线于1A ,过点B 作1BB 垂直于准线交准线于1B ,根据相似得到1113BB AA =,再利用抛物线的性质得到答案. 【详解】如图所示:过点A 作1AA 垂直于准线交准线于1A ,过点B 作1BB 垂直于准线交准线于1B , 则1BF BB =,1AF AA =,2AB BC =,故1113BB AA =,即||3||AF BF =. 故选:B45.(2022春·浙江金华·高二浙江金华第一中学校考阶段练习)设倾斜角为α的直线l 经过抛物线C :()220y px p =>的焦点F ,与抛物线C 交于A 、B 两点,设A 在x 轴上方,点B 在x 轴下方.若2AFBF=,则cos α的值为( )A .13B .12C .23D 【答案】A【分析】由抛物线的性质,抛物线上的点到焦点的距离转化为到准线的距离,在直角三角形中求出倾斜角为α的余弦值.【详解】过A ,B 分别作准线的垂线交准线于M ,N ,过B 作BC AM ⊥于C ,则AC AM BN =-,由抛物线的性质可得,AM AF =,BN BF =, 因为||2||AF BF =,∴3AB BF =, 所以1cos 3333AC AM BN AF BF BF CAB AB BF BF BF --=====∠,即1cos 3α=. 故选:A .(四)中点弦问题。