原核表达技术
- 格式:docx
- 大小:3.87 KB
- 文档页数:3
原核表达技术流程PMD19-T载体目的基因的获取TG1感受态制备 PCR 扩增连接重组载体1转化转化细胞1抽取质粒进行电泳,PCR检测阳性邙日性)转化细胞1酶切,获取目的基因TG1感受态细胞PET-28a载体重组重组载体2重组载体2转化BL21感受态转化细胞2抽取质粒进行电泳,PCR检测阳性邙日性)转化细胞2诱导表达蛋白质提取,电泳检测呈阳性目的蛋白原核表达技术及其在相关领域的应用原核表达技术及其在相关领域的应用1基因工程及其应用原核表达载体的构建蛋白质的诱导与表达基因工程:是用分离纯化或人工合成的 DNA在体外与载体DNA结合,成为重组DNA用以转化宿主(细菌或其它细胞),筛选出能表达重组DNA勺活细出能表达重组 DNA 筛选出能表达重组DNA勺活细加以纯化、传代、扩增,胞,加以纯化、传代、扩增,成为克隆,成为克隆,产生出人类所需要的基因产物或改造、的基因产物或改造、创造新的生物类型。
生物类型。
Your company slogan基因工程的应用1 •抗虫转基因植物1 •抗虫转基因植物Your company slogan 2•抗病转基因植物 2•抗病转基因植物 Your company slogan 3. The camelecow Your company slogan 其他基因工程产品抗虫害的玉米转鱼抗寒基因的番茄转基因鮭鱼Your com pan yslogan乳汁中含有人生长激素的转基因牛阿根廷)邙阿根廷)转黄瓜抗青枯病基因的甜椒Your company slogan基因工程的应用领域1. 2. 3. 4. 5. 6•蛋白质功能研究生物制药和疫苗生产疾病的基因治疗食品、化工用酶制剂抗虫、抗逆植物改良细胞代谢产物的富集Your company slogan基因工程一般流程人的细胞提取目的基因与运载体DNA拼接拼接与运载体导入细菌(含目的基因细菌含目的基因)含目的基因生产重组蛋【I Your company slogan 基因工程的操作工具核酸分子剪刀-------------------------------- 限制性核酸内切酶一•核酸分子剪刀限制性核酸内切酶识别回文序列,产生粘性或平性末端,识别回文序列,产生粘性或平性末端,具有相同粘性或平性末端的不同DNA片段可连接起来形成重组片段可连接起来形成重组DNA分子,故分子,末端的不同片段可连接起来形成重组分子DNA限制性内切酶是分子生物学实验中重要的工具酶。
将克隆化基因插入合适载体后导入大肠杆菌用于表达大量蛋白质的方法一般称为原核表达。
这种方法在蛋白纯化、定位及功能分析等方面都有应用。
大肠杆菌用于表达重组蛋白有以下特点:易于生长和控制;用于细菌培养的材料不及哺乳动物细胞系统的材料昂贵;有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择。
但是,在大肠杆菌中表达的蛋白由于缺少修饰和糖基化、磷酸化等翻译后加工,常形成包涵体而影响表达蛋白的生物学活性及构象。
表达载体在基因工程中具有十分重要的作用,原核表达载体通常为质粒,典型的表达载体应具有以下几种元件:(1)选择标志的编码序列;(2)可控转录的启动子;(3)转录调控序列(转录终止子,核糖体结合位点);(4)一个多限制酶切位点接头;(5)宿主体内自主复制的序列。
原核表达一般程序如下:获得目的基因-准备表达载体-将目的基因插入表达载体中(测序验证)-转化表达宿主菌-诱导靶蛋白的表达-表达蛋白的分析-扩增、纯化、进一步检测。
一、试剂准备1、LB培养基。
2、100mM IPTG(异丙基硫代-β-D-半乳糖苷):2.38g IPTG溶于100ml ddH2O中,0.22μm滤膜抽滤,-20℃保存。
二、操作步骤(一)获得目的基因1、通过PCR方法:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和下游引物分别引入不同的酶切位点),PCR循环获得所需基因片段。
2、通过RT-PCR方法:用TRIzol法从细胞或组织中提取总RNA,以mRNA为模板,逆转录形成cDNA第一链,以逆转录产物为模板进行PCR循环获得产物。
(二)构建重组表达载体1、载体酶切:将表达质粒用限制性内切酶(同引物的酶切位点)进行双酶切,酶切产物行琼脂糖电泳后,用胶回收Kit或冻融法回收载体大片段。
2、PCR产物双酶切后回收,在T4DNA连接酶作用下连接入载体。
(三)获得含重组表达质粒的表达菌种1、将连接产物转化大肠杆菌DH5α,根据重组载体的标志(抗Amp或蓝白斑)作筛选,挑取单斑,碱裂解法小量抽提质粒,双酶切初步鉴定。
原核表达(原理、材料与实验方案)一、原理1、E . coli表达系统E . coli是重要的原核表达体系。
在重组基因转化入E . coli 菌株以后,通过温度的控制,诱导其在宿主菌内表达目的蛋白质,将表达样品进行SDS-PAGE 以检测表达蛋白质。
2、外源基因的诱导表达提高外源基因表达水平的基本手段之一,就是将宿主菌的生长与外源基因的表达分成两个阶段,以减轻宿主菌的负荷。
常用的有温度诱导和药物诱导。
本实验采用异丙基硫代-β-D-半乳糖昔(IPTG)诱导外源基因表达。
不同的表达质粒表达方法并不完全相同,因启动子不同,诱导表达要根据具体情况而定。
二、材料1、诱导表达材料( 1 ) LB (Luria—Bertani))培养基酵母膏(Yeast extract) 5g 蛋白胨(Peptone) 10gNaCl 10g 琼脂(Agar) 1-2%蒸馏水(Distilled water) 1000ml pH 7.0适用范围:大肠杆菌( 2 ) IPTG 贮备液:2 g IPTG溶于10 mL 蒸馏水中,0 . 22 μm 滤膜过滤除菌,分装成1 mL /份,-20 ℃保存。
( 3 ) l×凝胶电泳加样缓冲液:50 mmol / L Tris -CI ( pH 6 . 8 )50 mmol / L DTT2 % SDS (电泳级)0.1 %溴酚蓝10 %甘油2、大肠杆菌包涵体的分离与蛋白纯化材料1 )酶溶法(1)裂解缓冲液:50 mmol / L Tris-CI ( pH 8 . 0 )1 mmol / L EDTA100 mmol / LNaCI(2)50 mmol / L 苯甲基磺酰氟(PMSF )。
(3)10 mg / mL 溶菌酶。
(4)脱氧胆酸。
(5)1 mg / mL DNase I。
2 )超声破碎法( 1 ) TE 缓冲液。
( 2 ) 2×SDS -PAGE 凝胶电泳加样缓冲液:100 mmol / L Tris-HCI ( pH 8 . 0 )100 mmol / L DTT4 %SDS0.2 %溴酚蓝20 %甘油三、实验方案1、外源基因的诱导表达( 1 )用适当的限制性内切核酸酶消化载体DNA 和目的基因。
原核表达系统的工作原理原核表达系统是指利用原核生物(如大肠杆菌等)来表达外源蛋白质的工具,在生物技术和基因工程领域应用十分广泛。
原核表达系统通过重组DNA技术将目标基因插入原核细胞的表达载体中,并利用细胞自身的代谢机制,将目标蛋白质大量表达出来。
本文将详细介绍原核表达系统的工作原理。
1. 原核表达系统的基本构成原核表达系统的基本构成包括表达载体和宿主细胞两部分。
表达载体是一种重组DNA分子,通常包括以下基本组成成分:(1)起始位点(起始密码子):在大肠杆菌中通常为AUG。
(2)表达基因:包括编码目标蛋白质的DNA序列和转录启动子、转录终止子等序列。
(3)选择标记:旨在筛选出带有目标基因的细胞,并提高表达效率。
常用的选择标记有抗生素抵抗基因和荧光标记基因等。
(4)复制起点:能够使表达载体在宿主细胞内进行自我复制,提高表达效率。
宿主细胞则是一种能够实现表达载体遗传信号转录、翻译和合成目标蛋白质的生命体。
2. 原核表达系统的工作流程原核表达系统通过以下几个步骤来实现目标蛋白质的表达:(1)制备表达载体将目标基因插入表达载体中,构建成重组DNA分子。
(2)转化宿主细胞将制备好的表达载体转化(transform)到宿主细胞内。
转化过程中,表达载体通过电击、热激或溶菌酶处理等方法,被宿主细胞吞噬并与其细胞质融合。
(3)表达基因转录和翻译转录因子识别插入表达载体的启动子序列,调节基因在宿主细胞内能够合成被表达的mRNA。
转录后的mRNA与核糖体结合,开始翻译,合成蛋白质。
(4)目标蛋白质的后处理和纯化将宿主细胞内表达的蛋白质从培养基或细胞酶中提取出来。
通常采用离心、过滤或柱层析等方法,对蛋白质进行分离和纯化。
3. 原核表达系统的优缺点原核表达系统在生物技术和基因工程领域应用广泛,主要因为其有以下的优缺点。
(1)优点①高效:能够表达大量的目标蛋白质,通常能够达到10%以上的蛋白质总产量。
②简便:操作简便,不需要昂贵的设备,很容易进行规模化操作。
原核表达步骤原核表达是指在原核生物体内将基因转录成RNA,再将RNA翻译成蛋白质的过程。
本文将详细介绍原核表达的步骤。
1. 转录DNA的双链结构被酶RNA聚合酶解开,从而形成mRNA链。
RNA聚合酶沿着DNA模板链移动,将mRNA链合成在一起。
在这个过程中,RNA聚合酶根据DNA模板链上的碱基序列,选择正确的核苷酸,将其加入到正在合成的mRNA链上。
2. 剪接在细胞核内,mRNA链是在原核生物上转录的。
这些mRNA链可能包含顺式调节区域(UTR)和内含子区域。
在剪接过程中,内含子被剪除,UTR被保留下来。
这个过程由小核RNA(snRNA)和蛋白质共同完成。
3. 翻译翻译是将mRNA链转化为氨基酸序列的过程。
翻译是在核糖体中完成的。
核糖体是由rRNA和蛋白质组成的复合体。
核糖体通过识别mRNA上的起始密码子来开始翻译过程。
起始密码子是AUG。
核糖体将氨基酸连接在一起,直到遇到终止密码子。
终止密码子分别是UAA,UAG和UGA。
翻译完成后,成品蛋白被释放出来。
4. 后翻译修饰在翻译完成后,蛋白质可能需要进行后翻译修饰。
这些修饰可以包括磷酸化,甲基化,硫化,酰化和糖基化等。
这些修饰可以改变蛋白质的结构和功能,从而影响其生物学活性。
5. 折叠蛋白质被合成后,需要进一步折叠成其最终形态。
这个过程由分子伴侣和蛋白酶等分子机器完成。
分子伴侣可以协助蛋白质正确地折叠。
蛋白酶可以降解不正确折叠的蛋白质,防止它们对细胞造成损害。
6. 定位在折叠完成后,蛋白质需要被定位到其最终的位置。
这个过程由信号肽和其他分子机器完成。
信号肽是一段氨基酸序列,可以将蛋白质定位到细胞膜,内质网,线粒体等亚细胞结构中。
原核表达是一个复杂的过程,包括转录,剪接,翻译,后翻译修饰,折叠和定位。
这些步骤需要各种不同的分子机器和分子信号来协同完成。
理解原核表达的步骤可以帮助我们更好地理解生物学过程,从而为生命科学的研究和应用提供基础。
原核蛋白表达技术哎呀,说起原核蛋白表达技术,这可真是个让人头大的话题。
不过,别担心,咱们今天就用大白话聊聊这个听起来高大上的技术,其实它就像是在厨房里做一道菜,只不过我们的“厨房”是实验室,而“菜”就是那些我们想要的蛋白质。
首先,咱们得有个“菜谱”,也就是我们要表达的蛋白质的基因序列。
这个基因序列就像是食谱上的食材和步骤,告诉我们需要什么原料,怎么一步步来。
接下来,咱们得找个“厨师”,在原核蛋白表达技术里,这个“厨师”就是大肠杆菌。
为啥选它呢?因为它繁殖快,成本低,而且听话,我们让它干啥它就干啥。
我们把那个基因序列“塞”进大肠杆菌里,就像是把食谱交给厨师,告诉它我们要做什么菜。
然后,就是“烹饪”过程了。
我们给大肠杆菌提供合适的“调料”和“环境”,比如温度、pH值,还有它需要的营养物质。
这些条件得恰到好处,不然蛋白质“这道菜”就做不出来,或者做出来也不好吃。
等一切准备就绪,大肠杆菌就开始“工作”了。
它会根据我们给的基因序列,开始合成我们想要的蛋白质。
这个过程就像是厨师按照食谱一步步做菜,最后把菜端上桌。
但是,有时候,蛋白质“这道菜”做出来可能不太对味,或者“卖相”不好。
这时候,我们就得调整“菜谱”或者“烹饪”条件,比如改变基因序列,或者调整培养条件,直到做出满意的“菜”。
最后,我们得把做好的“菜”——也就是蛋白质——从大肠杆菌里“端”出来。
这个过程叫做“纯化”,就是把我们想要的蛋白质从一大堆其他东西里分离出来,就像是从厨房里一大堆用过的锅碗瓢盆中找到那盘做好的菜。
你看,原核蛋白表达技术其实没那么神秘,就是一系列的步骤,从准备“菜谱”到“烹饪”,再到最后的“上菜”。
虽然听起来简单,但实际操作起来可是需要很多技巧和耐心的。
不过,一旦掌握了,就能在生物技术领域做出很多有趣的“菜”来。
原核蛋白表达原核蛋白表达是一种十分重要的生物化学研究,它主要的目的是通过提高原核生物中蛋白质的表达水平,从而获得更高的蛋白质表达产品,并用于各种生物学研究和应用。
原核蛋白表达技术是当今生物技术发展中最重要的技术之一,它可以大量表达蛋白质,并且还可以检测其功能特性。
该技术有效地定位和表达蛋白质,从而使研究人员能够更好地研究蛋白质的结构及其功能,解析疾病机理及其相关的治疗途径。
原核蛋白表达的基本原理是通过提取基因的DNA序列,然后将其转录成mRNA,最后再通过转录因子结合到mRNA上,来决定蛋白质的表达水平。
一般情况下,原核蛋白表达技术主要有三种:重组质粒系,质粒表达系统和转染表达系统。
其中,重组质粒表达系统的基本原理是将选定的DNA序列插入质粒,然后将质粒转染到宿主生物体中,从而获得蛋白质的表达产物。
质粒表达系统的核心是将所需DNA序列植入质粒,再将其注入细胞中,以此实现蛋白质的表达。
转染表达系统是使用rDNA技术将cDNA插入病毒DNA,然后将病毒植入宿主细胞中,从而实现蛋白质的表达。
原核蛋白表达技术在某些领域有着重要的应用,比如在药物研发、药物调控、基因治疗等等,可以大大提升药物的效率与疗效。
同时,原核蛋白表达技术还可以用于生物学研究,比如分子诊断、器官模型、生物反应器等,为基础研究科学的发展提供了重要的基础。
在原核蛋白表达的实验中,准确性和精确性是最重要的因素,有必要通过一些控制试验来确定最佳实验条件。
在实施原核蛋白表达实验前,必须测定细胞表达的最佳培养条件。
例如,可以根据细胞能否正确表达蛋白质来调节培养基中添加的营养成分,如氨基酸、类固醇、抗生素等等,并且还要确定最佳温度、湿度、pH等参数,以优化蛋白质的表达水平。
此外,在实施原核蛋白表达实验过程中也要注意实验操作的洁净度,使用洁净的容器和设备,并且严格按照规定的时间和步骤进行实验,以确保实验的准确性和精确性。
原核蛋白表达技术是当今生物技术发展中一个重要的技术,它已被广泛应用于药物研发、药物调控、基因治疗等等,为人们的健康带来巨大的便利。
原核表达的原理
原核表达是指在原核生物中产生蛋白质的过程。
它包括转录和翻译两个主要步骤。
首先是转录过程,它发生在细胞的核内。
DNA的双链被解旋,其中的一个链作为模板被逐个核苷酸地转录成RNA分子,称
为mRNA(信使RNA)。
这个过程由RNA聚合酶酶催化完成。
mRNA是一条单链RNA,其碱基是由DNA的模板链决
定的。
转录过程可以分为启动、延展和终止三个阶段。
接下来是翻译过程,它发生在细胞的细胞质中。
翻译将
mRNA上的遗传信息转化为氨基酸序列,从而合成特定的蛋
白质。
翻译是由核糖体进行的,它由rRNA和蛋白质组成。
在翻译过程中,tRNA(转运RNA)将氨基酸运送到核糖体,然
后根据mRNA上的密码子与之配对,从而建立氨基酸序列。
这个过程是通过互补基对形成的,每三个核苷酸组成一个密码子,并对应一个特定的氨基酸。
细胞利用原核表达过程合成各种蛋白质,这些蛋白质在细胞内发挥着重要的功能。
原核表达是生物体生存和发展的基础,也为生物学研究提供了宝贵的工具。
-原核表达系统一.表达系统:基因工程中用来获得有功能的异源蛋白质的体系,包括克隆载体,表达载体及受体细胞。
据受体细胞的不同可分为:1.原核表达载体系统:将外源基因引入原核细胞,并使其在原核细胞中以发酵形式快速高效地表达合成基因产物的体系。
2.真核表达系统:使外源基因在真核细胞中表达。
二.原核生物基因结构和表达特点1.原核生物染色体DNA是裸露的环形DNA,其转录和翻译是偶联的连续进行。
2.原核生物形成多顺反子mRNA:mRNA在合成过程中和多个核糖体结合,翻译形成多条肽链。
(图)多顺反子mRNA(polycistronic mRNA):即可作为两个或多个肽链翻译模板的mRNA。
3.一般不含内含子(intron),没有转录及翻译后加工系统。
4.原核生物中功能相关的基因串联在一起,形成操纵子。
操纵子(operon):是一组功能上相关,受同一调控区控制的基因组成的一个遗传单位。
1)原核生物基因表达的基本单位(即一个转录单位)。
共同协调作用,完成某一多肽的表达调控。
2)包括调控区:调节基因,启动基因,操作基因。
结构基因:5.原核生物中参与转录的基因结构:1)启动子:是DNA上的一段序列,是RNA聚合酶识别并结合部位。
各种不同的原核细胞其启动子各有不同,但均含有下列两个高度保守区(富含AT:易变性解离为单链,为RNA合成提供模板)(1)TATA box(-10区,pribnow box):转录启始点上游10bp处一段富含AT的碱基TATATTA(2)-35区:长度和顺序个体间差别很大,富含AT是RNA聚合酶识别位点。
转录的启始:RNA聚合酶首先识别启动子的-35区并结合至启动子上,然后开始滑向转录起始点,到-10区时,RNA聚合酶与启动子结合更牢固,并继续向前滑行,大约6-7bp后开始转录(转录起始位点)。
即RNA聚合酶识别并结合启动子,但并不转录(图)。
各种启动子启动转录能力不同。
启动子强弱取决于-35区和-10区的碱基组成及其间隔序列。
原核表达步骤原核表达先要将基因克隆到原核表达载体上,然后通过转化到JM109或BL21等菌株中,诱导表达蛋白,然后进行蛋白纯化。
本实验方案的前提是,目的基因已克隆到载体,并已转进入JM109菌株中。
一.鉴定目的蛋白是否在大肠杆菌JM109或BL21中大量表达(一)制样1 . 挑取经过双酶切鉴定的单克隆菌落于700ul LB培养基,加入0.7ul Amp (100mg/mL),37o C200r/min摇床培养,过夜活化。
2. 以1:50比例(200ul),将活化的过夜培养物加入10mL LB液体培养基中,加入10uLAmp(100mg/ml),37o C200r/min摇床扩大培养2h-3h,期间取样监控菌液的OD值,控制菌液OD600在0.6-1.0之间,以使大肠杆菌处于最适合表达外源蛋白的生长状态。
(一般3h时,菌液浓度及达到标准,但是不同的基因对菌的影响不同,所以第一次实验时需要确定这个最佳时间)3. 从10ml扩大培养物中取3ml菌液作为不加IPTG的空白对照(CK),其余7ml菌液加入7ul IPTG(储存浓度为0.5mol/l),使IPTG终浓度达到0.5mmol/l。
以200r/min的转速,37o C摇床培养3h。
4. 以5000r/min离心2min收集菌体,倾倒上清,每个离心管收集3ml培养物。
5. 加入1ml dH2O,将管底沉淀用振荡器打散以充分洗涤,8000r/min离心2min,倾倒上清。
6. 重复步骤5。
将离心管中的水倒干净。
(二)菌落SDS-PAGE1. 在收集的菌体中加入200ul 1×SDS PAGE loading buffer(可根据沉淀的量增加或减少loading buffer的量,一般200ul比较合适)。
用漩涡器剧烈震荡,确保将管底沉淀震散。
2. 将样品于100℃恒温加热器上开盖加热10min(Marker也要加热)。
样品凉后,12000r/min离心3min,取每管的上清点样。
原核表达技术原核表达技术是一种用于原核生物体中表达外源基因的技术。
通过将外源基因导入原核生物体中,并使其在细胞内得到表达,可以实现对目标基因的研究和利用。
原核表达技术在生物科学研究、生物工程、医学等领域具有广泛的应用前景。
原核表达技术的基本原理是将外源基因导入原核生物体中,并将其与宿主细胞的基因表达系统连接起来。
这样,外源基因就可以在宿主细胞内得到转录和翻译,从而表达出编码的蛋白质。
为了实现这一目标,研究人员通常需要构建一个包含外源基因的表达载体,并将其导入到宿主细胞中。
在构建表达载体时,研究人员通常会选择合适的启动子、转录终止子和调节元件等,以确保外源基因在宿主细胞中得到高效的转录和翻译。
此外,还可以通过引入信号肽序列等方式,使得目标蛋白质能够在宿主细胞中得到正确的翻译和定位。
在导入表达载体到宿主细胞中时,常用的方法有化学法转化、电转化和质粒共转化等。
其中,化学法转化是最常用的方法之一。
通过将表达载体和宿主细胞一起处理化学试剂,使得宿主细胞的细胞壁发生变化,从而导致表达载体进入细胞内。
电转化则是利用电场脉冲的作用,使得表达载体能够穿过宿主细胞的细胞膜进入细胞内。
质粒共转化是将表达载体与另一个能够进行共转化的质粒一起导入宿主细胞中,以提高转化效率。
一旦表达载体成功导入宿主细胞,外源基因就可以开始在细胞内得到表达。
为了检测外源基因的表达情况,研究人员通常会选择合适的检测方法,如聚合酶链反应(PCR)、蛋白质印迹、酶活性分析等。
通过这些方法,可以确定外源基因是否得到了正确的转录和翻译,并且能够得到目标蛋白质的定量和活性信息。
原核表达技术在生物科学研究中有着广泛的应用。
例如,通过原核表达技术可以实现对目标基因的功能研究。
研究人员可以通过构建不同的表达载体,将目标基因在宿主细胞中进行过量表达或靶向抑制,进而研究其在细胞生理过程中的作用机制。
另外,原核表达技术还可以用于生物工程领域。
研究人员可以利用原核表达技术生产大量的重组蛋白质,以满足药物研发和工业生产的需求。
TAKARA DNA凝胶回收试剂盒1. 切胶:先用酒精灯消毒手术刀,在酶切仪中切胶,把片段放入1.5ml管中,用枪头搅碎。
2. 加GM试剂溶胶:加入700--800ul左右的GM,放进45℃水浴锅中溶胶。
3. 拿新的过滤柱和离心管,转移溶胶后液体进过滤柱,12000rpm.1min离心,把滤液重新倒进过滤柱,同样离心,后弃滤液。
4. 加WB(加乙醇)清洗:向过滤柱中心加700ulWB,同样条件下离心两次,弃滤液,最后空离30s。
5. 换新的1.5ml离心管,把柱子放入,加30ul的Elution Buffer/DDH2O.(注意要加在中央,不要碰壁)6. 离心1min,把滤液重新加入到过滤柱中,再离心,得到溶解的DNA液体,弃柱子。
7. 保存:-20℃LB培养液制备(1000ml)1. 称量:10g胰蛋白胨粉,5g酵母提取物,10gNacl于玻璃瓶,加DDH2O 1000ml。
2. 灭菌:把盖子拧松,高压蒸汽灭菌121℃,20min。
3. 置室温降温,后放4℃保存。
LB固体培养基制备1. 向100ml的液培中加入1.5g琼脂粉,高压灭菌20min。
2. 抗生素贮存液:卡那霉素(Kan)贮存液50 mg/ml、氨苄西林(Amp)贮存液100 mg/ml (均经过0.22µm 滤膜过滤除菌),-20℃储存,使用浓度卡那(k+)0.05mg/ml,氨苄(A+)0.1mg/ml。
3. 取出培养液,待其温度降至45—50℃时(不烫手),按照1:1000比例加入抗生素,充分混匀。
4. 倒入6cm一次性培养皿中,静置30—60min(等待平板冷却)。
5. 封口胶封口,倒置保存在4℃,期限为30D。
纯化PCR 产物(胶回收)(天根试剂盒)1. 在紫外灯下准确切取含有目的DNA片段的凝胶(体积尽可能小),放入干净的1.5 ml EP 管(预先称取空管重量)中,称取凝胶的重量。
2. 按每0.1 g凝胶加入100 ul PC溶液的比例往EP管中加入溶液PC,50℃水浴放置约10 min,期间不断温和晃动,确保凝胶完全溶解,此时溶液呈现黄色。
原核表达技术原核表达技术是一种用于在原核生物中实现外源基因表达的技术。
原核生物是一类没有真核生物细胞核的微生物,包括细菌和古菌。
原核表达技术的发展为基因工程和生物技术领域提供了重要的工具和平台。
原核表达技术的基本原理是将目标基因转移到原核生物宿主细胞中,并在宿主细胞内进行转录和翻译,从而实现目标基因的表达。
这一过程通常包括以下几个步骤:选择适当的表达载体、构建重组表达载体、转化宿主细胞、选择阳性克隆并进行表达分析。
在选择适当的表达载体时,需要考虑载体的大小、复制起点、选择标记和表达调控元件等因素。
常用的表达载体包括质粒和噬菌体。
质粒是一种环状的DNA分子,可以在宿主细胞中自主复制并表达外源基因。
噬菌体则是一种病毒,可以利用宿主细胞的复制和转录机制来实现基因的表达。
构建重组表达载体是原核表达技术中的关键步骤。
通过酶切和连接技术,将目标基因插入到表达载体中的适当位置,确保基因的正确表达。
此外,还可以利用引物设计和PCR技术来扩增目标基因,以获得足够多的DNA材料。
转化宿主细胞是将重组表达载体导入原核生物宿主细胞的过程。
转化方法主要包括化学转化、电转化和热激转化等。
其中,化学转化是最常用的方法,通过改变细菌细胞壁的通透性,使得DNA能够进入细胞内。
选择阳性克隆并进行表达分析是对转化后的细菌进行筛选和鉴定。
常用的筛选方法有抗生素筛选和荧光筛选,通过检测细菌对抗生素的抗性或荧光蛋白的表达情况,可以筛选出带有目标基因的阳性克隆。
表达分析则可以通过蛋白质电泳、酶活性测定和免疫印迹等技术,来验证目标基因的表达水平和功能。
原核表达技术具有许多优点,使其成为研究和应用领域的重要工具。
首先,原核生物的生长速度快,培养成本低,易于大规模生产目标蛋白。
其次,原核表达系统可以实现对目标蛋白的定向表达和高效纯化,为后续的研究和应用提供了便利。
此外,原核表达系统还可以用来研究和揭示蛋白的结构和功能,以及进行药物筛选和疫苗研发等。
目的蛋白的原核表达
原核表达是指在细菌或古菌等原核生物中进行的蛋白表达。
目的蛋白
的原核表达是指将人工合成的DNA序列导入到原核生物中,使其转录、翻译成目的蛋白。
目的蛋白的原核表达具有以下优点:
1. 原核生物生长速度快,繁殖周期短,能够在较短时间内大量表达目
的蛋白。
2. 原核生物代谢简单,不需要复杂培养条件和营养要求,降低了表达
成本。
3. 原核生物可以进行高密度培养,增加了目的蛋白产量。
4. 目的蛋白在原核细胞内往往不需要修饰即可具有活性。
实现目的蛋白在原核生物中高效表达需要进行以下步骤:
1. 选择合适载体:常用载体包括质粒、噬菌体等。
质粒通常用于小规模、低产量表达;而噬菌体则适用于大规模、高产量表达。
2. 构建重组DNA:将编码目的蛋白序列插入载体中,并加入启动子、终止子等调控元件,构建重组DNA。
3. 转化原核生物:将重组DNA导入到原核生物中,可采用化学转化、电穿孔、热激转化等方法。
4. 诱导表达:在适当的条件下诱导重组DNA的转录和翻译,使目的
蛋白得以表达。
5. 纯化目的蛋白:通过离心、层析等方法纯化目的蛋白。
总之,目的蛋白的原核表达是一种高效、经济、快速的表达技术,在
生物医药领域有广泛应用。
蛋白原核表达纯化原理蛋白原核表达纯化是一种常用的生物技术方法,用于大量制备目标蛋白质。
该方法可以在原核细胞中直接表达目标蛋白,然后通过一系列的纯化步骤获得高纯度的蛋白质样品。
以下将详细介绍蛋白原核表达纯化的原理和步骤。
蛋白原核表达纯化的原理主要基于细菌细胞的生物特性。
在表达过程中,目标蛋白的基因会被插入到表达载体中,该载体会被转化到细菌细胞中。
转化后的细菌细胞会利用其自身的代谢机制表达目标蛋白。
蛋白原核表达纯化的步骤主要包括以下几个方面:第一步,构建表达载体。
在这一步骤中,目标蛋白的基因会被插入到表达载体的多克隆位点中。
这个过程可以通过PCR扩增目标基因,然后将其连接到表达载体上。
第二步,转化细菌细胞。
在这一步骤中,经过构建的表达载体会被转化到细菌细胞中。
转化可以使用化学方法或电穿孔等物理方法进行。
第三步,培养表达菌株。
转化后的细菌细胞会被培养在含有适当抗生素的培养基中。
培养的条件包括温度、pH值、搅拌速度等,这些条件可以根据目标蛋白的特性进行优化。
第四步,诱导表达。
在菌株达到一定的生长密度后,可以通过添加适当的诱导剂来诱导目标蛋白的表达。
诱导剂的选择可以根据目标蛋白的特性进行优化。
第五步,收获细胞。
在表达过程中,细菌细胞会合成大量的目标蛋白。
可以通过离心等方法,将细菌细胞从培养基中收获下来。
第六步,裂解细胞。
收获的细菌细胞需要被裂解,以释放目标蛋白。
常用的方法包括超声波、高压等物理方法,以及酶解等化学方法。
第七步,纯化目标蛋白。
裂解后的混合物中含有大量的杂质,需要通过一系列的纯化步骤来获得高纯度的目标蛋白。
常用的纯化方法包括亲和层析、离子交换层析、凝胶过滤等。
经过以上步骤,蛋白原核表达纯化的过程就完成了。
这种方法可以高效地制备目标蛋白,并且可以根据需要进行优化。
蛋白原核表达纯化在生物医药、生物工程等领域有着广泛的应用前景,对于研究目标蛋白的结构和功能具有重要意义。
原核蛋白表达问题解析
原核蛋白表达是一种人工实验技术,用于在原核生物(如细菌)中表达特定的
蛋白质。
它是研究生物学、药物开发和生物工程领域中常用的工具之一。
在原核蛋白表达中,研究者通常通过将目标基因转移到表达载体中来实现蛋白
表达。
表达载体是一种特殊的DNA分子,其中包含目标基因的编码序列和其他必
要的调控元件。
通过将表达载体导入到适合的宿主细胞中,目标基因可以被转录和翻译为蛋白质。
原核蛋白表达有许多优点,其中包括高表达水平、简单和经济等。
原核生物的
生长速度通常很快,所以可以在短时间内大量表达目标蛋白质。
此外,原核蛋白表达体系相对较简单,无需特殊的培养条件或复杂的培养基,这降低了实验的成本和难度。
然而,原核蛋白表达也存在一些挑战和限制。
由于原核生物的细胞环境与真核
生物不同,某些复杂的蛋白质可能无法正确地折叠或修饰。
此外,某些蛋白质可能对原核表达系统的毒性有较高的敏感性,从而降低了表达效率。
为了克服这些问题,研究者通常采用各种策略来优化原核蛋白表达。
例如,他
们可以通过优化转化条件、选择适当的宿主细胞或使用辅助蛋白质来提高表达效率。
此外,关于蛋白质折叠和修饰的研究也可以提供有价值的信息。
在总结一下,原核蛋白表达是一项重要的实验技术,可用于快速高效地表达目
标蛋白质。
尽管存在一些挑战,但通过优化实验条件和相关研究的进行,原核蛋白表达仍然是生物学和生物工程领域中广泛使用的工具之一。
原核基因的表达原核基因的表达是指在原核生物中,基因通过转录和翻译的过程转化为蛋白质的过程。
原核基因的表达是生物体正常生理活动的基础,对维持细胞的功能和生存至关重要。
原核基因的表达主要包括两个过程:转录和翻译。
转录是指DNA 的信息通过RNA聚合酶酶的作用,转录为mRNA的过程。
在原核生物中,转录发生在细胞质中,无需核糖体的参与。
转录的过程包括启动、延伸和终止三个阶段。
启动阶段是指RNA聚合酶与DNA 结合,形成开放复合物的过程。
延伸阶段是指RNA聚合酶沿着DNA链进行移动,合成mRNA链的过程。
终止阶段是指RNA聚合酶遇到终止信号,停止合成mRNA链的过程。
翻译是指mRNA的信息通过核糖体的作用,转化为蛋白质的过程。
在原核生物中,翻译发生在细胞质中的核糖体上。
翻译的过程包括起始、延伸和终止三个阶段。
起始阶段是指核糖体与mRNA的起始密码子结合,形成起始复合物的过程。
延伸阶段是指核糖体沿着mRNA链进行移动,合成蛋白质的过程。
终止阶段是指核糖体遇到终止密码子,停止合成蛋白质的过程。
原核基因的表达受到多种调控因子的调控。
其中包括启动子、转录因子和启动子区域的甲基化等。
启动子是指位于基因上游的DNA 序列,与RNA聚合酶结合,启动转录过程。
转录因子是指能够结合到启动子上的蛋白质,调控转录的起始和速率。
启动子区域的甲基化是指DNA上的甲基基团与转录因子结合,影响启动子的结构和功能。
原核基因的表达还受到环境因素的影响。
一些环境条件,如温度、pH值和营养物质的浓度等,可以改变细胞内的代谢状态,进而影响基因的表达。
例如,一些细菌在低温下可以产生一种特殊的蛋白质,帮助它们适应寒冷环境。
原核基因的表达异常会导致细胞功能的紊乱甚至细胞死亡。
例如,某些细菌感染病原体时,病原体的基因可以通过改变宿主细胞的基因表达来逃避免疫系统的攻击。
此外,某些基因的表达异常还与一些遗传疾病的发生相关。
例如,某些突变导致基因的表达异常,从而引起先天性疾病。
原核表达技术
原核表达技术是一种基因工程的方法,用于在原核生物(如细菌)中表达外源基因。
它是研究生物学、医学和工业应用的重要工具。
原核表达技术的发展使得我们能够更好地理解基因的功能和调控机制,同时也为蛋白质的生产和应用提供了一种高效可行的方法。
在原核表达技术中,常用的载体是质粒。
质粒是一种环状的DNA分子,能够在细菌中自主复制和表达外源基因。
通过将目标基因插入到质粒的适当位点上,可以利用细菌的表达系统来合成目标蛋白质。
质粒通常包含有启动子、转录终止子、选择性标记基因等功能元件,以便实现基因的高效表达和筛选。
在原核表达技术中,选择适当的宿主菌株也是至关重要的。
常用的宿主菌包括大肠杆菌(E. coli)和酵母菌等。
这些菌株具有良好的生长特性和表达系统,能够提供高效的表达平台。
另外,在选择宿主菌株时还需要考虑到目标蛋白质的特性和表达需求,以确保表达系统的稳定性和产量。
原核表达技术的关键步骤包括基因克隆、转化、筛选、表达和纯化等。
首先,通过PCR等方法将目标基因扩增得到目的片段,并将其插入到质粒的适当位点上。
然后,将重组质粒导入宿主菌株中,使其发生转化。
接下来,通过选择性培养基或标记基因进行筛选,以得到含有目标基因的菌落。
随后,利用诱导剂等方法激活表达系统,使目标蛋白质开始合成。
最后,通过离心、柱层析等手段对目标蛋
白质进行纯化和分析,以得到纯度较高的产物。
原核表达技术具有许多优势。
首先,宿主菌株的生长速度快,表达系统稳定,能够提供高产量的蛋白质。
其次,原核表达系统相对简单,易于操作和优化。
此外,原核表达技术还可以用于蛋白质的定点突变、标记和修饰等研究,为蛋白质工程和功能研究提供了重要手段。
然而,原核表达技术也存在一些限制。
首先,由于原核生物的不同表达机制和翻译机器,某些复杂的蛋白质可能无法在原核系统中正确折叠和修饰。
其次,质粒的稳定性和复制效率可能受到限制,影响表达产量。
此外,一些蛋白质可能具有毒性,对细菌的生长和表达产生负面影响。
为了解决这些问题,研究人员不断改进原核表达技术,开发新的表达系统和宿主菌株。
例如,利用蛋白质折叠辅助体系(chaperone system)和蛋白质工程的方法,可以提高目标蛋白质在原核系统中的折叠和修饰效率。
此外,还可以利用调控元件的优化和基因组工程的方法,提高表达系统的稳定性和产量。
总的来说,原核表达技术是一种重要的基因工程方法,广泛应用于生物学、医学和工业领域。
通过合理选择质粒和宿主菌株,优化表达系统和培养条件,可以实现高效的目标蛋白质表达和纯化。
随着技术的不断发展,原核表达技术将在未来发挥更大的作用,为基因
功能研究和蛋白质工程提供更多的可能性。