数学分析18.4隐函数定理及其应用之条件极值
- 格式:doc
- 大小:308.00 KB
- 文档页数:9
第十八章 隐函数定理及其应用§4条件极值以往所讨论的极值问题,其极值点的搜索范围是目标函数的定义域,但是另外还有很多极值问题,其极值点的搜索范围还受到各自不同条件的限制.例如 要设计一个容量为V 的长方形开口水箱,试问水箱的长ֽ宽ֽ高各等于多少时,其表面积最小?为此,设水箱的长ֽ宽ֽ高分别为z y x ,,,则表面积为.)(2),,(xy yz xz z y x S ++=依题意,上述表面积函数的自变量不仅要符合定义域的要求)0,0,0(>>>z y x ,而且还须满足条件.V xyz = (1)这类附有约束条件的极值问题称为条件极值问题.结论1:条件极值问题的一般形式是在条件组................)(,,2,1,0),,,(21n m m k x x x n k <== ϕ (2)的限制下,求目标函数..........),,,(21n x x x f y = (.3.).的极值.....☆ 求条件极值的方法: 转化为无条件极值1、 用消元法将条件极值化为无条件极值问题来求解有时可以把条件极值问题化为无条件极值问题. 如上面的例子,由条件(1)解出xy V z =,并代入函数),,(z y x S 中,得到.)11(2),,(),(xy xy V xy V y x S y x F ++== 然后按)0,0(),(=y x F F ,求出稳定点32V y x ==,并有3221V z =.最后判定在此稳定点上取得最小面积3243V S =.注.:1)在一般情形下要从条件组(2)中解出m 个变元并不总是可能的.下面我们介绍的拉格朗日乘数法就是一种不直接依赖消元而求解条件极值问题的有效方法.2、用拉格朗日乘数法在多数情况下较难把条件极值直接(例如消元法)转化为无条件极值, 需要用一种求条件极值的专用方法, 这就是拉格朗日乘数法.(1) 从较简单的情况入手设ϕ,f 均为二元函数,欲求函数),(y x f z = (4)在条件 0),(:=y x C ϕ (5) 的限制下的极值问题.我们有以下结论.结论2:若函数...),(y x f z =在.0),(=y x ϕ的附加条件下......,.在点..),(00y x 取得极值....,.则.0),(00=y x ϕ, .又如果...),(y x f z =在点..0P 可微、...0),(=y x ϕ在点..0P 的某邻域内能惟一确定可微的.............隐函数...)(x g y =,.则有...0)()()()(0000=-P P f P P f x y y x ϕϕ (8) 上述等式等价于.......⎪⎭⎪⎬⎫==+=+.0)(,0)()(,0)()(0000000P P P f P P f y y x x ϕϕλϕλ (9) 如果引入辅助变量........λ和辅助函数.....),,(),(),,(y x y x f y x L λϕλ+= (10)则.(9)...中三式就是.....⎪⎭⎪⎬⎫===+==+=.0)(),(,0)()(),,(,0)()(),,(000000000000000P y x L P P f y x L P P f y x L y y y x x x ϕϕλλϕλλλ (11)这样就把条件极值问题..........(4),(5).......转化为讨论函数.......(10)....的无条件极值问题.......... 事实上:①0),(00=y x ϕ显然.②∵0),(=y x ϕ在点0P 的某邻域内能惟一确定可微的隐函数)(x g y =,∴0x x =必定是))(,(x g x f z =的极值点,所以,由),(y x f z =在0P 可微,)(x g y =在0x 可微,得到.0)('),(),(00000=+x g y x f y x f y x (6) 又 .),(),()('00000y x y x x g y x ϕϕ-= (7)把(7)代入(6)后又得到.0)()()()(0000=-P P f P P f x y y x ϕϕ (8)③由(8)可知方程组⎩⎨⎧=+=+0)()(0)()(0000P b P af P b P af y y x x ϕϕ 有非零解,不妨设0≠a ,令a b=0λ代如上试可得⎩⎨⎧=+=+0)()(0)()(000000P P f P P f y y x x ϕλϕλ.考虑到条件0),(00=y x ϕ即得⎪⎭⎪⎬⎫==+=+.0)(,0)()(,0)()(0000000P P P f P P f y y x x ϕϕλϕλ (9)④引入辅助变量λ和辅助函数),,(),(),,(y x y x f y x L λϕλ+= 则(9)中三式就是⎪⎭⎪⎬⎫===+==+=.0)(),(,0)()(),,(,0)()(),,(000000000000000P y x L P P f y x L P P f y x L y y y x x x ϕϕλλϕλλλ ▋注.:1)上述结论就把条件极值问题转化为讨论函数(10)的无条件极值问题。
隐函数极值存在的条件及应用实例
隐函数极值是指具有独特性质的函数,它能够帮助人们建立精确的研究模型,分析特定问题的关系。
隐函数极值的普遍存在归功于它的若干条件:
(1)一维函数极值的存在条件是函数在某一点(局部)取得极大值和极小值时,必须满足函数在该点处的导数值为零或无穷小;
(2)二维函数极值存在的条件为,当该点处局部极大值和极小值存在时,必须满足该点处极值的求导数的偏导数的乘积等于0,且平面曲面的法向量无穷小;
(3)多元函数极值存在的条件是,多元函数在某一点处能取得局部极大值和极小值时,必须同时满足该点处函数的偏导数全部为0,且矩阵决定该点处极值的偏导数的变化率要求非奇异。
隐函数极值在计算机科学、机器学习等领域有着广泛的应用,比如算法引擎可以采用求导数和测量隐函数极值的方法来改进自身模型,以更准确的评估数据的价值。
另外,在互联网领域,可以使用隐函数极值来分析用户行为,帮助互联网企业挖掘有效客户需求,提升服务满意度。
此外,还可以通过计算隐函数极值来优化网络搜索引擎,以提高精准度。
总之,隐函数极值十分重要,其存在条件和应用实例的理解,可以有效提升互联网管理效率,并给用户带来更优质的服务体验。
第18章 隐函数定理及其应用第1节 隐函数求导法在此之前,我们所接触的函数,其表达式大多是自变量的某个算式,如)sin sin (sin ,1zx yz xy eu x y xyz++=+=这种形式的函数称为显函数。
但在不少场合常会遇到另一种形式的函数,其自变量与因变量之间的对应法则是由一个方程式所决定的。
这种形式的函数称为隐函数。
本节将介绍由一个方程0),,(=z y x F 所确定的隐函数求导法以及由方程组⎩⎨⎧==0),,,,(0),,,,(v u z y x G v u z y x F 所确定的隐函数求导法。
一 一个方程0),,(=z y x F 的情形在《数学分析》上册,第六章 导数与微分(第三节 高阶导数和其它求导法则P149)——曾对形如0),(=y x F 的方程,认定是x y 是的函数,介绍过隐函数求导法)。
不过,那里只是对具体方程未求的.利用偏函数符号, 我们可以得出一般的结果。
根据复合函数求导法则, 在),(y x F 两边对x 求导, 得到:yX y Y X F F y F y F F -=≠⇒=⋅+''00时,当方程中的变量多于2个时, 例如, 设方程0),,(=z y x F 确定了y x z 和是的函数, 并且?,yz xz y x z ∂∂∂∂前,如何求的偏导数都存在,在此,关于对0),,(=z y x F 求导,利用链式法则:,关于y x0(0);0(0)z z FFF F z zF F z z y xF F F F xz xxxz yyzz∂∂∂∂∂∂∂∂∂∂∂∂+=⇒=-≠+=⇒=-≠∂∂∂∂∂∂∂∂∂∂∂∂说明:(1) 求yz xz ∂∂∂∂,需要假定,0)(≠∂∂z F zF ,这一假设是很重要的;(2) 这里只用到了“链式法则”;(3) 对0),,(=z y x F 求导,只在假定y x z 和是的函数的情况下,求导数,如何确定),(y x z z =。
第十八章 隐函数定值及其应用§1 隐函数教学目的 掌握隐函数概念,理解隐函数定理,学会隐函数求导法. 教学要求(1)掌握隐函数存在的条件,理解隐函数定理的证明要点;学会隐函数求导法. (2)掌握隐函数定理的证明. 教学建议(1) 本节的重点是隐函数定理,学会隐函数求导法.要求学生必须熟记隐函数定理的条件与结论,了解隐函数定理的证明要点.(2) 本节的难点是隐函数定理的严格证明,对较好学生在这方面提出要求. 教学程序一、 隐函数概念:隐函数是表达函数的又一种方法. (一)、隐函数及其几何意义: 以0),(=y x F 为例作介绍.(二)、隐函数的两个问题: 1 隐函数的存在性; 2 隐函数的解析性质. 二、 隐函数存在条件的直观意义: 三、 隐函数定理:定理: ( 隐函数存在唯一性定理 ) 若满足下列条件:1 函数),(y x F 在以),(000y x P 为内点的某一区域D 2R ⊂上连续 ;2 ),(00y x F 0=; ( 通常称这一条件为初始条件 )3 在D 内存在连续的偏导数),(y x F y ;4 ),(00y x F y 0=/.则在点0P 的某邻域Y (0P )⊂D 内 , 方程0),(=y x F 唯一地确定一个定义在某区间) , (00αα+-x x 内的隐函数)(x f y =, 使得1 )(00y x f =,∈x ) , (00αα+-x x 时()∈)( , x f x Y (0P )且()0)( , ≡x f x F .2 函数)(x f 在区间) , (00αα+-x x 内连续 .例1 设vw x =2,uw y =2,uv z =2 及 ),,(),,(w v u F z y x f =,证明w v u z y x wF vF uF zf yf xf ++=++证 方程组 ⎪⎩⎪⎨⎧===uvz uw y vw x 222 确定了函数组 ⎪⎩⎪⎨⎧===),,(),,(),,(w v u z z w v u y y w v u x x ,先求这个函数组对各变元的偏导数,为此,对方程组求微分得⎪⎩⎪⎨⎧+=+=+=udv vdu zdz udw wdu ydy vdw wdv xdx 222, 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=dv zu du z v dz dw y u du y w dy dw x v dv x w dx 222222 故 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂w z v z u z w y v y u y w x v x u x ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=0 2 2 2 0 2 2 2 0 z uz v y u yw x v x w 将函数组代入方程),,(),,(w v u F z y x f =,得关于变元w v u ,,的方程),,()),,(),,,(),,,((w v u F w v u z w v u y w v u x f =,在这方程两边分别对w v u ,,求偏导,得 u z y xF u z f u y f u x f =∂∂+∂∂+∂∂, v z y x F v z f v y f v x f =∂∂+∂∂+∂∂, w z y x F wz f w y f w x f =∂∂+∂∂+∂∂, 将上面三式分别乘以w v u ,,后再相加,得 ++z uv f y uw f z y22zuvf x vw f z x 22+y uw f x vw f y x 22++,w v u wF vF uF ++=.将vw x =2,uw y =2,uv z =2代入即得w v u z y x wF vF uF zf yf xf ++=++.例2 若),(y x f z =有连续二阶偏导数,满足方程222222)(y x z yz x z ∂∂∂=∂∂∂∂,证明:若把),(y x f z =中y 看成z x ,的函数,则它满足同样形状的方程 222222)(z x y z y x y ∂∂∂=∂∂∂∂. 证 由),(y x f z =确定y 是z x ,的函数,则有)),(,(z x y x f z =,方程两边分别对z x ,求偏导,得xyy f x f ∂∂∂∂+∂∂=0, (1) zyy f ∂∂∂∂=1 , (2) (1)式再分别对z x ,求偏导,得22222222)(20x yy f x y y f x y y x f xf ∂∂∂∂+∂∂∂∂+∂∂∂∂∂+∂∂= , (3) z x yy f z y x y y f z y y x f ∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂=22220, (4) (2)式再对z 求偏导,得22222)(0z yy f z y y f ∂∂∂∂+∂∂∂∂= , (5) 由(3)(5)式22222)(z y y f x f ∂∂∂∂∂∂])(2[22222222x yy f x y y f x y y x f z y y f ∂∂∂∂+∂∂∂∂+∂∂∂∂∂∂∂∂∂= ])(2[)(22222222222x y y f x y y x f z y y f y f z y x y ∂∂∂∂+∂∂∂∂∂∂∂∂∂+∂∂∂∂∂∂= ])(2[)()(222222222222x y y f x y y x f z y y f y f z y x y ∂∂∂∂+∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂= (由(5)式)]2[)(2222222222z yx y y f z y y x f z y x y y f y f z y x y ∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂=, 由(4)式222222)()(zx y y f z y x y y f z y y x f ∂∂∂∂∂+∂∂∂∂∂∂=∂∂∂∂∂z x yy f z y x y y f z y x y y f z x y y f ∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂=222222222)()( ]2[)(2222222z x yy f z y x y y f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂=,因为222222)(y x z yz x z ∂∂∂=∂∂∂∂,则]2[)(2222222222zyx y y f z y y x f z y x y y f y f z y x y ∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂ ]2[)(2222222z x y y f zy x y y f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂=, 结合(4)式得22222)(y f z y x y ∂∂∂∂∂∂][2)(22222222z x yy f z y x y y f z y y x f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂= 22)(zx y y f ∂∂∂∂∂=. 即 222222)(z x y z y x y ∂∂∂=∂∂∂∂. 例3 设 ⎪⎩⎪⎨⎧===0),(0),,(),,,(t z h t z y g t z y x f u ,问什么条件下u 是y x ,的函数啊?求y u x u ∂∂∂∂,。
第十七章隐函数定理及其定理1隐函数一、隐函数的概念设E ur2,函数F:E-r2.如果存在集合|,JuE,对任何XGI,有惟一确定的yej,使得(x,y)GE,且满足方程F(x,y)=O,则称F(x,y)=O确定了一个定义在I上,值域含于J的隐函数.若把它记为y=f(x),xWI,yEJ,则有F(x,f(x))三0,xWI.注:由自变量的某个算式表示的函数称为显函数,如:y=x+l.二、隐函数存在性条件的分析隐函数y=f(x)可看作曲面z=F(x,y)与坐标平面z=0的交线,「•要使隐函数存在,至少要存在点Po(x o,y o),使F(x o,yo)=O,y0=f(x0).要使隐函数y=f(x)在点P°连续,需F在点P°可微,且(Fx(Po),Fy(P°))TO,O),即曲面z=F(x,y)在点P。
存在切平面.要使隐函数y=f(x)(或x=g(y))在点P。
可微,则在F可微的假设下,通过F(x,y)=O在P°处对x求导,由链式法则得:Fx(P°)+Fy(P。
)字匚=0.dx当FyR)尹0时,可得字j=-耍2,同理,当V dxi F…(PJFx(Po)尹。
时,可得刑,『=-轶牛r x V r0/三、隐函数定理定理18.1:(隐函数存在惟一性定理)若函数F(x,y)满足下列条件:(1)F在以Po(x o,yo)为内点的某一区域DUR?上连续;(2)F(x°,yo)=O(通常称为初始条件);(3)F在D内存在连续的偏导数Fy(x,y);(4)Fygyo)尹0.则1、存在点的P。
某邻域U(P°)uD,在U(Po)上方程F(x,y)=O惟一地决定了一个定义在某区间(x0-a,x0+a)上的(隐)函数y=f(x),使得当xG(x0-a,x0+a)时,(x,f(x))e U(P0),且F(x,f(x))三0,y0=f(x0);2、f(x)在(Xo-a,xo+a)上连续.证:1、由条件⑷,不妨设F y(x o,y o)>O(若F y(x o,y o)<O,则讨论-F(x,y)=O).由条件⑶Fy在D上连续,及连续函数的局部保号性知,存在点Po的某一闭方邻域[x0-P,x0+p]x[y o-p,y o+p]<=D,使得在其上每一点都有Fy(x,y)>0.对每个固定的xE[Xo-B,xo+。
第十八章 隐函数定理及其定理4条件极值引例:设计一个容量为V, 而表面积最小的长方形开口水箱. 设水箱的长、宽、高分别为x,y,z ,则表面积为S(x,y,z)=2(xz+yz)+xy. 即面积函数的自变量要符合定义域的要求(x>0,y>0,z>0),且须满足 xyz=V, 这类附有约束条件的极值问题称为条件极值问题.一般形式:在条件组φk (x 1,…,x n )=0, k=1,2,…,m (m<n)的限制下,求 目标函数y=( x 1,…,x n )的极值.解法:1、消元法,如引例中的条件可化为z=xyV,代入函数S 得: F(x,y)=S(x,y,xy V)=2V(x 1+y1)+xy. 由(F x ,F y )=(0,0)求得稳定点(32V ,32V ), 可求得最小面积S=3324V .2、拉格朗日乘数法:欲求函数z=f(x,y)的极值,限制条件为C: φ(x,y)=0. 把C 看作(x,y)的曲线方程,设C 上一点P 0(x 0,y 0)为f 满足条件的极值点, 且在点P 0的某邻域上φ(x,y)=0能惟一确定可微的隐函数y=g(x), 则 x=x 0必为z=f(x,g(x))=h(x)的极值点. 由f 在P 0可微, g 在x 0可微, 可得 h ’(x 0)=f x (x 0,y 0)+f y (x 0,y 0)g ’(x 0)=0, 且当φ满足隐函数定理条件时,有 g ’(x 0)=-),(),(0000y x y x y x ϕϕ, 代入上式得:f x (P 0)φy (P 0)-f y (P 0)φx (P 0)=0. 几何意义上,上式表示曲面z=f(x,y)的等高线f(x,y)=f(P 0)与曲线C 在P 0有公共切线.从而存在某常数λ0, 使得在P 0处满足:⎪⎭⎪⎬⎫==+=+0)(0)()(0)()(0000000P P P f P P f y y x x ϕϕλϕλ,引入辅助变量λ和辅助函数L(x,y,λ)=f(x,y)+ λφ(x,y), 可得⎪⎭⎪⎬⎫===+==+=0)(),,(0)()(),,(0)()(),,(0000000000000000P y x L P P f y x L P P f y x L y y y x x x ϕλϕλλϕλλλ, 即将条件极值问题转化为L 的无条件极值问题,称为拉格朗日乘数法, 其中函数L 称为拉格朗日函数,辅助变量λ称为拉格朗日乘数.注:一般条件极值问题的拉格朗日函数:(λ1,…,λn 为拉格朗日乘数) L(x 1,…,x n ,λ1,…,λm )=f(x 1,…,x n )+∑=⋯mk n k x x 11k ),,(ϕλ.定理18.6:设在条件φk (x 1,…,x n )=0, k=1,2,…,m (m<n)的限制下,求 函数y=( x 1,…,x n )的极值问题, 其中f 与φk 在区域D 上有连续的一阶偏导数.若D 的内点P 0(01x ,…,0.n x )是上述问题的极值点,且雅可比矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂⋯∂∂⋯⋯∂∂⋯∂∂n mm n x x x x ϕϕϕϕ1111的秩为m, 则存在m 个常数01λ,…,0.m λ,使得 (01x ,…,0.n x ,01λ,…,0.m λ)为拉格朗日函数L(x 1,…,x n ,λ1,…,λn )=f(x 1,…,x n )+∑=⋯mk n k x x 11k ),,(ϕλ的稳定点, 即(01x ,…,0.n x ,01λ,…,0.m λ)为n+m 个方程⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋯=⋯⋯=⋯==∂∂+∂∂⋯⋯=∂∂+∂∂∑∑==0),,(0),,(011111111111n m n mk n k k nx mk k k x x x L x x L x x f L x x f L m n ϕϕϕλϕλλλ的解.例1:用拉格朗日乘数法重新求本节开头提到的水箱设计问题. 解:所求问题的拉格朗日函数为L(x,y,z,λ)=2(xz+yz)+xy+λ(V-xyz),列方程组得:⎪⎪⎩⎪⎪⎨⎧=-==-+==-+==-+=00220202xyz V L xy y x L xz x z L yz y z L z yx λλλλ,解得:x=y=2z=32V ,λ=324V .∴水箱表面积最小值为:23333)2()22(222V V V V ++=3324V .注:由例1可得不等式:2(xz+yz)+xy ≥3324V =32)(4xyz , x>0,y>0,z>0.例2:抛物面x 2+y 2=z 被平面x+y+z=1截成一个椭圆. 求这个椭圆到原点的最长与最短距离.解:实质为求f(x,y,z)=x 2+y 2+z 2在条件x 2+y 2-z=0及x+y+z-1=0下的最值. 令L(x,y,z,λ,μ)=x 2+y 2+z 2+λ(x 2+y 2-z)+μ(x+y+z-1), 列方程组有:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++==-+==+-==++==++=0100202202222z y x L z y x L z L y y L x x L z y x μλμλμλμλ, 解得:λ=-3±35,μ=-7±311,x=y=231±-,z=2∓3.又f(231±-,231±-,z=2∓3)=9∓53. ∴椭圆到原点的最长距离为39+, 最短距离39-.例3:求f(x,y,z)=xyz 在条件x 1+y 1+z 1=r1,(x>0, y>0, z>0, r>0)下的极小值,并证明不等式3(a 1+b 1+c1)-1≤3abc , 其中a,b,c 为任意正实数. 解:令L(x,y,z,λ)=xyz+λ(x 1+y 1+z 1-r1), 列方程组有:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-++==-==-==-=01111000222r z y x L zxy L y xz L xyz L z y x λλλλ,解得:x=y=z=3r, λ=(3r)4.把x 1+y1+z 1=r1看作隐函数z=z(x,y) (满足隐函数定理条件), 记F(x,y)=xyz(x,y)=f(x,y,z), 它是f 与z=z(x,y)的复合函数. 则有z x =-21x -/21z -=-22x z , z y =-22yz ; F x =yz+xyz x =yz-x yz 2, F y =xz-y xz 2; F xx =yz x +yz x +xyz xx =332x yz , F yy =332yxz , F xy =z+yz y +xz x +xyz xy =z-y z 2-x z 2+xy z 32;∵(F xx F yy -F xy 2)(3r,3r,3r)=27r 2>0, ∴f(3r,3r,3r)=(3r)3极小值, 也是最小值. 即有xyz ≥(3r)3, (x>0, y>0, z>0, 且x1+y1+z 1=r1).令x=a,y=b,x=c, 则r=(a 1+b 1+c 1)-1, 即有abc ≥[3(a 1+b 1+c 1)-1]3,或3(a 1+b 1+c1)-1≤3abc (a>0, b>0, c>0).习题1、应用拉格朗日乘数法,求下列函数的条件极值: (1)f(x,y)=x 2+y 2, 若x+y-1=0;(2)f(x,y,z,t)=x+y+z+t, 若xyzt=c 4 (其中x,y,z,t>0, c>0); (3)f(x,y,z)=xyz, 若x 2+y 2+z 2=1, x+y+z=0.解:(1)令L(x,y,λ)=x 2+y 2+λ(x+y-1), 列方程组:⎪⎩⎪⎨⎧=-+==+==+=010202y x L y L x L y x λλλ,解得:λ=-1, x=y=21. 又当x →∞, y →∞时,f →∞, ∴函数在唯一的稳定点取得极小值f(21,21)=21. (2)f(x,y,z,t)=x+y+z+t, 若xyzt=c 4 (其中x,y,z,t>0, c>0);令L(x,y,z,t,λ)=x+y+z+t+λ(xyzt-c 4), 有⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+==+==+==+=0010101014c xyzt L xyz L xyt L xzt L yzt L tz y x λλλλλ, 解得:x=y=z=t=c.又当n 个正数的积一定时,其和必有最小值,∴函数在唯一的稳定点取得最小值也是极小值f(c,c,c,c)=4c.(3)令L(x,y,z,λ,μ)=xyz+λ(x 2+y 2+z 2-1)+μ(x+y+z), 有⎪⎪⎪⎩⎪⎪⎪⎨⎧=++==-++==++==++==++=001020202222z y x L z y x L z xy L y xz L x yz L zy x μλμλμλμλ, 解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===626161z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==616162z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==616261z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=626161z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=616162z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=616261z y x . ∵f 在有界集{(x,y,y)|x 2+y 2+z 2=1, x+y+z=0}上连续,∴存在最值.又f(61,61,-62)=f(-62,-61,61)=f(61,-62,61)=-631,f(-61,-61,62)=f(62,-61,-61)=f(-61,62,-61)=631, ∴f 在(61,61,-62),(-62,-61,61),(61,-62,61)取得极小值-631,在(-61,-61,62),(62,-61,-61),(-61,62,-61)取得极大值631.2、(1)求表面积一定而体积最大的长方体; (2)求体积一定而表面积最小的长方体.解:设长、宽、高分别为x,y,z ,则体积V=xyz, 表面积S=2xy+2yz+2zx,(1)记L(x,y,z,λ)=xyz+λ(2xy+2yz+2zx-S), 有⎪⎪⎩⎪⎪⎨⎧=-++==++==++==++=02220)(20)(20)(2S zx yz xy L y x xy L z x xz L z y yz L z yxλλλλ,解得:x=y=z=6S, ∴体积最大的长方体必在唯一的稳定点取得,即 表面积一定的长方体为正方体时,V=36⎪⎪⎭⎫ ⎝⎛S =66SS最大. (2)记L(x,y,z,λ)=2xy+2yz+2zx+λ(xyz-V), 有⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=0022022022V xyz L xy y x L xz z x L yz z y L z yx λλλλ,解得:x=y=z=3V , ∴表面积最小的长方体必在唯一的稳定点取得,即 体积一定的长方体为正方体时,表面积S=632V 最小.3、求空间一点(x 0,y 0,z 0)到平面Ax+By+Cz+D=0的最短距离.解:由题意,相当于求f(x,y,z)=d 2=(x-x 0)2+(y-y 0)2+(z-z 0)2在条件 Ax+By+Cz+D=0下的最小值问题.由几何学知,空间定点到平面的最短距离存在,可设L(x,y,z,λ)=(x-x 0)2+(y-y 0)2+(z-z 0)2+λ( Ax+By+Cz+D), 列方程组有⎪⎪⎩⎪⎪⎨⎧=+++==+-==+-==+-=00)(20)(20)(2000D Cz By Ax L C z z L B y y L A x x L z y x λλλλ,解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧+++++=-+++++=-+++++=-222000022200002220000)()()(C B A D Cz By Ax C z z C B A D Cz By Ax B y y C B A D Cz By Ax A x x , ∴f 的最小值必在惟一的稳定点取得,即 d=202020)()()(z z y y x x -+-+-=222000||CB A D Cz By Ax +++++为所求最短距离.4、证明:在n 个正数的和为定值条件x 1+x 2+…+x n =a 下,这n 个正数的乘积x 1x 2…x n 的最大值为n nna . 并由此结果推出n 个正数的几何平均值不大于算术平均值n n x x x ⋯21≤nx x x n+⋯++21.证:记L(x 1,x 2,…,x n ,λ)=x 1x 2…x n +λ(x 1+x 2+…+x n -a), (x 1,x 2,…,x n >0)列方程组有:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-+⋯++==+⋯=⋯⋯=+⋯⋯=⋯⋯=+⋯==+⋯=-+-000002112111214313221a x x x L x x x L x x x x x L x x x x L x x x L n n x nk k x n x n x n k λλλλλ, 解得:x 1=x 2=…=x n =n a. ∴最大值必在惟一的稳定点取得,即f(n a ,n a ,…,n a )=n nna 最大.又x 1x 2…x n ≤n n n a ,∴n n x x x ⋯21≤na =n x x x n+⋯++21.5、设a 1,a 2,…,a n 为已知的n 个正数,求f(x 1,x 2,…,x n )=∑=nk k k x a 1在限制条件x 12+x 22+…+x n 2≤1下的最大值. 解:记x 12+x 22+…+x n 2=r ≤1, L(x 1,x 2,…,x n ,λ)=∑=nk k k x a 1+λ(x 12+x 22+…+x n 2-r),列方程组有:⎪⎪⎪⎩⎪⎪⎪⎨⎧-+⋯++==+=⋯⋯=+==+=rx x x L x a L x a L x a L n nn x x x n22221221102020221λλλλ, 解得:x i =∑=±nk kiaa r 12, (i=1,2,…,n)可知,当x i =∑=±nk kiaa r 12, 且r=1时,取得最大值f M =∑=nk ka12.6、求函数f(x 1,x 2,…,x n )=x 12+x 22+…+x n 2在条件∑=nk k kx a1=1(a k >0,k=1,2,…,n)下的最小值. 解:记L(x 1,x 2,…,x n ,λ)=x 12+x 22+…+x n 2+λ(∑=nk k kx a1-1),列方程组有⎪⎪⎪⎩⎪⎪⎪⎨⎧-==+=⋯⋯=+==+=∑=10202021221121n k k k n n x x x x a L a x L a x L a x L n λλλλ, 解得:x i =∑=n k k i a a 12, (i=1,2,…,n),∴函数在唯一的稳定点取得最小值F m =∑=nk ka121.7、利用条件极值方法证明不等式xy 2z 3≤10866⎪⎭⎫⎝⎛++z y x , x,y,z>0.证 :记L(x,y,z,λ)=xy 2z 3+λ(x+y+z-a), (x,y,z>0, a>0),列方程组有⎪⎪⎩⎪⎪⎨⎧=-++==+==+==+=00302022332a z y x L z xy L xyz L z y L z yxλλλλ,解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧===236a z a y a x , 又当n 个正数的和一定时,其积必有最大值,∴xy 2z 3≤32236⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛a a a =6633322⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯a =10866⎪⎭⎫⎝⎛++z y x .。
第十八章 隐函数定理及其应用§1 隐函数一、隐函数概念设X R ⊂,Y R ⊂, 函数:F X Y R ⨯→, 对方程(,)0F x y =,若存在集合I X ⊂,J Y ⊂,使得对任何x I ∈,存在唯一的y J ∈满足方程(,)0F x y =,则称(,)0F x y =确定了一个隐函数:f I J →, 记为()y f x =,x I ∈.此时, (,())0F x f x ≡,x I ∈恒成立. 相对地, 形如()y f x =的函数称为显函数.我们说隐函数的产生也是很自然的, 如函数73()y g x x x x ==++严格增, 因而其有反函数, 但不易求出显函数1()x g y -=, 此时只能说方程730y y y x ++-=能确定隐函数1()()dy g x f x -==. 当然, 显函数也可以写成隐函数的形式(,)()0F x y y f x =-=. 显函数的几何意义就是平面上的曲线. 而方程(,)0F x y =确定的隐函数()y f x =在几何意义上就是曲面(,)z F x y =与平面0z =相交得到一条曲线(()y f x =), 此曲线投影到x 轴, 投影为I , 而对每个x I ∈,有唯一的点(,)x y 在该曲线上.注 并不是每一个方程都可以确定一个隐函数,如2210x y ++=.关于隐函数, 我们主要关心两个问题: 1) 隐函数的存在性;2) 隐函数的性质(如连续和可微性等). 二、隐函数存在的直观分析从几何上看, 方程(,)0F x y =确定函数()y f x =.相当于曲线(,)0F x y =与直线0x x =有且仅有一个交点, 这就要求0(,)0F x y =恰好有一个解, 当然至少要有一个解, 即1︒ 00(,)x y ∃, 使得00(,)0F x y =.其次, 若要求曲线(,)0F x y =连续, 则需要假设2︒ 在00(,)x y 的某邻域内, F 连续.最后, 从隐函数的定义, 对一个x , 只能有一个y 满足(,)0F x y =. 这相当于F 作为y 的函数是单射. 因而我们要求F 关于y 严格单调, 或者条件3︒00(,)0y F x y ≠, 且y F 连续 (此时在00(,)x y 的某邻域内,F 关于y 严格单调).如果要求确定的隐函数可微, 则当F 可微时, 由链式法则有0x y F F y '+⋅=, 此时/x y y F F '=-, 即隐函数()y f x =可微. 而要保证F 可微, 一般需假设4︒x F 连续. 三、一元隐函数定理下面我们给出一元隐函数定理. 定理 若下列条件满足1) 函数(,)F x y 在000(,)P x y 为内点的某一区域2D R ⊂上连续; 2) 00(,)0F x y =(初始条件);3) 在D 内存在连续的偏导数(,)y F x y , 且00(,)0y F x y ≠,则在点0P 的某邻域0()U P D ⊂内, 方程(,)0F x y =唯一地确定了一个定义在某区间00(,)x x αα-+上的隐函数()y f x =, 满足1︒ 00()f x y =,00(,)x x x αα∈-+时, 0(,())()x f x U P ∈, 且(,())0F x f x =; 2︒ ()f x 在00(,)x x αα-+上连续.进一步, 若F 在D 上还存在连续的偏导数(,)x F x y , 则方程(,)0F x y =所确定的隐函数3︒ ()y f x =在00(,)x x αα-+内有连续导函数, 且(,)()(,)x y F x y f x F x y '=-.注 a) 为证1︒,2︒, 只需条件: 1) 00(,)0F x y =; 2) 在00(,)x y 的某邻域内F 连续; 3) F 关于y 严格单调.b) 定理中的条件充分而不必要. 如330y x -=在(0,0)不满足(0,0)0y F ≠,但仍确定函数y x =.c) 若条件改为00(,)0x F x y ≠, 则可确定函数()x g y =. 又若00(,)0x F x y ≠与00(,)0y F x y ≠同时成立, 则方程(,)0F x y =将同时确定函数()y f x =和()x g y =,使(,())((),)0F x f x F g y y ==,由于,x y 的对应关系唯一,故它们互为反函数, 且x y F dydx F =-将不变号(如果变号,dy dx 将有零点,在该点dx dy 不存在,与g 可微矛盾), 即隐函数严格单调.例1 反函数存在性定理及其导数.例2 设(,)sin 0F x y y y x ε=--=, 01ε<<. 求dy dx , 22d ydx.例3 讨论Descartes 叶形线3330x y axy +-=所确定的隐函数()y f x =的一阶与二阶导数.例4 设2212z y x =-, 其中()y f x =为方程3330x y xy +-=所确定的隐函数. 求dz dx ,22d z dx.例5 证明: 1) 在(0,0)附近方程2sin()0x y xy ++=可确定函数()y f x =;2) 求f 的导数; 3) (0)f 为极大值.四、n 元隐函数定理下面我们来讨论n 元隐函数定理.定理 设1) 函数12(,,,,)n F x x x y ⋅⋅⋅在以点0000012(,,,,)n P x x x y ⋅⋅⋅为内点的区域1n D R +⊂上连续;2) 000012(,,,,)0n F x x x y ⋅⋅⋅=; 3) 偏导数12,,,,n x x x y F F F F ⋅⋅⋅在D 内存在且连续;4) 000012(,,,,)0y n F x x x y ⋅⋅⋅≠,则在点0P 的某邻域0()U P D ⊂内方程12(,,,,)0n F x x x y ⋅⋅⋅=唯一地确定了一个定义在000012(,,,)n Q x x x ⋅⋅⋅的某邻域0()n U Q R ⊂内的n 元连续函数(隐函数) 12(,,,)n y f x x x =⋅⋅⋅,使得1︒.当120(,,,)()n x x x U Q ⋅⋅⋅∈时, 12120(,,,,(,,,))()n n x x x f x x x U P ⋅⋅⋅⋅⋅⋅∈; 2︒.12(,,,)n y f x x x =⋅⋅⋅在0()U Q 内有连续偏导数12,,,n x x x f f f ⋅⋅⋅, 且11,x x yF f F =-22,,n n x x x x yyF F f f F F =-⋅⋅⋅=-.即若F 关于某个变量偏导数不等于0, 则存在以之为因变量的隐函数.例6 讨论方程323(,,)0F x y z xyz x y z =++-=在原点附近所确定的二元隐函数(,)z f x y =及其偏导数.例7 设方程(,,)0F x x y x y z +++=确定(,)z f x y =.求,x y z z .例8 求由方程(,,)0F x y y z z x ---=所确定的函数(,)z z x y =的微分.例9 设(,)u f x ut y ut =+-,求,,x y t u u u .例10 证明: 由方程()()y x z z ϕψ=+所确定的函数(,)z z x y =满足方程2222222()2()0z z z z z z z y x y x y x x y∂∂∂∂∂∂∂⋅-⋅⋅⋅+⋅=∂∂∂∂⋅∂∂∂∂.§2 隐函数组给出线性方程组111122220a xb yc ud v a x b y c u d v +++=⎧⎨+++=⎩ 何时可从中解出(,)u f x y =, (,)v g x y =? 给定一般形式方程组(,,,)0(1)(,,,)0(2)F x y u vG x y u v =⎧⎨=⎩何时可从中解出(,)u f x y =, (,)v g x y =?一、隐函数组定理定理 1 设2,A B R ⊂, ,:F G A B R ⨯→. 00000(,,,)P x y u v =.若1) 00()()0F P G P ==;2) 在0P 的某邻域内, 1,F G C ∈; 3) Jacobi 行列式(,)(,)F G J u v ∂=∂在0P 处值不为0,则存在00(,)x y 的邻域U 及U 上的唯一一组1C 类函数,f g , 使得(,)u f x y =, (,)v g x y =满足1︒ 000(,)u f x y =,000(,)v g x y =,(,,(,),(,))0F x y f x y g x y ≡, (,,(,),(,))0G x y f x y g x y ≡, (,)x y U ∀∈,2︒ 1(,)(,)x F G u J x v ∂=-⋅∂,1(,)(,)y F G u J y v ∂=-⋅∂,1(,)(,)x F G v J u x ∂=-⋅∂,1(,)(,)y F G v J u y ∂=-⋅∂. [()11(,)()(,)xx v xvx v x v x vvF G G F F G u F G G F J J J x v F ψψ+⋅-∂=-==⋅-=-⋅∂]注 若定理条件3) 改为(,)0(,)P F G y v ∂≠∂, 则方程(1), (2)可确定的隐函数组为(,)(,)y y x u v v x u =⎧⎨=⎩. 更一般地, 可先求出,,,x y u v F F F F ,,,,x y u v G G G G , 如0u v uvF FG G ≠, 则可对(,,,)0(,,,)0F x y u vG x y u v =⎧⎨=⎩, 两边关于,x y 求偏导. 如对x 求偏导, 则x u x v x x u x v x F F u F v G G u G v +⋅+⋅=⎧⎨+⋅+⋅=⎩,从而u x v x xu x v x xF u F v FG u G v G ⋅+⋅=-⎧⎨⋅+⋅=-⎩⇒(,)(,)(,)(,)x u x u x u v u vF F FG G G x v u F G F F u v G G -∂-∂==-∂∂, (,)(,)(,)(,)x F G u x v F G u v ∂∂=-∂∂, 类似可以求出,y y u v .例1 讨论方程组222(,,,)0(,,,)10 F x y u v u v x y G x y u v u v xy ⎧=+--=⎨=-+-+=⎩, 在点0(2,1,1,2)P 附近能确定怎样的隐函数组, 并求其偏导数.例2 1) 已知01xu yv yu xv +=⎧⎨+=⎩, 求x u , y u , x v , y v ;2) 设2(,)(,)u f ux v y v g u x v y =+⎧⎨=-⎩, 求,u ux y ∂∂∂∂.3) 设函数(,)u u x y =由方程(,,,)(,,)0 (,)0 u f x y z t g y z t h z t =⎧⎪=⎨⎪=⎩确定. 求,u u x y∂∂∂∂.二、反函数组定理给定(,)(,)u f x y v g x y =⎧⎨=⎩, 何时有(,)(,)x u v y u v ϕψ=⎧⎨=⎩?设(,,,)(,)0(,,,)(,)0 F x y u v f x y u G x y u v g x y v =-=⎧⎨=-=⎩,00000(,,,)P x y u v =, 由隐函数组定理条件为1) 00()()0F P G P ==, 即000(,)u f x y =, 000(,)v g x y =;2) 在0P 的某邻域内, 1,F G C ∈, 由于1u v F G ==-, 0v u F G ==连续, 故条件2)为在00(,)x y 的某邻域内1,f g C ∈.3)0000(,)(,)(,)(,)0(,)(,)x y x yx y x y f f F G u v g g x y x y ∂∂==≠∂∂.因而我们可得到下面的反函数组定理. 定理2 若1) 000(,)u f x y =, 000(,)v g x y =;2) 在00(,)x y 的某邻域内1,f g C ∈; 3)00(,)(,)0(,)x y u v x y ∂≠∂,则存在00(,)u v 的邻域U 及唯一的一组1C 函数(,)x u v ϕ=,(,)y u v ψ=.((,)u v U ∈), 使得1︒ ((,),(,))u f u v u v ϕψ=, ((,),(,))v g u v u v ϕψ=, 000000(,),(,)x u v y u v ϕψ==; 2︒(,)(,)1(,)(,)u v x y x y u v ∂∂⋅=∂∂. [(,)/(,)x v u v u y x y ∂∂∂=∂∂∂, (,)/(,)x u u v vy x y ∂∂∂=-∂∂∂, (,)/(,)y u u v u x x y ∂∂∂=-∂∂∂, (,)/(,)y u u v v x x y ∂∂∂=∂∂∂.]例3 设sin cos u ux e u vy e u v ⎧=+⎨=-⎩, 求,,,x y x y u u v v .例4 求cos sin x r y r θθ=⎧⎨=⎩的反函数组.例5 求sin cos sin sin cos x r y r z r θϕθϕθ=⎧⎪=⎨⎪=⎩的反函数组.例6 利用sin cos x r θϕ=, sin sin y r θϕ=, cos z r θ=变换2221u u x u y u z ∆=++.例6 已知经过代换2u x yv x ay =-⎧⎨=+⎩后, 方程60zz xy yy z z z +-=化为方程0uv z =,求a 的值.§3 几何应用一、平面曲线的切线与法线平面曲线()y f x =, 在000(,)P x y 处的切线方程000()()y y f x x x '-=-. 若平面曲线由方程(,)0F x y =给出, (,)F x y 在点000(,)P x y 的某邻域内满足隐函数定理条件, 故其在0P 附近可确定连续可微函数()y f x =(或()x g y =). 注意到()y f x =与(,)0F x y =表示的是同一曲线, 故曲线(,)0F x y =在0P 处的切线和法线方程分别为000()()y y f x x x '-=-与0001()()y y x x f x -=--' (或000()()x x g y y y '-=-与0001()()x x y y g y -=--') 又()xy F f x F '=-(或()y xF g y F '=-), 则曲线(,)0F x y =在000(,)P x y 处的切线方程: 000000(,)()(,)()0x y F x y x x F x y y y -+-=, 法线方程: 000000(,)()(,)()0y x F x y x x F x y y y ---=.例1 求Descartes 叶形线 332()90x y xy +-= 在(2,1)处的切线与法线方程.二、空间曲线的切线与法平面 1、 曲线由参数方程给出.设 :(),(),()L x x t y y t z z t ===, ()t αβ≤≤. (1) 下面求L 在其上某点0000(,,)P x y z 处的切线与法线方程, 这里00()x x t =,00()y y t =,00()z z t =,0()t αβ≤≤.假设(1)中三个函数均在0t 处可导且222000(())(())(())0x t y t z t '''++≠,在L 上0P 附近任取一点(,,)P x y z =000(,,)P x x y y z z +∆+∆+∆, 从而连接0P 与P 的割线方程为000x x y y z z x y z---==∆∆∆, 其中00()()x x t t x t ∆=+∆-, 00()()y y t t y t ∆=+∆-, 00()()z z t t z t ∆=+∆-, 又000x x y y z z x y z t t t---==∆∆∆∆∆∆, 令0t ∆→, 则0P P →, 且曲线L 在0P 处的切线方程为000000()()()x x y y z z x t y t z t ---=='''. 进而曲线L 在0P 处的法平面方程为000000()()()()()()0x t x x y t y y z t z z '''-+-+-=.2、曲线由两曲面给出设曲线L 的方程为 (,,)0(,,)0F x y z G x y z =⎧⎨=⎩ (2)设1,F G C ∈, 且0(,)0(,)P F G J x y ∂=≠∂. 则由隐函数组定理, 在0P 附近能确定唯一的连续可微函数()x z ϕ=, ()y z ψ=使得1)00()x z ϕ=, 00()y z ψ=,2)1(,)(,)dx F G dz J z y ∂=-⋅∂, 1(,)(,)dy F G dz J x z ∂=-⋅∂. 故曲线L 在0P 处的切线方程为000001P P x x y y z z dx dy dz dz ---==, 即 000000(,)(,)(,)(,)(,)(,)P P P x x y y z z F G F G F G y z z x x y ---==∂∂∂∂∂∂,而L 在0P 处的法平面方程为000000(,)(,)(,)()()()0(,)(,)(,)P P P F G F G F G x x y y z z y z z x x y ∂∂∂-+-+-=∂∂∂.例 2 求曲线22250x y z ++=与锥面222x y z +=所截得的曲线在点(3,4,5)处的 切线与法平面方程.三、曲线的切平面与法线方程设曲面方程由 (,,)0F x y z = (3)给出, 其在0000(,,)P x y z 的某邻域内满足隐函数定理条件. 设000(,,)z F x y z 0≠, 则方程(3)在0P 附近确定唯一1C 函数(,)z f x y =使得000(,)z f x y =且x z F z x F ∂=-∂, y zF zy F ∂=-∂, 从而该曲面在0P 处有切平面与法线其方程分别为000000000000000(,,)(,,)()()(,,)(,,)y x z z F x y z F x y z z z x x y y F x y z F x y z -=----,即 000000()()()()()()0x y z F P x x F P y y F P z z -+-+-= 与000000()()()x y z x x y y z z F P F P F P ---==. 例3 求椭球面222236x y z ++=在(1,1,1)处的切平面方程与法线方程.例4 =(0)a >的切平面在坐标轴上截距之和为常数.§4 条件极值一、条件极值极值问题↔定义域↔条件的限制例 1 设计一个容量为V 的长方形开口水箱, 试问水箱的长x , 宽y , 高z 分别为多少时其表面积最小.(,,)2()S x y z xz yz xy =++ (0,0,0)x y z >>>满足条件 xyz V = ———— 条件极值问题条件极值问题 求(目标)函数()u f x =, 12(,,,)n n x x x x D R =⋅⋅⋅∈⊂在 (约束)条件()0i g x =, 1,2,,i m =⋅⋅⋅, m n <下的极值.设{,()0,1,2,,}i E x D g x i m =∈==⋅⋅⋅, a E ∈. 若存在开球(,)B a r D ⊂,使(,)x E B a r ∈⋂时,()()f x f a ≥(或()()f x f a ≤), 则称f 在a 达到(满足条件()0i g x =)的条件极小(极大)值.例1的解二、条件极值的必要条件 (3n =,2m ≥来讨论)设3D R ⊂为开域, 12,,:f g g D R →为1C 函数, 123(,,)x x x x D =∈. 若f 在点123(,,)a a a a =处达到条件极值, 且111123222123rank 2ag g g xx x g g g x x x ∂∂∂⎛⎫ ⎪∂∂∂⎪= ⎪∂∂∂ ⎪∂∂∂⎝⎭,(1grad ()g a ,2grad ()g a 线性无关). 则存在12,R λλ∈, 使得1212()()()0j j jg g fa a a x x x λλ∂∂∂++=∂∂∂, 1,2,3j =. 即a 是Lagrange 函数1122L f g g λλ=++的驻点.三、Lagrange 乘法求()u f x =, 1(,,)n n x x x D R =⋅⋅⋅∈⊂在条件()0i g x =, (1,2,,)i m =⋅⋅⋅下的极值.方法为1︒ 作Lagrange 函数1111(,,,,,)()()()n m m m L x x f x g x g x λλλλ⋅⋅⋅⋅⋅⋅=++⋅⋅⋅+, x D ∈.2︒ 令0 (1,,)iLi n x ∂==⋅⋅⋅∂, 0 (1,,)j L j m λ∂==⋅⋅⋅∂, 求驻点. (m n +个方程, m n +个未知量)3︒ 求D 中使1,,,m f g g ⋅⋅⋅不为1C 的点, 及使1rank(grad ,,grad )m g g m ⋅⋅⋅<的点.(这些点与驻点成为可能的极值点).4︒ 用无条件极值方法判断上述可能点是否为极值点. 例2 重解例1.例3 求抛物面22x y z +=被平面1x y z ++=截成一个椭圆, 求该椭圆到原点的最长和最短距离.例4 求(,,)f x y z xy yz =+在条件222x y +=, 2y z +=下的极值.例5 求平面一点00(,)x y 到直线0Ax By C ++=的最短距离.例6 求(,,)f x y z xyz =在条件1111x y z r++= (,,,)x y z r R +∈下的极小值, 并证明11113()a b c-++≤, ,,a b c R +∀∈.例7 求目标函数222000(,,)()()()f x y z x x y y z z =-+-+-在约束条件Ax By ++0Cz D +=下的最小值.例8 求1212(,,,)n n f x x x x x x ⋅⋅⋅=⋅⋅⋅在12n x x x a ++⋅⋅⋅+=约束条件下的最大值.例9 已知12(,,),(,,),(,)G x y z G x y z f x y 都是可微的,(,)(,,(,))i i g x y G x y f x y =, 1,2i =.求证:121112221(,)(,)x y xy z xyzf fg g G G G x y G G G --∂=∂.例11 183P , 5.例10 183P 11二次型, 特征值问题.例12 183P , 12.例13 184P , 14.若函数组(,),(,)u u x y v v x y ==有连续的偏导数, 而(,),(,)x x s t y y s t ==有连续偏导数, 则(,)(,)(,)(,)(,)(,)u v u v x y s t x y s t ∂∂∂=⋅∂∂∂. [设(),()y f x x t ϕ==, 则dy dy dx dt dx dt=⋅.]Jacobi 行列式的几何意义一元 ()y f x =, 0x , 0x x x =+∆, 00()()y f x x f x ∆=+∆-称||||y x ∆∆为f 在0x 到0x x +∆的平均伸缩系数.若0x ∆→, 极限00000()()||limlim |()|||x x f x x f x y f x x x∆→∆→+∆-∆'==∆∆, 则称0|()|f x '为映射f 在0x 处的伸缩系数. (导数的几何意义)若函数组(,),(,)u u x y v v x y ==在开区域G 存在连续的偏导数且(,)x y G ∀∈,(,)(,)0(,)u v J x y x y ∂=≠∂. 函数组将xy 平面的开区域G 变换成uv 平面上的开区域1G ,点00(,)x y G ∈映为点10000((,),(,))u x y v x y G ∈, 则包含点00(,)u v 的面积微元d σ'与对应的包含点00(,)x y 的面积微元d σ之比为00|(,)|J x y . 即0000(,)(,)|(,)|(,)x y d u v J x y d x y σσ'∂==∂.。
《数学分析》(下)复习总结——几何应用、条件极值几何应用一.平面曲线的切线与法线设平面曲线由方程()0,=y x F(1)给出,它在点()000,y x P 的某邻域内满足隐函数定理条件,于是在0P 附近所确定的连续可微隐函数()()()y g x x f y ==或和方程(1)在0P 附近表示同一曲线,从而该曲线在点0P 处存在切线和法线,其方程分别为))((00'0x x x f y y -=- ()())(00'0y y y g x x -=-或与 ()()00'01x x x f y y --=- (或()()00'01y y y g x x --=-) 由于()y x F F x f -='(或()xy F F y g -=')所以曲线(1)在点处的切线和法线方程为切线: ()()()()0,,000000=-+-y y y x F x x y x F y x 法线: ()()()()0,,000000=---y y y x F x x y x F x y例题例1:求曲线22333x y x x y y -=+在点(1,1)处的切线方程和法线方程。
解:令()22333,y x x y y x y x F +-+=,则()()6231,1232=++=xy y y x F x , ()()6231,1223=++=y x x y x F y ,所以该曲线在点(1,1)处的法向量为()1,1n =, 于是求得切线和法线分别为切线方程:()()2,0111-x 1=+=-⋅+⋅y x y 即,法线方程:y x y =-=即,1111-x二、空间曲线的切线和法平面(一)空间曲线(光滑)L:⎪⎩⎪⎨⎧===)()()(t z z t y y t x x βα≤≤t设曲线某一点()0000,,z y x P , 这里的()()()βα≤≤===t t z z t y y t x x ,,,000000 , 并假定式中的三个函数在0t 处可导,且()[]()[]()[]0x 2'2'2'≠++t z t y t ,在曲线L 上点0P 附近选取一点()()z z y y x x P z y x P ∆+∆+∆+=000,,,,, 于是连接L 上的点0P 与P 的割线方程为 :z z z y y y x x x ∆-=∆-=∆-000 其中()()()()()()000000,,t z t t z z t y t t y y t x t t x x -∆+=∆-∆+=∆-∆+=∆ 以t ∆除上式各分母,得tz z z t y y y t x x ∆∆-=∆∆-=∆∆-000x 当0t →∆时,0P P →,且()()()0'0'0',,x t z tzt y t y t x t →∆∆→∆∆→∆∆ 即得曲线在处的切线和法平面方程为切线:)()()(0'00'00'0t z z z t y y y t x x x -=-=- 法平面: 0))(())(())((00'00'0'=-+-+-z z t z y y t y x x t x(二)如果空间曲线的方程为L :⎩⎨⎧==0),,(0),,(z y x G z y x F ,则它在()0000,,z y x P 处的切线方程为()()()()()()000000,,,,,,x -x P y x G F z z P x z G F y y P z y G F ∂∂-=∂∂-=∂∂法平面方程为()()()()()()()()()0,,,,,G F,000000=∂∂-+∂∂-+∂∂-P y x G F z z P x z G F y y P z y x x例题例1:求曲线 t x 2=, 23-=t y , 22t t z -=在点(1)1=t ;(2))0,6,4(M 处的切线及法平面方程.解:(1) )1,1,2(1-↔=P t {}{}0,3,222,3,212=-==→t P t t T切线: 013122-=+=-z y x 即⎪⎩⎪⎨⎧=-+=-013122z y x (严格表示) 法平面:()()()0101322=-+++-z y x 即0132=-+y x(2) 2)0,6,4(=↔t M {}{}{}1,6,122,12,222,3,222-=-=-==→t m t t T 切线: 16614-=-=-zy x法平面:0)6(6)4(=--+-z y x 即0406=--+z y x例2:求曲线Γ⎩⎨⎧=++=++06222z y x z y x 在点)1,2,1(-M 处切线及法平面方程.解: Γ的参数方程⎪⎩⎪⎨⎧===)()(x z z x y y xx {})(),(,1''x z x y T =→将⎩⎨⎧=++=++06222z y x z y x 两边对x 求导 ⎪⎩⎪⎨⎧=++=++010222dx dzdx dy dx dz z dx dy y x 即⎪⎩⎪⎨⎧-=+-=+1dx dz dx dy x dx dz z dx dy y(1)解方程组(1)得z y x z dx dy --= zy yx dx dz --= {}1,0,1,,1)1,2,1(-=⎭⎬⎫⎩⎨⎧=-→dx dz dx dy T M切线:110211--=+=-z z x 法平面: 0)1()1(=---z x 即 0=-z x三、空间曲面的切平面与法线曲面由方程()0,,=z y x F给出,它在点()0000,,z y x P 处的 切平面方程为:()()()()()()0,,,,,,000000000000=-+-+-z z z y x F y y z y x F x x z y x F z y x法线方程为:()()()o z y x z y x F z z z y x F y y z y x F x x ,,,,,,00000000000-=-=-特别, 当光滑曲面的方程为显式时,令z y x f z y x F -=),(),,(则在点),,,(z y x ,x x f F =,y y f F =1-=z F 故当函数 ),(y x f 在点),(00y x 有连续偏导数时, 曲面切平面方程为:法线方程为:例题例1:求旋转抛物面122-+=y x z 在点P (2,1,4)的切平面,法线方程,关键法向量.解: 设()01,,22=--+=z y x z y x F (隐←显){}{}{}1,2,41,2,2,,)4,1,2()4,1,2('''-=-==→y x F F F n z y x切平面: 0)4()1(2)2(4=---+-z y x 即0624=--+z y x 法线:142142--=-=-z y x 例2:求曲面222y x z +=平行于z = 2x+2y 的切平面方程.解: 设()02,,22=-+=z y x z y x F ,切点为()000,,z y x P ,曲面在点()000,,z y x P 处的法向量为()1,2,00-y x , 曲面在点()000,,z y x P 处的切平面方程为()()()0200000=---+-z z y y y x x x曲面在点()000,,z y x P 处的切平面方程为又与已知平面z = 2x +2y 平行, 因此1122200--==y x切点坐标为 ()3,1,2 所求切平面方程为 ()()()031222=---+-z y x条件极值关于条件极值的求解问题一般是求函数的最大值与最小值问题。
第十八章 隐函数定理及其应用一、证明题一、证明题1.证明:设方程F(x,y)=0所确定的隐函数y=f(x)具有二阶导数,则当则当 时,有2.设tgx yu =,x sin yv =.证明:当2x 0p<<,y>0时,u,v 可以用来作为曲线坐标;解出x,y 作为u,v 的函数;画出xy 平面上u=1,v=2所对应的坐标曲线;计算()()y ,x v ,u ¶¶和()()v ,u y ,x ¶¶并验证它们互为倒数. 3.将以下式子中的(x,y,z)变换成球面从标()j q ,,r 的形式: 2221z u y u x u u ÷øöçèæ¶¶+÷øöçèæ¶¶+÷øöçèæ¶¶=D , 2222222zu y u x u u ¶¶+¶¶+¶¶=D . 4.证明对任意常数ρ,j ,球面2222z y x r =++与锥面2222z tg y x ×j =+是正交的. 5.试证明:函数()y ,x F 在点()000y ,x P 的梯度恰好是F 的等值线在点P 0的法向量(设F 有连续一阶偏导数). 6.证明:在n 个正数的和为定值条件个正数的和为定值条件 x 1+x 2+x 3+…+x n =a 下,这n 个正数的乘积x 1x 2x 3…x n 的最大值为n nha .并由此结果推出n 个正数的几何中值不大于算术中值. £××××nn21x x x nxxxn21+×××++二、计算题二、计算题1.方程.方程 能否在原点的某邻域内确定隐函数能否在原点的某邻域内确定隐函数 或 . 2.方程方程 在点(0,1,1)的某邻域内能否确定出一个变量为另外两个变量的函数. 3.求下列方程所确定的隐函数的偏导数: (1)x+y+z= ,求Z 对x,y 的一阶与二阶偏导数; (2)F(x,x+y,x+y+z)=0,求 , 和 . 4.设f 是一元函数,试问应对f 提出什么条件,方程2f(xy)= f(x)+f(x)在点在点(1,1)的邻域内就能确定出唯一的y 为x 的函数? 1.试讨论方程组试讨论方程组ïîïíì=++=+2z y x 2zy x 22y 在点(1,-1,2)的附近能否确定形如x=f(z),y=g(z)的隐函数组. 5.求下列方程组所确定的隐函数组的导数: (1)ïîïíì=+=++ax y x a z y x 222222, 求x y ¶¶,x z ¶¶; (2)ïîïíì=--=--0xu v y 0yv u x 2222, 求x u ¶¶,x v ¶¶,y u ¶¶,y v¶¶. (3)()()îíì-=+=y v ,x u g v y v .ux f u 2, 求x u ¶¶,xv ¶¶. 6.求下列函数组所确定的反函数组的偏导数: (1)ïîïíì-=+=,v cos u e y ,v sin u e x uu 求y x y x v ,v ,u ,u ; (2)ïîïíì+==+=3322v u z v u y ,v u x ,求x z . 7.设函数z=z(x,y)由方程组由方程组vu ex +=,vu e y -=,uv z =(u,v 为参量)所定义的函数,求当u=0,v=0时的dz. 8.设u,v 为新的自变量变换下列方程: (1)()()0yz y x x zy x=¶¶--¶¶+,设22y x ln u +=, x y arctg v =; (2)0yz y x z x 222222=¶¶-¶¶,设x y u =,y x v =. 9.设函数u=u(x,y)由方程组由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0 所确定,求xu ¶¶和yu ¶¶. 10.设2rxu =,2ryv =,2rzw =,其中222z y x r ++=, (1)试求以u,v,w 为自变量的反函数组; (2)计算()()z ,y ,x w ,v ,u ¶¶. 11.求平面曲线323232ayx=+()0a >上任何一点处的切线方程,并证明这些切线被坐标轴所截取的线段等长. 12.求下列曲线在所示点处的切线方程与法平面: (1)t sin a x 2=,t cos sin b y =,t cos c z 2=在点4t p =; (2)9z y 3x 2222=++.222y x 3z +=,在点(1,-1,2). 13.求下列曲线在所示点处的切平面与切线: (1)0e y z x 2==-,在点(1,1,2); (2)1c z b y a x 222222=++,在点(3a ,3b 3c ). 14.求曲面上过点21z 3y 2x 222=++的切平面,使它平行于平面0z 6y 4x =++. 15.在曲线x=t,2t y =,3t z =上求出一点,使曲线在此点处的切线平行于平面x+2y+z=4. 16.求函数222zy x xu ++=在点M(1,2,-2)处沿曲线x=t,2t 2y =,4t 2z -=在该点切线方向上的方向导数. 17.确定正数λ,使曲面l =x yz 与椭球面++2222b y a x 1cz22=在某一点相切. 18.求曲面x z y x 222=++的切平面,使其垂直于平面2z 21y x =--和2z y x =--. 19.求两曲面F(x,y,z)=0,G(x,y,z)=0的交线在xy 平面上的投影曲线的切线方程. 20.应用拉格朗日乘数法,求下列函数的条件极值: (1)f(x,y)=22y x +,若x+y-1=0 (2)f(x,y,z,t)=x+y+z+t,若xyzt=c 4(其中x,y,z,t>0,c>0); (3)f(x,y,z)=xyz,若222z y x ++=1,x+y+z=0. 21.(1)求表面积一定而体积最大的长方体. (2)求体积一定而表面积最小的长方体. 22.(1)求空间一点()000z ,y ,x 到平面Ax+By+Cz+D=0的最短距离. (2)求原点到二平面1111d z c y b x a =++, ++y b x a 2222d z c =的交线的最短距离. 23.设a 1,a 2,…,a n 为已知的n 个正数,求()n21x ,,x ,xf ×××=å=n1k k kx a在限制条件在限制条件1x x x 2n 2221£+×××++ 下的最大值. 24.求函数求函数()n21x ,,x ,xf ×××=2n2221x x x +×××++在条件å==n1k kk1xa ,()n ,,2,1k ,0ak×××=> 下的最小值. 三、考研复习题三、考研复习题1.方程()222x1x y --=0在那些点的邻域内可唯一地确定连续可导的隐函数y=()x f ? 2.设函数f(x)在区间(a,b)内连续,函数()y j 在区间(c,d)内连续,而()0y >j ¢.问在怎样的条件下,方程()()x f y =j 能确定函数y=()()x f 1-j.并研究例子:(Ⅰ)siny+shy=x;(Ⅱ)x sin e 2y -=-. 3.设f(x,y,z)=0,z=g(x,y),试求dx dy ,dxdz. 4.已知G 1(x,y,z),G 2(x,y,z),f(x,y)都是可微的, g i (x,y)= Gi (x,y, f (x,y)),(i=1,2) 证明: ()()y ,x g,g 21¶¶=2z2y 2x 1z 1y 1x y x G G G G G G 1 f ,f --. 5.设x=f(u,v,w),y=g(u,v,w),z=h(u,v,w).求x u ¶¶,y u ¶¶,z u¶¶. 6.试求下列方程所确定的函数的偏导数x u ¶¶,yu ¶¶: (1)x 2+u 2=f(x,u)+g(x,y,u) (2)u=f(x+u,yu) 7.据理说明:在点(0,1)近傍是否存在连续可微的f(x,y)和g(x,y).满足f(0,1)=1,g(0,1)=-1,且()[]3y ,x f +xg(x,y)-y=0, ()[]3y ,x g +yf(x,y)-x=0. 8.设()0u,z ,y ,x 满足方程组满足方程组()()()()u F z f y f x f =++ ()()()()u G z g y g x g =++ ()()()()u H z h y h x h =++这里所有的函数假定有连续的导数. (1)说出一个能在该点邻域内确定x,y,z 作为u 的函数的充分条件; (2)在f(x)=x.,g(x)=x 2,h(x)=x 3的情形下,上述条件相当于什么? 9.求下列由方程所确定的陷函数的极值: (1)1y 2x y 2x 22=++(2)()()222222y x a y x -=+,(a>0) 10.设f=F(x)和一组函数()v ,u x j =,()v ,u y f =,那么由方程()()()v ,u F v ,u j =j 可以确定函数v=v(u).试用u,v ,dudv ,22duv d 表示dxdy ,22dx y d . 11.试证明:二次型二次型()z ,y ,x f =Fx Fxy y 2Ezx 2Dyz 2Cz By Ax 222+++++在单位球面在单位球面 1z y x 222=+上的最大值和最小值恰好是矩阵大值和最小值恰好是矩阵úúúûùêêêëé=F C D E D B F E F A 的最大特征值和最小特征值. 12.设n 为自然数,0y ,x ³,用条件极值方法证明:2y x nn+ ()2y x n+³13.求出椭球22a x +22b y +22cz =1在第一卦限中的切平面与三个坐标面所成四面体的最小体积. 14.设()0000z ,y ,x P 是曲面F(x,y,z)=1的非奇异点,F 在U(p 0)可微,且为n 次齐次函数.证明:此曲面在P 0处的切平面方程为处的切平面方程为()0xP XF+()0yP yF +()0zP ZF =n. 。
隐函数的极值
南通职业大学基础课部 陆 健
[摘 要]求函数的极值中,当函数为隐函数的形式时,运用极值存在的充分条件,也可以解决隐函数的极值问题。
[关键词]隐函数 极值 驻点 偏导数
在高等数学教材中,一元函数y=f(x)以及多元函数比如
二元函数z=f(x,y)求极值的例子,绝大多数都是显函数的形
式。
本文列举一些一元、二元隐函数如何求极值的例子。
求隐
函数的极值,只要根据隐函数存在定理,求出其导数或者偏导
数,再用极值存在的充分条件,便可求出相应的极值。
一、一元隐函数求极值
例1求由方程x3+y3-3axy=0(笛卡儿Decartes叶形线,a
>0)所确定的隐函数y=f(x)的极值。
参考文献
[1]华东师范大学数学系.数学分析(下册).北京:高等教
育出版社,1981:195-196
[2]同济大学应用数学系.高等数学典型题精解.学苑出版
社,2002:414
[3]邱筝主编.高等数学.苏州:苏州大学出版社,2005:65,
223
—
4
7
—
科技信息高校理科研究 。
隐函数定理及其应用张桂静摘要:隐函数定理和反函数定理在多元函数微分学中占有中心地位,在现代数学中有广泛的应用。
本文从两种不同的角度,用两种有别于一般教科书上的不同的方法证明隐函数定理,进而导出反函数定理,接着介绍其在微分学中的一些应用。
关键词:隐函数定理 不动点原理 压缩映像隐函数定理是微积分学中最重要的定理之一,现代数学中有不少部分都与这个定理紧密相关,例如微积分拓扑、微积分几何、微积分方程、变分学、数值分析,分歧理论等,都从不同角度,不同的程度地受这个定理的思想和方法的深刻影响而且,有些内容对隐函数定理的兴趣似乎还在增加。
自然,数学分析教程中无法把这个定理的有关材料讲得太多,它的各种应用大多散见于其他科目中,由于预备知识和表达形式的阻碍,初学者学起来比较困难一、隐含数定理及其证明如果f 是平面上的连续可微实函数,f 在点(a,b )满足方程f(a,b)=0且,那么在(a,b )的某个邻域内,f(a,b)=0能把y 与用x 解出来,类似地,如果在(a,b ),就能在(a,b )附近把x 解出而用y 表示,上面这个不正是的陈述,是隐函数定理的最简单情形。
隐函数存在形式研究隐函数的首要问题,以方程设F(x,y)=0为例,已有以下 (隐函数存在定理) 设二元函数满足下列条件:此定理常用几何方法或逐次逼近法证明,它们各有优点,但都比较繁,例如逐次逼近法如下: 证 先把方程 ()0,=y x F 改写成()()()y x y y x F y x F y y y y y ,,,000,00ϕ+=⎥⎥⎦⎤⎢⎢⎣⎡--+=,于是()()0,,0,.00,00==y x y x y ϕϕ。
由于,y ϕ 及 ϕ 在D 中连续,任给 1,0<>λλ,可取ε足够小,使在D 中()λϕ<y x y ,,。
又取 δ 充分小,使在()εδδ≤≤-0x x时,有()()ελϕ-<1,0y x 。
第十八章 隐函数定理及其定理4条件极值引例:设计一个容量为V, 而表面积最小的长方形开口水箱. 设水箱的长、宽、高分别为x,y,z ,则表面积为S(x,y,z)=2(xz+yz)+xy. 即面积函数的自变量要符合定义域的要求(x>0,y>0,z>0),且须满足 xyz=V, 这类附有约束条件的极值问题称为条件极值问题.一般形式:在条件组φk (x 1,…,x n )=0, k=1,2,…,m (m<n)的限制下,求 目标函数y=( x 1,…,x n )的极值.解法:1、消元法,如引例中的条件可化为z=xyV,代入函数S 得: F(x,y)=S(x,y,xy V)=2V(x 1+y1)+xy. 由(F x ,F y )=(0,0)求得稳定点(32V ,32V ), 可求得最小面积S=3324V .2、拉格朗日乘数法:欲求函数z=f(x,y)的极值,限制条件为C: φ(x,y)=0. 把C 看作(x,y)的曲线方程,设C 上一点P 0(x 0,y 0)为f 满足条件的极值点, 且在点P 0的某邻域上φ(x,y)=0能惟一确定可微的隐函数y=g(x), 则 x=x 0必为z=f(x,g(x))=h(x)的极值点. 由f 在P 0可微, g 在x 0可微, 可得 h ’(x 0)=f x (x 0,y 0)+f y (x 0,y 0)g ’(x 0)=0, 且当φ满足隐函数定理条件时,有 g ’(x 0)=-),(),(0000y x y x y x ϕϕ, 代入上式得:f x (P 0)φy (P 0)-f y (P 0)φx (P 0)=0. 几何意义上,上式表示曲面z=f(x,y)的等高线f(x,y)=f(P 0)与曲线C 在P 0有公共切线.从而存在某常数λ0, 使得在P 0处满足:⎪⎭⎪⎬⎫==+=+0)(0)()(0)()(0000000P P P f P P f y y x x ϕϕλϕλ,引入辅助变量λ和辅助函数L(x,y,λ)=f(x,y)+ λφ(x,y), 可得⎪⎭⎪⎬⎫===+==+=0)(),,(0)()(),,(0)()(),,(0000000000000000P y x L P P f y x L P P f y x L y y y x x x ϕλϕλλϕλλλ, 即将条件极值问题转化为L 的无条件极值问题,称为拉格朗日乘数法, 其中函数L 称为拉格朗日函数,辅助变量λ称为拉格朗日乘数.注:一般条件极值问题的拉格朗日函数:(λ1,…,λn 为拉格朗日乘数) L(x 1,…,x n ,λ1,…,λm )=f(x 1,…,x n )+∑=⋯mk n k x x 11k ),,(ϕλ.定理18.6:设在条件φk (x 1,…,x n )=0, k=1,2,…,m (m<n)的限制下,求 函数y=( x 1,…,x n )的极值问题, 其中f 与φk 在区域D 上有连续的一阶偏导数.若D 的内点P 0(01x ,…,0.n x )是上述问题的极值点,且雅可比矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂⋯∂∂⋯⋯∂∂⋯∂∂n mm n x x x x ϕϕϕϕ1111的秩为m, 则存在m 个常数01λ,…,0.m λ,使得 (01x ,…,0.n x ,01λ,…,0.m λ)为拉格朗日函数L(x 1,…,x n ,λ1,…,λn )=f(x 1,…,x n )+∑=⋯mk n k x x 11k ),,(ϕλ的稳定点, 即(01x ,…,0.n x ,01λ,…,0.m λ)为n+m 个方程⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋯=⋯⋯=⋯==∂∂+∂∂⋯⋯=∂∂+∂∂∑∑==0),,(0),,(011111111111n m n mk n k k nx mk k k x x x L x x L x x f L x x f L m n ϕϕϕλϕλλλ的解.例1:用拉格朗日乘数法重新求本节开头提到的水箱设计问题. 解:所求问题的拉格朗日函数为L(x,y,z,λ)=2(xz+yz)+xy+λ(V-xyz),列方程组得:⎪⎪⎩⎪⎪⎨⎧=-==-+==-+==-+=00220202xyz V L xy y x L xz x z L yz y z L z yx λλλλ,解得:x=y=2z=32V ,λ=324V .∴水箱表面积最小值为:23333)2()22(222V V V V ++=3324V .注:由例1可得不等式:2(xz+yz)+xy ≥3324V =32)(4xyz , x>0,y>0,z>0.例2:抛物面x 2+y 2=z 被平面x+y+z=1截成一个椭圆. 求这个椭圆到原点的最长与最短距离.解:实质为求f(x,y,z)=x 2+y 2+z 2在条件x 2+y 2-z=0及x+y+z-1=0下的最值. 令L(x,y,z,λ,μ)=x 2+y 2+z 2+λ(x 2+y 2-z)+μ(x+y+z-1), 列方程组有:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++==-+==+-==++==++=0100202202222z y x L z y x L z L y y L x x L z y x μλμλμλμλ, 解得:λ=-3±35,μ=-7±311,x=y=231±-,z=2∓3.又f(231±-,231±-,z=2∓3)=9∓53. ∴椭圆到原点的最长距离为39+, 最短距离39-.例3:求f(x,y,z)=xyz 在条件x 1+y 1+z 1=r1,(x>0, y>0, z>0, r>0)下的极小值,并证明不等式3(a 1+b 1+c1)-1≤3abc , 其中a,b,c 为任意正实数. 解:令L(x,y,z,λ)=xyz+λ(x 1+y 1+z 1-r1), 列方程组有:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-++==-==-==-=01111000222r z y x L zxy L y xz L xyz L z y x λλλλ,解得:x=y=z=3r, λ=(3r)4.把x 1+y1+z 1=r1看作隐函数z=z(x,y) (满足隐函数定理条件), 记F(x,y)=xyz(x,y)=f(x,y,z), 它是f 与z=z(x,y)的复合函数. 则有z x =-21x -/21z -=-22x z , z y =-22yz ; F x =yz+xyz x =yz-x yz 2, F y =xz-y xz 2; F xx =yz x +yz x +xyz xx =332x yz , F yy =332yxz , F xy =z+yz y +xz x +xyz xy =z-y z 2-x z 2+xy z 32;∵(F xx F yy -F xy 2)(3r,3r,3r)=27r 2>0, ∴f(3r,3r,3r)=(3r)3极小值, 也是最小值. 即有xyz ≥(3r)3, (x>0, y>0, z>0, 且x1+y1+z 1=r1).令x=a,y=b,x=c, 则r=(a 1+b 1+c 1)-1, 即有abc ≥[3(a 1+b 1+c 1)-1]3,或3(a 1+b 1+c1)-1≤3abc (a>0, b>0, c>0).习题1、应用拉格朗日乘数法,求下列函数的条件极值: (1)f(x,y)=x 2+y 2, 若x+y-1=0;(2)f(x,y,z,t)=x+y+z+t, 若xyzt=c 4 (其中x,y,z,t>0, c>0); (3)f(x,y,z)=xyz, 若x 2+y 2+z 2=1, x+y+z=0.解:(1)令L(x,y,λ)=x 2+y 2+λ(x+y-1), 列方程组:⎪⎩⎪⎨⎧=-+==+==+=010202y x L y L x L y x λλλ,解得:λ=-1, x=y=21. 又当x →∞, y →∞时,f →∞, ∴函数在唯一的稳定点取得极小值f(21,21)=21. (2)f(x,y,z,t)=x+y+z+t, 若xyzt=c 4 (其中x,y,z,t>0, c>0);令L(x,y,z,t,λ)=x+y+z+t+λ(xyzt-c 4), 有⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+==+==+==+=0010101014c xyzt L xyz L xyt L xzt L yzt L tz y x λλλλλ, 解得:x=y=z=t=c.又当n 个正数的积一定时,其和必有最小值,∴函数在唯一的稳定点取得最小值也是极小值f(c,c,c,c)=4c.(3)令L(x,y,z,λ,μ)=xyz+λ(x 2+y 2+z 2-1)+μ(x+y+z), 有⎪⎪⎪⎩⎪⎪⎪⎨⎧=++==-++==++==++==++=001020202222z y x L z y x L z xy L y xz L x yz L zy x μλμλμλμλ, 解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===626161z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==616162z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==616261z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=626161z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=616162z y x ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=616261z y x . ∵f 在有界集{(x,y,y)|x 2+y 2+z 2=1, x+y+z=0}上连续,∴存在最值.又f(61,61,-62)=f(-62,-61,61)=f(61,-62,61)=-631,f(-61,-61,62)=f(62,-61,-61)=f(-61,62,-61)=631, ∴f 在(61,61,-62),(-62,-61,61),(61,-62,61)取得极小值-631,在(-61,-61,62),(62,-61,-61),(-61,62,-61)取得极大值631.2、(1)求表面积一定而体积最大的长方体; (2)求体积一定而表面积最小的长方体.解:设长、宽、高分别为x,y,z ,则体积V=xyz, 表面积S=2xy+2yz+2zx,(1)记L(x,y,z,λ)=xyz+λ(2xy+2yz+2zx-S), 有⎪⎪⎩⎪⎪⎨⎧=-++==++==++==++=02220)(20)(20)(2S zx yz xy L y x xy L z x xz L z y yz L z yxλλλλ,解得:x=y=z=6S, ∴体积最大的长方体必在唯一的稳定点取得,即 表面积一定的长方体为正方体时,V=36⎪⎪⎭⎫ ⎝⎛S =66SS最大. (2)记L(x,y,z,λ)=2xy+2yz+2zx+λ(xyz-V), 有⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=0022022022V xyz L xy y x L xz z x L yz z y L z yx λλλλ,解得:x=y=z=3V , ∴表面积最小的长方体必在唯一的稳定点取得,即 体积一定的长方体为正方体时,表面积S=632V 最小.3、求空间一点(x 0,y 0,z 0)到平面Ax+By+Cz+D=0的最短距离.解:由题意,相当于求f(x,y,z)=d 2=(x-x 0)2+(y-y 0)2+(z-z 0)2在条件 Ax+By+Cz+D=0下的最小值问题.由几何学知,空间定点到平面的最短距离存在,可设L(x,y,z,λ)=(x-x 0)2+(y-y 0)2+(z-z 0)2+λ( Ax+By+Cz+D), 列方程组有⎪⎪⎩⎪⎪⎨⎧=+++==+-==+-==+-=00)(20)(20)(2000D Cz By Ax L C z z L B y y L A x x L z y x λλλλ,解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧+++++=-+++++=-+++++=-222000022200002220000)()()(C B A D Cz By Ax C z z C B A D Cz By Ax B y y C B A D Cz By Ax A x x , ∴f 的最小值必在惟一的稳定点取得,即 d=202020)()()(z z y y x x -+-+-=222000||CB A D Cz By Ax +++++为所求最短距离.4、证明:在n 个正数的和为定值条件x 1+x 2+…+x n =a 下,这n 个正数的乘积x 1x 2…x n 的最大值为n nna . 并由此结果推出n 个正数的几何平均值不大于算术平均值n n x x x ⋯21≤nx x x n+⋯++21.证:记L(x 1,x 2,…,x n ,λ)=x 1x 2…x n +λ(x 1+x 2+…+x n -a), (x 1,x 2,…,x n >0)列方程组有:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-+⋯++==+⋯=⋯⋯=+⋯⋯=⋯⋯=+⋯==+⋯=-+-000002112111214313221a x x x L x x x L x x x x x L x x x x L x x x L n n x nk k x n x n x n k λλλλλ, 解得:x 1=x 2=…=x n =n a. ∴最大值必在惟一的稳定点取得,即f(n a ,n a ,…,n a )=n nna 最大.又x 1x 2…x n ≤n n n a ,∴n n x x x ⋯21≤na =n x x x n+⋯++21.5、设a 1,a 2,…,a n 为已知的n 个正数,求f(x 1,x 2,…,x n )=∑=nk k k x a 1在限制条件x 12+x 22+…+x n 2≤1下的最大值. 解:记x 12+x 22+…+x n 2=r ≤1, L(x 1,x 2,…,x n ,λ)=∑=nk k k x a 1+λ(x 12+x 22+…+x n 2-r),列方程组有:⎪⎪⎪⎩⎪⎪⎪⎨⎧-+⋯++==+=⋯⋯=+==+=rx x x L x a L x a L x a L n nn x x x n22221221102020221λλλλ, 解得:x i =∑=±nk kiaa r 12, (i=1,2,…,n)可知,当x i =∑=±nk kiaa r 12, 且r=1时,取得最大值f M =∑=nk ka12.6、求函数f(x 1,x 2,…,x n )=x 12+x 22+…+x n 2在条件∑=nk k kx a1=1(a k >0,k=1,2,…,n)下的最小值. 解:记L(x 1,x 2,…,x n ,λ)=x 12+x 22+…+x n 2+λ(∑=nk k kx a1-1),列方程组有⎪⎪⎪⎩⎪⎪⎪⎨⎧-==+=⋯⋯=+==+=∑=10202021221121n k k k n n x x x x a L a x L a x L a x L n λλλλ, 解得:x i =∑=n k k i a a 12, (i=1,2,…,n),∴函数在唯一的稳定点取得最小值F m =∑=nk ka121.7、利用条件极值方法证明不等式xy 2z 3≤10866⎪⎭⎫⎝⎛++z y x , x,y,z>0.证 :记L(x,y,z,λ)=xy 2z 3+λ(x+y+z-a), (x,y,z>0, a>0),列方程组有⎪⎪⎩⎪⎪⎨⎧=-++==+==+==+=00302022332a z y x L z xy L xyz L z y L z yxλλλλ,解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧===236a z a y a x , 又当n 个正数的和一定时,其积必有最大值,∴xy 2z 3≤32236⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛a a a =6633322⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯a =10866⎪⎭⎫⎝⎛++z y x .。