第十八章隐函数定理及其应用共92页
- 格式:ppt
- 大小:2.16 MB
- 文档页数:46
第十八章 隐函数定理及其定理1隐函数组一、隐函数组的概念 设方程组⎩⎨⎧==0v)u,y,G(x,0v)u,y,F(x,, 其中F,G 为定义在V ⊂R 4上的四元函数. 若存在平面区域D,E ⊂R 2,对于D 中每一点(x,y), 有唯一的(u,v)∈E, 使得(x,y,u,v)∈V, 且满足该方程组,则称由该方程组确定了隐函数组:⎩⎨⎧==y)g(x,v y)f(x,u , (x,y)∈D, (u,v)∈E, 并有⎩⎨⎧≡≡0y))g(x,y),f(x,y,G(x,0y))g(x,y),f(x,y,F(x,, (x,y)∈D.二、隐函数组定理分析:设概念中的F,G,u,v 都可微,分别对x,y 求偏导数可得:⎩⎨⎧=++=++0v G u G G 0v F u F F x v x u x x v x u x 和⎩⎨⎧=++=++0v G u G G 0v F u F F y v y u yy v y u y , 解出u x ,v x ,u y ,v y 的充分条件是vuv u G G F F ≠0,也可记作:)v (u,)G (F,∂∂≠0, 即 函数F,G 关于变量u,v 的函数行列式(或称雅可比行列式)不为0.定理18.4:(隐函数组定理)若(1)F(x,y,u,v)与G(x,y,u,v)在以P 0(x 0,y 0,u 0,v 0)为内点区域V ⊂R 4上连续; (2)F(x 0,y 0,u 0,v 0)=0, G(x 0,y 0,u 0,v 0)=0(初始条件); (3)在V 上F, G 具有一阶连续偏导数; (4)J=)v (u,)G (F,∂∂在点P 0不等于0,则 1、存在点P 0的某一(四维空间)邻域U(P 0)⊂V ,在U(P 0)上方程组⎩⎨⎧==0v)u,y,G(x,0v)u,y,F(x,惟一地确定了一个定义在点Q 0(x 0,y 0)的某一(二维空间)邻域U(Q 0)的两个二元隐函数u=f(x,y), v=g(x,y) 使得当(x,y)∈U(Q 0)时,u 0=f(x 0,y 0), v 0=g(x 0,y 0);(x,y,f(x,y),g(x,y))∈U(P 0), 且 F(x,y,f(x,y),g(x,y))≡0, G(x,y,f(x,y),g(x,y))≡0; 2、f(x,y), g(x,y)在U(Q 0)上连续;3、f(x,y), g(x,y)在U(Q 0)上有一阶连续偏导数,且x u ∂∂=-)v (x ,)G (F,J 1∂∂,x v ∂∂=-)x (u,)G (F,J 1∂∂; y u ∂∂=-)v (y,)G (F,J 1∂∂,y v ∂∂=-)y (u,)G (F,J 1∂∂.例1:讨论方程组⎩⎨⎧=++==+=01xy -v -u v)u,y,G(x,0y -x -v u v)u,y,F(x,222在点P 0(2,1,1,2)近旁能确定怎样的隐函数组,并任求一组隐函数组的偏导数.解:F,G 在R 4上连续,F(2,1,1,2)=0, G(2,1,1,2)=0. 求F,G 的所有偏导数 得:F u =2u, F v =2v, F x =-2x, F y =2v, G u =-1, G v =1, G x =-y, G y =-x. ∵在P 0处的所有六个雅可比行列式中,仅)v (x ,)G (F,∂∂=0. ∴只有x,v 难以肯定能否作为以y,u 为自变量的隐函数,其余任两个变量都可在P 0近旁作为以另两个变量为自变量的隐函数. 对原方程组分别求关于u,v 的偏导数,得⎩⎨⎧==0xy -yx -1-0y -2xx -2u u u u u ;⎩⎨⎧==0yx -xy -10y -2xx -2v v v v v ,解得 x u =y -x 21x u 22+,y u =-y -x 2yu 2x 22+; x v =y -x 21x v 22+,y v =-y-x 2yv2x 22-.例2:设函数f(x,y), g(x,y)具有连续偏导数,而u=u(x,y), v=v(x,y)是由方程组u=f(ux,v+y), g(u-x,v 2y)=0确定的隐函数,试求x u ∂∂,yv∂∂. 解:记F=f(ux,v+y)-u, G=g(u-x,v 2y), 则有⎪⎪⎭⎫ ⎝⎛v uy xv u y x G G G G F F F F =⎪⎪⎭⎫⎝⎛-2122121212vyg g g v g -f 1xf f uf ; 从而有 J uv =21212vyg g f 1xf -=2xyvf 1g 2-2yvg 2+f 2g 1; J xv =21212vyg g -f uf =2yuvf 1g 2-f 2g 1;J uy =22121g v g f 1xf -=xv 2f 1g 2-v 2g 2+f 2g 1.∴x u ∂∂=-uvxvJ J =122212112g f +2yvg -g 2x yvf g yuvf 2g f -;y v ∂∂=-uv uy J J =122211221222g f +2yvg -g 2xyvf g -f g f xv -g v .三、反函数组与坐标变换设函数组u=u(x,y), v=v(x,y)是定义在xy 平面点集B ⊂R 2上的两个函数, 对每一点P(x,y)∈B, 由方程组u=u(x,y), v=v(x,y)有uv 平面上惟一的一点Q(u,v)∈R 2与之对应,我们称方程组u=u(x,y), v=v(x,y)确定了B 到R 2的一个映射(变换),记作T. 这时映射T 可写成如下函数形式: T :B →R 2, P(x,y)↦Q(u,v),或写成点函数形式Q=T(P), P ∈B, 并 称Q(u,v)为映射T 下P(x,y)的象,而P 则是Q 的原象. 记B 在映射T 下的象集为B ’=T(B).若T 为一一映射(每一原象只对应一个象,且不同的原象对应不同的象), 则每一点Q ∈B ’, 由方程组u=u(x,y), v=v(x,y)都有惟一一点P ∈B 与之相对应,由此产生新的映射称为T 的逆映射(逆变换), 记作T -1, 有T -1:B ’→B, Q ↦P ,或P=T -1(Q), Q ∈B ’, 即存在定义在B ’上的函数组:x=x(u,v),y=y(u,v),把它代入原函数组,恒有 u ≡u(x(u,v),y(u,v)), v ≡v(x(u,v),y(u,v)),这时称函数组x=x(u,v),y=y(u,v)为原函数组的反函数组.定理18.5:(反函数组定理)设函数组u=u(x,y), v=v(x,y)及其一阶偏导数在某区域D ⊂R 2上连续,点P 0(x 0,y 0)是D 的内点,且 u 0=u(x 0,y 0),v 0=v(x 0,y 0),P )y (x,)v (u,∂∂≠0,则在点P 0’(u 0,v 0)的某一邻域U(P 0’)上存在惟一的一组反函数x=x(u,v),y=y(u,v),使得x 0=x(u 0,v 0),y 0=y(u 0,v 0), 且当(u,v)∈U(P 0’)时,有(x(u,v),y(u,v))∈U(P 0),及 u ≡u(x(u,v),y(u,v)), v ≡v(x(u,v),y(u,v)).该反函数组在U(P 0’)上存在连续的一阶偏导数,且u x ∂∂=y v ∂∂/)y (x ,)v (u,∂∂,v x ∂∂=-y u ∂∂/)y (x ,)v (u,∂∂;u y ∂∂=x v ∂∂/)y (x ,)v (u,∂∂,v y ∂∂=-x u ∂∂/)y (x ,)v (u,∂∂. 即互为反函数组的雅可比行列式互为倒数.例3:平面上的点P 的直角坐标(x,y)与极坐标(r,θ)之间的坐标变换公式为:x=rcos θ,y=rsin θ, 讨论该函数组所确定的反函数组. 解:由于)θ(r,)y (x ,∂∂=rcos θsin θrsin θ-θcos =r, ∴除原点外,原函数组所确定的反函数组为:r=22y x +, θ=⎪⎩⎪⎨⎧<+>0x x yarctanπ0x x y arctan ,.例4:直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换公式为:x=rsin φcos θ, y=rsin φsin θ, z=rcos φ. 讨论该函数组所确定的反函数组. 解:∵)θφ,(r,)z y,(x ,∂∂=0rsin φ-cos φcos θ rsin φsin θ rcos φsin θsin φsin θrsin φcos θ rcos φcos θ sin φ-=r 2sin φ, ∴在r 2sin φ≠0, 即除去z 轴上的一切点,原方程组确定的反函数组为: r=222z y x ++, θ=arctan x y, φ=arccos rz .例5:设φ为二元连续可微函数, 对于函数组u=x+at, v=x-at, 试把弦振动方程a 222x φ∂∂=22tφ∂∂ (a>0)变换成以u,v 为自变量的形式.解:∵u x =v x =1, u t =v t =a, ∴)t (x ,)v (u,∂∂=-2a ≠0, ∴所设变换存在逆变换. 又du=u x dx+u t dt=dx+adt, dv=dx-adt, 由微分形式不变性得 d φ=φu du+φv dv=(φu +φv )dx+a(φu -φv )dt, 即φx =φu +φv , φt =a(φu -φv ). ∴以u,v 为自变量, 有φxx =u ∂∂(φu +φv )u x +v ∂∂(φu +φv )v x =φuu +φvu +φuv +φvv =φuu +2φuv +φvv ; φtt =a u ∂∂(φu -φv )u t +a v∂∂(φu -φv )v t =a 2(φuu -2φuv +φvv ). ∴a 2φxx -φtt =4a 2φuv =0.∴将弦振动方程变换为以u,v 作新自变量的方程为:vu φ2∂∂∂=0.注:此方程的解的形式为φ=f(u)+g(v)=f(x+at)+g(x-at).习题1、试讨论方程组⎪⎩⎪⎨⎧=++=+2z y x 2z y x 222在点(1,-1,2)的附近能否确定形如x=f(z), y=g(z)的隐函数组.解:令F(x,y,z)=x 2+y 2-2z 2, G(x,y,z)=x+y+z-2, 则(1)F,G 在点(1,-1,2)的某邻域内连续; (2)F(1,-1,2)=0, G(1,-1,2)=0满足初始条件;(3)F x =2x, F y =2y, F x =-z, G x =G y =G z =1均在点(1,-1,2)的邻域内连续; (4)(1,-1,2))y (x,)G (F,∂∂=)2,1,1(G )2,1,1(G )2,1,1(F )2,1,1(F y x y x ----=1122-=4≠0,∴原方程组在点(1,-1,2)的附近能确定形如x=f(z), y=g(z)的隐函数组.2、求下列方程组所确定的隐函数组的导数:(1)⎩⎨⎧=+=++az y x a z y x 222222, 求dx dy ,dx dz ;(2)⎩⎨⎧==0xu -v -y 0yv -u -x 22, 求x u ∂∂,x v ∂∂,y u ∂∂,dy dv; (3)⎩⎨⎧-=+=)y v ,x u (g v y)v f(ux,u 2, 求x u ∂∂,x v∂∂. 解:(1)设方程组确定的隐函数组为y=y(x), z=z(x).对方程组两边关于x 求导得:⎪⎩⎪⎨⎧=+=++dx dzadx dy y 22x 0dx dz z 2dx dy y 22x ,解得:dxdy =2y 2x -a ,dx dz =-2z a.(2)设方程组确定的隐函数组为u=u(x,y), v=v(x,y).方程组关于x 求偏导得:⎪⎩⎪⎨⎧=∂∂∂∂=∂∂∂∂0x u x -u -x v 2v -0x v y -x u 2u -1, 解得:⎪⎪⎩⎪⎪⎨⎧+=∂∂+=∂∂4uv -xy x 2u x v xy-4uv yu 2v x u 2; 方程组关于y 求偏导得:⎪⎪⎩⎪⎪⎨⎧=∂∂∂∂=∂∂∂∂0y u x -y v 2v -10yv y -v -y u 2u -, 解得:⎪⎪⎩⎪⎪⎨⎧+=∂∂+=∂∂xy-4uv xv 2u y v 4uv -xy y 2v y u 2.(3)方程组关于x 求偏导得:⎪⎩⎪⎨⎧∂∂+-∂∂=∂∂∂∂+∂∂+=∂∂x v 2yvg g x u g xv x v f x u xf uf x u211211, 解得:⎪⎪⎩⎪⎪⎨⎧---=∂∂-=∂∂1221111112211221g f -)2yvg -)(1xf (1)g xf (1g uf x v g f -)2yvg -)(1xf (1g f -)2yvg -(1uf x u.3、求下列函数组所确定的反函数组的偏导数:(1)⎩⎨⎧-=+=ucosv e y usinv e x uu , 求u x ,v x ,u y ,v y ;(2)⎪⎩⎪⎨⎧+=+=+=3322v u z v u y v u x , 求z x . 解:(1)方程组关于u 求偏导得⎩⎨⎧-=+=cosv e y sinve x uu u u , 方程组关于v 求的偏导得⎩⎨⎧==usinv y ucosvx vv ,∴)v (u,)y (x ,∂∂=x u y v -x v y u =usinv(e u +sinv)-ucosv(e u -cosv)(1+e u sinv-e u cosv)u. 由反函数组定理得: u x =vy ∂∂/)v (u,)y (x ,∂∂=cosv)u e sinv e 1(usinv u u -+=cosv e sinv e 1sinv u u -+;v x =-u y ∂∂/)v (u,)y (x ,∂∂=cosv)ue sinv e 1(e -cosv uu u-+; u y =-v x ∂∂/)v (u,)y (x ,∂∂=cosv)u e sinv e 1(ucosv -u u -+=cosv e sinv e 1cosv -u u -+;v y =u x ∂∂/)v (u,)y (x ,∂∂=cosv)ue sinv e 1(sinv e uu u -++. (2)方程组关于x 求偏导得⎪⎩⎪⎨⎧+=+=+=x 2x 2xxx xx vv 3u u 3z vv 2uu 20v u 1, 解得:z x =-3uv.4、设函数z=z(x,y)是由方程组x=e u+v , y=e u-v , z=uv(u,v 为参量)所定义的函数,求当u=0,v=0时的dz.解:∵dz=z x d x +z y d y =(u x v+uv x )dx+(u y v+uv y )dy, ∴当u=0, v=0时,dz=0.5、以u,v 为新的自变量变换下列方程: (1)(x+y)x z ∂∂-(x-y)y z∂∂=0, 设u=ln 22y x +,v=arctan xy ;(2)x 222x z ∂∂-y 222yz ∂∂=0, 设u=xy, v=y x.解:(1)∵x u ∂∂=22y x x +, y u ∂∂=22y x y +; x v ∂∂=-22yx y +, y v∂∂=22y x x +,∴x z ∂∂=x u u z ∂∂∂∂+x vv z ∂∂∂∂=u z y x x 22∂∂+-vz y x y 22∂∂+; y z ∂∂=y u u z ∂∂∂∂+y vv z ∂∂∂∂=u z y x y 22∂∂++vz y x x 22∂∂+; 代入原方程得: u z y x y)x (x 22∂∂++-v z y x y)y(x 22∂∂++-u z y x y)-y(x 22∂∂+-v z y x y)-x (x 22∂∂+=0, 化简得:u z ∂∂=vz∂∂.(2)∵x u ∂∂=y, y u∂∂=x; x v ∂∂=y 1, yv ∂∂=-2y x ,∴x z ∂∂=x u u z ∂∂∂∂+x v v z ∂∂∂∂= y u z ∂∂+v z y 1∂∂; y z ∂∂=y u u z ∂∂∂∂+y v v z ∂∂∂∂= x u z ∂∂-vzy x 2∂∂; ∴22x z ∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x z x =y x u u z 22∂∂ ⎝⎛∂∂+⎪⎪⎭⎫∂∂∂∂∂x v v u z 2+x u v u z y 12∂∂ ⎝⎛∂∂∂+⎪⎪⎭⎫∂∂∂∂x v v z 22 =y 2uz22∂∂+2v u z 2∂∂∂+v z y 1222∂∂;22y z ∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂y z y =x y u u z 22∂∂ ⎝⎛∂∂+⎪⎪⎭⎫∂∂∂∂∂y v v u z 2+v z y 2x 3∂∂-y u v u z y x 22∂∂ ⎝⎛∂∂∂+⎪⎪⎭⎫∂∂∂∂y v v z 22=x 2u z 22∂∂-v u z y 2x 222∂∂∂+v z y x 2242∂∂+vzy 2x 3∂∂; 代入原方程得: x 2(y 2u z 22∂∂+2v u z 2∂∂∂+v z y 1222∂∂22x z ∂∂)-y 2(x 2u z 22∂∂-v u zy 2x 222∂∂∂+v z y x 2242∂∂+vz y 2x 3∂∂)=0,化简得:2xy v u z 2∂∂∂=v z ∂∂, 即2u v u z 2∂∂∂=vz∂∂.6、设函数u=u(x,y)由方程组u=f(x,y,z,t), g(y,z,t)=0, h(z,t)=0所确定,求x u ∂∂,yu∂∂. 解:方程组关于x 求偏导数得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂∂∂+∂∂+=∂∂0x t h x z h 0x tg xz g x t f x z f f x ut z t zt z x , 解得:x u ∂∂=f x ; 方程组关于y 求偏导数得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂+∂∂+∂∂+=∂∂0y t h y z h 0y tg y z g g y t f y z f f y u t z t zy t z y ,解得:y u∂∂=f y + ⎝⎛∂∂ t),z ( f) ,h (/⎪⎪⎭⎫∂∂)t (z,)h (g,g y .7、设u=u(x,y,z), v=v(x,y,z)和z=z(s,t), y=y(s,t), z=z(s,t)都有连续的一阶偏导数,证明:)t (s,v)u,(∂∂=)t (s,)y (x ,)y (x ,v)u,(∂∂∂∂+)t (s,)z (y,)z (y,v)u,(∂∂∂∂+)t (s,)x (z,)x (z,v)u,(∂∂∂∂. 证:原式右端=t s t s y x y xy y x x v v u u +tst s z y z yz z y y v v u u +tst s x z x z x x z z v v u u =s y s x s y s x y v x v y u x u ++ t y t x t y t x y v x v y u x u +++s z s y s z s y z v y v z u y u ++ t z t y t z t y z v y v z u y u +++s x s z s x s z x v z v x u z u ++t x t z tx t z x v z v x u z u ++=(u x x s +u y y s +u z z s )(v x x t +v y y t +v z z t )-(u x x t +u y y t +u z z t )(v x x s +v y y s +v z z s )=u s v t -u t v s =tst s v v u u =)t (s,v)u,(∂∂=左端. 8、设u=tanx y , v=sinxy. 证明:当0<x<2π, y>0时,u,v 可以用来作为曲线坐标,解出x,y 作为u,v 的函数,画出xy 平面上u=1,v=2所对应的坐标曲线,计算)y (x ,v)u,(∂∂和v)u,()y (x ,∂∂并验证它们互为倒数.证:∵u x =-xsin y2, u y =tanx 1; v x =-x sin ycosx 2, v y =sinx 1;∴)y (x ,v)u,(∂∂=yx y x v v u u =-sinxy. 当0<x<2π, y>0时,u x , u y , v x , v y 都连续,且)y (x ,v)u,(∂∂<0, 由反函数组定理, 知存在反函数组x=x(u,v), y=y(u,v),从而u,v 可以用作为曲线坐标. 由u=tanx y , v=sinx y 得,x=arccos vu , y=22u -v . u=1, v=2分别对应xy 平面上坐标曲线y=tanx, y=2sinx, 如图.又)v (u,y)x ,(∂∂=2222222u -v v u -v u-v u -1v u v u -1v 1-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-v 1=-y sinx 与)y (x ,v)u,(∂∂=-sinx y 互为倒数.9、将以下式中的(x,y,z)变换成球面坐标(r,θ,φ)的形式:△1u=2x u ⎪⎭⎫ ⎝⎛∂∂+2y u ⎪⎪⎭⎫ ⎝⎛∂∂+2z u ⎪⎭⎫ ⎝⎛∂∂, △2u=22x u ∂∂+22y u ∂∂+22z u ∂∂. 解:将⎪⎩⎪⎨⎧===rcos θz sin φ rsin θy cos φ rsin θx 看成由⎪⎩⎪⎨⎧===z z ρsinφy ρcosφx ①和⎪⎩⎪⎨⎧===φφrsin θρrcos θz ②复合而成. 对变换①有2x u ⎪⎭⎫ ⎝⎛∂∂+2y u ⎪⎪⎭⎫ ⎝⎛∂∂+2z u ⎪⎭⎫ ⎝⎛∂∂=2ρu ⎪⎪⎭⎫ ⎝⎛∂∂+22φu ρ1⎪⎪⎭⎫ ⎝⎛∂∂+2z u ⎪⎭⎫ ⎝⎛∂∂; 对变换②有2ρu ⎪⎪⎭⎫ ⎝⎛∂∂+2z u ⎪⎭⎫ ⎝⎛∂∂+22φu ρ1⎪⎪⎭⎫ ⎝⎛∂∂=2r u ⎪⎭⎫ ⎝⎛∂∂+22θu r 1⎪⎭⎫ ⎝⎛∂∂+222φu θsin r 1⎪⎪⎭⎫ ⎝⎛∂∂; ∴△1u=2x u ⎪⎭⎫ ⎝⎛∂∂+2y u ⎪⎪⎭⎫ ⎝⎛∂∂+2z u ⎪⎭⎫ ⎝⎛∂∂=2r u ⎪⎭⎫ ⎝⎛∂∂+22θu r 1⎪⎭⎫ ⎝⎛∂∂+222φu θsin r 1⎪⎪⎭⎫ ⎝⎛∂∂. 又对变换①有22x u ∂∂+22y u ∂∂+22z u ∂∂=22ρu ∂∂+ρu ρ1∂∂+222φu ρ1∂∂+22z u ∂∂; 对变换②有22ρu ∂∂+22z u ∂∂=22r u ∂∂+r u r 1∂∂+222θu r 1∂∂; ∵r=22z ρ+,θ=arctan z ρ, ∴ρu ∂∂=ρr r u ∂∂∂∂+ρθθu ∂∂∂∂=r ρr u ⋅∂∂+2r z θu ⋅∂∂=sin θr u ∂∂+θu r cos θ∂∂;∴△2u=22x u ∂∂+22yu ∂∂+22z u ∂∂=22r u ∂∂+r u r 2∂∂+222θu r 1∂∂+θu sin θr cos θ2∂∂+2222φu θsin r 1∂∂.10、设u=2r x , v=2r y , w=2rz , 其中r=222z y x ++. (1)试求以u,v,w 为自变量的反函数组. (2)计算)z y,(x ,w)v,u,(∂∂. 解:(1)∵u 2+v 2+w 2=4222r z y x ++=2r 1, ∴r 2=222wv u 1++; ∴x=ur 2=222w v u u ++, y=vr 2=222w v u v ++, y=wr 2=222w v u w ++. (2))z y,(x ,w)v,u,(∂∂=422444422444422r z 2r r 2yz r 2xz r 2yz r y 2r r 2xy r 2xz r 2xy r x 2r ---------=-6r 1.。
隐函数的定理及其应用摘 要:本文主要讨论了隐函数和隐函数组的相关定理,并举例说明其应用. 关键词:隐函数;隐函数组;可微性;导数Implicit Function Theorem and Its ApplicationAbstract :This paper mainly discusses the related theorem of implicit function and implicit function group,and illustrates its application by examples.Key words :implicit function ;implicit function group ;differentiability ;derivative 引言我们在初中时就开始接触到函数,在我们眼中,函数就是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素.在之前我们所接触到的函数,其表达式大多是自变量的某个算式,如21,(sin sin sin )xyz y x u e xy yz zx =+=++这种形式的函数即为显函数.然而我们在很多地方也会遇到另一种形式的函数,它的自变量与因变量之间的对应法则是由一个方程式所确定的.简单来说,若能由函数方程(,)0F x y =, ① 确定y 为x 的函数()y f x =,即(,())0F x f x ≡,就称y 是x 的隐函数.1.关于隐函数的一些定理1.1 隐函数存在惟一性若(1)函数F 在以000(,)P x y 为内点的某一区域0D R ⊂上连续;(2)00(,)0F x y =(通常称为初始条件);(3)在D 内存在连续的偏导数(,)y F x y ;(4)00(,)0y F x y ≠,则在点0P 的某邻域0()U P D ⊂内,方程(,)0F x y =惟一地确定了一个定义在某区间00(,)x x αα-+内的函数(隐函数)()y f x =,使得(1) 00()f x y =,x ∈00(,)x x αα-+时(,())x f x ∈0()U P 且(,())0F x f x ≡;(2) ()f x 在00(,)x x αα-+内连续.需要注意的是,上述定理中的条件仅仅是充分的.如方程330y x -=在点(0,0)不满足条件(4)((0,0)0y F =),但它仍能确定惟一的连续函数y x =.当然,由于条件(4)不满足,往往会导致定理结论的失效.事实上,条件(3)和(4)只是用来保证存在0P 的某一邻域,在此邻域内F 关于变量y 是严格单调的.因此对本定理的结论来说,可以把后两个条件减弱为:F 在0P 的某邻域内关于y 严格单调.采用较强的条件(3)和(4)只是为了在实际应用中便于检验.如果把定理的条件(3)和(4)改为(,)x F x y 连续,且00(,)0x F x y ≠,这时结论是存在惟一的连续函数()x g y =.1.2 隐函数的可微性定理设(,)F x y 满足隐函数存在惟一性定理中的条件(1)-(4),又设在D 内还存在连续的偏导数(,)x F x y ,则由方程①所确定的隐函数()y f x =在其定义域00(,)x x αα-+内有连续导函数,且'(,)()(,)x y F x y f x F x y =-. ② 若已知方程①确定存在连续可微的隐函数,则可对方程①应用复合求导法得到隐函数的导数,因为把(,())F x f x 看作(,)F x y 与()y f x =的复合函数时,有'(,)(,)0x y F x y F x y y +=当(,)0y F x y ≠时,由它即可推得与②相同的结果.对于隐函数的高阶导数,可以用和上面一样的方法求得,此时只要假定函数F存在相应的连续的高阶偏导数.我们可以类似的推出由方程12(,,,,)0n F x x x y =所确定的n 元隐函数的概念. 1.3 n 元隐函数的惟一存在与连续可微性定理若(1) 函数12(,,,,)n F x x x y 在以点0000012(,,,,)n P x x x y 为内点的区域1n D R +⊂上连续;(2) 000012(,,,,)0n F x x x y =;(3) 偏导数12,,,n x x x y F F F F 在D 内存在且连续; (4) 000012(,,,,)0y n F x x x y ≠,则在点0P 的某邻域0()U P D ⊂内,方程12(,,,,)0n F x x x y =惟一地确定了一个定义在000012(,,,)n Q x x x 的某邻域0()n U Q R ⊂内的n 元连续函数(隐函数)12(,,,)n y f x x x =,使得(1) 当120(,,,)()n x x x U Q ∈时,12120(,,,,(,,,))()n n x x x f x x x U P ∈,且 1212(,,,,(,,,))0n n F x x x f x x x ≡,000012(,,,)n y f x x x =.(2) 12(,,,)n y f x x x =在0()U Q 内有连续偏导数:12,,n x x x f f f ,而且 1212,,,n n x x x x x x y y y F F F f f f F F F =-=-=-.例1 设方程1(,)sin 02F x y y x y =--= ③ 由于F 及,x y F F 在平面上任一点都连续,且(0,0)0F =,1(,)1cos 02y F x y y =->,故依上述定理,方程③确定了一个连续可导隐函数()y f x =,按公式②,其导数为'(,)12()1(,)2cos 1cos 2x y F x y f x F x y yy =-==--. 上述都是由一个方程所组成的隐函数,下面来讨论由方程组所确定的隐函数组.设(,,,)F x y u v 和(,,,)G x y u v 为定义在区域4V R 上的两个四元函数.若存在平面区域D ,对于D 中每一点分别有区间J 和K 上惟一的一对值,u J v K ⊂⊂,它们与,x y 一起满足方程组(,,,)0(,,,)0F x y u vG x y u v =⎧⎨=⎩ ④则说方程组④确定了两个定义在2D R ⊂上,值域分别落在J 和K 内的函数.我们称这两个函数为由方程组④所确定的隐函数组.若分别记这两个函数为(,)u f x y =,(,)v g x y =,则在D 上成立恒等式(,)y y u x =,(,)v v u x =.为了探索由方程组④所确定隐函数组所需要的条件,不妨假设④中的函数F 和G 是可微的,而且由④所确定的两个隐函数u 与v 也是可微的.那么通过对方程组④关于,x y 分别求偏导数,得到00x u x v x x u x v x F F u F v G G u G v ++=⎧⎨++=⎩ ⑤00y u y v y yu y v y F F u F v G G u G v ++=⎧⎪⎨++=⎪⎩ ⑥ 要想从⑤解出x u 与x v ,从⑥解出y u 与y v ,充分条件是它们的系数行列式不为零,即0u vu v F F G G ≠ ⑦⑦式左边的行列式称为函数F 和G 关于变量u ,v 的函数行列式(或雅可比Jacobi 行列式),亦可记作(,)(,)F G u v ∂∂.条件⑦在隐函数组定理中所起作用与隐函数存在惟一性的条件(4)相当.1.4 隐函数组定理若(1) V 和(,,,)G x y u v 在以点0()U Q 为内点的区域4V R ⊂内连续;(2) 0000(,,,)0F x y u v =,0000(,,,)0G x y u v =(初始条件);(3) 在V 内F ,G 具有一阶连续偏导数;(4) 0(,)0(,)P F G u v ∂≠∂在0P 点不等于零,则在点0P 的某一(四维空间)邻域0()U P V ⊂内,方程组④惟一确定了定义在点000(,)Q x y 的某一(二维空间)邻域0()U Q 内的两个二元隐函数000(,)u f x y =,000(,)v g x y =,使得(1) 000000(,);(,)u f x y v g x y ==且当()0,()x y U Q ∈时0(,,(,),(,))()x y f x y g x y U P ∈,(,,(,),(,))0(,,(,),(,))0F x y f x y g x yG x y f x y g x y ≡≡ (2) (,),(,)f x y g x y 在0()U Q 内连续;(3) (,),(,)f x y g x y 在0()U Q 内有一阶连续偏导数,且1(,)(,)v F G x J x v ∂∂=-∂∂,1(,)(,)v F G x J u x ∂∂=-∂∂, 1(,)(,)v F G y J y v ∂∂=-∂∂,1(,)(,)v F G y J u y ∂∂=-∂∂. 应该注意的是,本定理中若将条件(4)改为0(,)0(,)P F G u v ∂≠∂,则方程组④所确定的隐函数组相应是(,),(,)y y u x v v u x ==;其他情形均可类似推得.总之,当我们遇到由方程组定义隐函数组及隐函数组求导的问题时,首先应明确那些变量是自变量,那些变量是因变量,然后再进行有关讨论和运算.2. 隐函数在几何方面的应用2.1 平面曲线的切线与法线设平面曲线由方程①给出,它在点000(,)P x y 的某邻域内满足隐函数定理条件,于是在0P 附近所确定的连续可微隐函数()y f x =或(()x g y =)和方程①在0P 附近表示同一曲线,从而该曲线在点0P 处存在切线和法线,其方程分别为'000()()y y f x x x -=-(或'000()()x x g y y y -=-)与 00'01()()y y x x f x -=--(或00'01()()x x y y g y -=--)由于'x yF f F =-(或'y x F g F =-),所以曲线①在点0P 处的切线和法线方程分别为 切线: 000000(,)()(,)()0x y F x y x x F x y y y -+-=, ⑧ 法线: 000000(,)()(,)()0y x F x y x x F x y y y ---=. ⑨ 例2 求笛卡儿叶形线332()90x y xy +-=在点(2,1)处的切线与法线. 解 设33(,)2()9F x y x y xy =+-,于是269x F x y =-,269y F y x =-在全平面连续,且(2,1)150x F =≠,(2,1)120y F =-≠.依次由公式⑧与⑨分别求得曲线在点(2,1)处的切线与法线方程分别为15(2)12(1)0x y ---=即5460x y --=, 12(2)15(1)0x y ----=即45130x y +-=.2.2 空间曲线的切线与法平面下面我们讨论由参数方程L :(),(),(),x x t y y t z z t t αβ===≤≤ ⑴ 表示的空间曲线L 上的某一点0000(,,)P x y z 处的切线和法平面方程,其中00()x x t =,00()y t =,00()z t =,0t αβ≤≤,并假定⑴式中的三个函数在0t 处可导,且'2'2'2000[()][()][()]0x t y t z t ++≠.则曲线L 在0P 处的切线方程为000'''000()()()x x y y z z x t y t z t ---==. ⑵ 由此可见当'0()x t ,'0()y t ,'0()z t 不全为零时,它们是该切线的方向数.过点0P 可以作无数条直线与切线l 垂直,且这些直线都在同一平面上,称这平面为曲线L 在0P 处的法平面n .它通过点0P ,且以为它的法线,所以法平面n 的方程为'''000000()()()()()()0x t x x y t y y z t z z -+-+-=当空间曲线方程L由方程组L :(,,)0(,,)0F x y z G x y z =⎧⎨=⎩⑶给出时,若它在点0000(,,)P x y z 的某邻域内满足隐函数定理条件(这里不妨设条件(4)是0(,)0(,)P F G u v ∂≠∂),则方程组⑴在点0P 附近所能确定惟一连续可微的隐函数组()x z ϕ=,()y z ψ=,使得0000(),()x z y z ϕψ==,且(,)(,)(,)(,)F G dx z y F G dzx y ∂∂=-∂∂,(,)(,)(,)(,)F G dy x z F G dz x y ∂∂=-∂∂. L 在0P 附近的参数方程为(),(),x z y z z z ϕψ===那么由⑵式曲线在0P 处的切线方程为000001P P x x y y z z dx dy dz dz ---== 即 000000(,)(,)(,)(,)(,)(,)P P P x x y y z z F G F G F G y z z x x y ---==∂∂∂∂∂∂. 曲线在0P 处的法平面方程为000000(,)(,)(,)()()()0(,)(,)(,)P P P F G F G F G x x y y z z y z z x x y ∂∂∂-+-+-=∂∂∂ 同理我们可以推得:当(,)(,)F G y z ∂∂或(,)(,)F G z x ∂∂在0P 处不等于零时,曲线在点0P 处的切线与法平面方程仍分别取上述形式.由此可见,当000(,)(,)(,),,(,)(,)(,)P P P F G F G F G y z z x x y ∂∂∂∂∂∂不全为零时,它们是空间曲线⑶在0P 处的切线的方向数.例3求平面22250+=所截出的曲线在点(3,4,5)处x y z++=与锥面222x y z的切线与法平面方程.解 设 222(,,)50F x y z x y z =++-,222(,,)G x y z x y z =+-.它们在点(3,4,5)处的偏导数和雅可比行列式之值为:6F x ∂=∂,8F y ∂=∂,10F z∂=∂, 6G x ∂=∂,8G y ∂=∂,10G z∂=-∂ (,)160(,)F G y z ∂=-∂,(,)120(,)F G z x ∂=∂,(,)0(,)F G x y ∂=∂. 所以曲线在点(3,4,5)处的切线方程是:3451601200x y z ---==-,即 3(3)4(4)05x y z -+-=⎧⎨=⎩. 法平面方程为4(3)3(4)0(5)0x y z --+-+-=,即430x y -=.2.3曲面的切平面和法线设曲面由方程(,,)0F x y z =⑷给出,它在点0000(,,)P x y z 的某邻域内满足隐函数定理条件(不妨设000(,,)0z F x y z ≠).于是方程⑷在点0P 附近确定惟一连续可微的隐函数(,)z f x y =使得000(,)z f x y =,且(,,)(,,)x z F x y z z x F x y z ∂=-∂,(,,)(,,)y z F x y z z y F x y z ∂=-∂. 由于在点0P 附近⑷与(,)z f x y =表示同一曲面,该曲面在0P 处有切平面与法线,分别是000000000000000(,,)(,,)()()(,,)(,,)y x z z F x y z F x y z z z x x y y F x y z F x y z -=----与 000000000000000(,,)(,,)1(,,)(,,)x y z z x x y y z z F x y z F x y z F x y z F x y z ---==---.它们也可写成如下形式:000000000000(,,)()(,,)()(,,)()0x y z F x y z x x F x y z y y F x y z z z -+-+-=与 000000000000(,,)(,,)(,,)x y z x x y y z z F x y z F x y z F x y z ---==. 这种形式对于000(,,)0x F x y z ≠或000(,,)0y F x y z ≠也同样合适.例4 求椭球面222236x y z ++=在()1,1,1处的切平面方程与法线方程.解 设222(,,)236F x y z x y z =++-.由于2x F x =,4y F y =,6z F z =在全空间上处处连续.在()1,1,1处2x F =,4y F =,6z F =.因此由上面的公式可得出切平面方程2(1)4(1)6(1)0x y z -+-+-=,即 236x y z ++=和法线方程111123x y z ---==. 结语从初中起我们就接触到了简单的函数,在高中时又进一步加深了学习,但我们以前接触到的都是很明显的函数,但我们碰到了不像以前见过的那么一目了然的函数,它就是我们本文所研究的隐函数.历史表明,重要数学概念对数学发展的作用是不可估量的,隐函数概念对数学发展的影响,可以说是作用非凡.隐函数在很多地方有重要的应用,比如上面例题中所举的在各种求值问题中的应用.当然隐函数在其它方面也有很多的用处,本文就不一一举例说明了.参考文献[1] 华东师范大学数学系.数学分析(第三版)[M].北京:高等教育出版社,2001.[2] 毛信实,董延新.数学分析(第一版) [M].北京:北京师范大学出版社,1900.[3] 华东师范大学数学系.数学分析(第二版) [M].北京:高等教育出版社,1900.[4] 北京大学数学系.数学分析(第一版) [M].北京:高等教育出版社,1986.[5] 周性伟,刘立民.数学分析(第一版) [M].天津:南开大学出版社,1986.[6] 何琛,史济怀,徐森林.数学分析(第一版) [M].北京:高等教育出版社,1983.[7] 沐定夷.数学分析(第一版) [M].上海:上海交通大学出版社,1993.友情提示:方案范本是经验性极强的领域,本范文无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用。
第十八章 隐函数定理及其应用§1 隐函数一 、 隐函数概念(P144)在这之前我们所接触的函数,其表达式大多是自变量的某个算式,如 12+=x y ,).sin sin (sin zx yz xy eu xyz++=这种形式的函数称为显函数。
但在不少场合常会遇到另一种形式的函数,其自变量与因变量之间的对应法则是由一个方程式或方程组所确定。
这种形式的函数我们称为隐函数。
☆ 本节将介绍由一个方程0),,(=z y x F 所确定的隐函数求导法;☆ 下一节将介绍由方程组⎩⎨⎧==0),,,,(0),,,,(v u z y x G v u z y x F 所确定的隐函数求导法。
设R X ⊂,R Y ⊂,函数.:R Y X F →⨯注.:1)定义中的)(x f y = ,,J y I x ∈∈仅表示定义域为I,值域为J 的函数,而y 未必能 用x 的显式表示2)隐函数是表达函数的又一种方法. 是用隐形关系式表示函数关系的一种。
结论..:若由..0),(=y x F 确定..的隐函数为.....)(x f y = .,J y I x ∈∈则成立恒等式.......,0))(,(I x x F x F ∈≡例: 方程 01=-+y xy ,当x 定义在),1()1,(+∞---∞ 上时,可得隐函数)(x f y =。
其显函数形式为:.11xy +=例: 圆方程122=+y x 能确定一个定义在[]1,1+-上,函数值不小于0的隐函数21x y -=;又能确定另一个定义在[]1,1+-上,函数值不大于0的隐函数21x y --=。
注.:1)隐函数必须在指出确定它的方程以及y x ,的取值范围后才有意义。
2)当然在不至于产生误解的情况下,其取值范围也可不必一一指明。
3)并不是任一方程都能确定出隐函数,如方程.022=++c y x当0>c 时,就不能确定任何函数()x f ,使得[].0)(22≡++c x f x而只有当0≤c 时,才能确定隐函数。
第十八章 隐函数定值及其应用§1 隐函数教学目的 掌握隐函数概念,理解隐函数定理,学会隐函数求导法. 教学要求(1)掌握隐函数存在的条件,理解隐函数定理的证明要点;学会隐函数求导法. (2)掌握隐函数定理的证明. 教学建议(1) 本节的重点是隐函数定理,学会隐函数求导法.要求学生必须熟记隐函数定理的条件与结论,了解隐函数定理的证明要点.(2) 本节的难点是隐函数定理的严格证明,对较好学生在这方面提出要求. 教学程序一、 隐函数概念:隐函数是表达函数的又一种方法. (一)、隐函数及其几何意义: 以0),(=y x F 为例作介绍.(二)、隐函数的两个问题: 1 隐函数的存在性; 2 隐函数的解析性质. 二、 隐函数存在条件的直观意义: 三、 隐函数定理:定理: ( 隐函数存在唯一性定理 ) 若满足下列条件:1 函数),(y x F 在以),(000y x P 为内点的某一区域D 2R ⊂上连续 ;2 ),(00y x F 0=; ( 通常称这一条件为初始条件 )3 在D 内存在连续的偏导数),(y x F y ;4 ),(00y x F y 0=/.则在点0P 的某邻域Y (0P )⊂D 内 , 方程0),(=y x F 唯一地确定一个定义在某区间) , (00αα+-x x 内的隐函数)(x f y =, 使得1 )(00y x f =,∈x ) , (00αα+-x x 时()∈)( , x f x Y (0P )且()0)( , ≡x f x F .2 函数)(x f 在区间) , (00αα+-x x 内连续 .例1 设vw x =2,uw y =2,uv z =2 及 ),,(),,(w v u F z y x f =,证明w v u z y x wF vF uF zf yf xf ++=++证 方程组 ⎪⎩⎪⎨⎧===uvz uw y vw x 222 确定了函数组 ⎪⎩⎪⎨⎧===),,(),,(),,(w v u z z w v u y y w v u x x ,先求这个函数组对各变元的偏导数,为此,对方程组求微分得⎪⎩⎪⎨⎧+=+=+=udv vdu zdz udw wdu ydy vdw wdv xdx 222, 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=dv zu du z v dz dw y u du y w dy dw x v dv x w dx 222222 故 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂w z v z u z w y v y u y w x v x u x ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=0 2 2 2 0 2 2 2 0 z uz v y u yw x v x w 将函数组代入方程),,(),,(w v u F z y x f =,得关于变元w v u ,,的方程),,()),,(),,,(),,,((w v u F w v u z w v u y w v u x f =,在这方程两边分别对w v u ,,求偏导,得 u z y xF u z f u y f u x f =∂∂+∂∂+∂∂, v z y x F v z f v y f v x f =∂∂+∂∂+∂∂, w z y x F wz f w y f w x f =∂∂+∂∂+∂∂, 将上面三式分别乘以w v u ,,后再相加,得 ++z uv f y uw f z y22zuvf x vw f z x 22+y uw f x vw f y x 22++,w v u wF vF uF ++=.将vw x =2,uw y =2,uv z =2代入即得w v u z y x wF vF uF zf yf xf ++=++.例2 若),(y x f z =有连续二阶偏导数,满足方程222222)(y x z yz x z ∂∂∂=∂∂∂∂,证明:若把),(y x f z =中y 看成z x ,的函数,则它满足同样形状的方程 222222)(z x y z y x y ∂∂∂=∂∂∂∂. 证 由),(y x f z =确定y 是z x ,的函数,则有)),(,(z x y x f z =,方程两边分别对z x ,求偏导,得xyy f x f ∂∂∂∂+∂∂=0, (1) zyy f ∂∂∂∂=1 , (2) (1)式再分别对z x ,求偏导,得22222222)(20x yy f x y y f x y y x f xf ∂∂∂∂+∂∂∂∂+∂∂∂∂∂+∂∂= , (3) z x yy f z y x y y f z y y x f ∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂=22220, (4) (2)式再对z 求偏导,得22222)(0z yy f z y y f ∂∂∂∂+∂∂∂∂= , (5) 由(3)(5)式22222)(z y y f x f ∂∂∂∂∂∂])(2[22222222x yy f x y y f x y y x f z y y f ∂∂∂∂+∂∂∂∂+∂∂∂∂∂∂∂∂∂= ])(2[)(22222222222x y y f x y y x f z y y f y f z y x y ∂∂∂∂+∂∂∂∂∂∂∂∂∂+∂∂∂∂∂∂= ])(2[)()(222222222222x y y f x y y x f z y y f y f z y x y ∂∂∂∂+∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂= (由(5)式)]2[)(2222222222z yx y y f z y y x f z y x y y f y f z y x y ∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂=, 由(4)式222222)()(zx y y f z y x y y f z y y x f ∂∂∂∂∂+∂∂∂∂∂∂=∂∂∂∂∂z x yy f z y x y y f z y x y y f z x y y f ∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂=222222222)()( ]2[)(2222222z x yy f z y x y y f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂=,因为222222)(y x z yz x z ∂∂∂=∂∂∂∂,则]2[)(2222222222zyx y y f z y y x f z y x y y f y f z y x y ∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂ ]2[)(2222222z x y y f zy x y y f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂=, 结合(4)式得22222)(y f z y x y ∂∂∂∂∂∂][2)(22222222z x yy f z y x y y f z y y x f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂= 22)(zx y y f ∂∂∂∂∂=. 即 222222)(z x y z y x y ∂∂∂=∂∂∂∂. 例3 设 ⎪⎩⎪⎨⎧===0),(0),,(),,,(t z h t z y g t z y x f u ,问什么条件下u 是y x ,的函数啊?求y u x u ∂∂∂∂,。
第十八章 隐函数定理及其定理3几何应用一、平面曲线的切线与法线设平面曲线由方程F(x,y)=0给出,它在点P 0(x 0,y 0)的某邻域上满足隐函数定理条件,于是在点P 0附近所确定的连续可微隐函数y=f(x)(或x=g(y))和F(x,y)=0在点P 0附近表示同一曲线,从而该曲线在P 0存在切线和法线,其方程分别为:y-y 0=f ’(x 0)(x-x 0) 或(x-x 0=g ’(y 0)(y-y 0)) 与y-y 0=-)(x f 10'(x-x 0) 或(x-x 0=-)(y g 10'(y-y 0)). ∵f ’(x)=-y x F F (或g ’(y)=-xy F F ),∴F(x,y)=0在点P 0的切线与法线方程为:F x (x 0,y 0)(x-x 0)+F y (x 0,y 0)(y-y 0)=0与F y (x 0,y 0)(x-x 0)-F x (x 0,y 0)(y-y 0)=0.例1:求笛卡儿叶形线2(x 3+y 3)-9xy=0在点(2,1)的切线与法线. 解:记F=2(x 3+y 3)-9xy, 则F x =6x 2-9y, F y =6y 2-9x 在R 2连续,且 F x (2,1)=15≠0, F y (2,1)=-12≠0, ∴曲线在(2,1)的切线与法线分别为: 15(x-2)-12(y-1)=0, 即5x-4y-6=0,与-12(x-2)-15(y-1)=0, 即4x+5y-13=0.二、空间曲线的切线与法平面由参数方程x=x(t), y=y(t), z=z(t), α≤t ≤β确定的空间曲线L 上一点P 0(x 0,y 0,z 0),有x 0=x(t 0),y 0=y(t 0),z 0=z(t 0), α≤t 0≤β,假定它们都在t 0处可导,且[x ’(t 0)]2+[y ’(t 0)]2+[z ’(t 0)]2≠0. 在L 上点P 0附近选取一点 P(x,y,z)=P(x 0+△x,y 0+△y,z 0+△z), 割线P 0P 为:x x -x 0∆=y y -y 0∆=zz -z 0∆,其中△x=x(t 0+△t)-x(t 0), △y=y(t 0+△t)-y(t 0), △z=z(t 0+△t)-y(t 0), 又t x/x -x 0∆∆=t y/y -y 0∆∆=t z/z -z 0∆∆,当△t →0时, P →P 0,且t x ∆∆→x ’(t 0), ty∆∆→y ’(t 0), tz∆∆→z ’(t 0), 即得曲线L 在P 0处的切线方程为:)t (x x -x 00'=)t (y y -y 00'=)t (z z -z 00'.可知,当x ’(t 0), y ’(t 0), z ’(t 0)不全为0时,它们组成了该切线的方向数. 过P 0与切线l 垂直的平面称为曲线L 在点P 0的法平面, 其方程为: x ’(t 0)(x-x 0)+y ’(t 0)(y-y 0)+z ’(t 0)(z-z 0)=0.当空间曲线L 由方程组⎩⎨⎧==0z)y,G(x,0z)y,F(x,给出时,若它在点P 0(x 0,y 0,z 0)的某邻域上满足隐函数组定理的条件(不妨设条件(4)为P y),x ()G (F,∂∂≠0),则该方程组在点P 0附近能确定惟一连续可微的隐函数组x=φ(z),y=ψ(z),使 x 0=φ(z 0),y 0=ψ(z 0),且zx ∂∂=-y),z ()G (F,∂∂/y),x ()G (F,∂∂, z y ∂∂=-z),x ()G (F,∂∂/y),x ()G (F,∂∂. 又在点P 0附近,原方程组和由其确定的隐函数组表示同一空间曲线, ∴以z 为参量时,可得点P 0附近曲线L 的参量方程:x=φ(z),y=ψ(z),z=z. ∴曲线L 在P 0处的切线方程为:)P (x x -x 0z 0=)P (y y -y 0z 0=1z -z 0,即0P 0z),y ()G (F,x -x ∂∂=0P 0x),z ()G (F,y -y ∂∂=0P 0y),x ()G (F,z -z ∂∂.曲线L 在P 0处的法平面方程为:0P z),y ()G (F,∂∂(x-x 0)+0P x),z ()G (F,∂∂(y-y 0)+0P y),x ()G (F,∂∂(z-z 0)=0.同理可推得,当0P z),y ()G (F,∂∂≠0或0P x),z ()G (F,∂∂≠0时,结论相同.可见,当0P y),x ()G (F,∂∂,0P z),y ()G (F,∂∂,0P x),z ()G (F,∂∂不全为0时,它们是L 在P 0处的切线的方向数.例2:求球面x 2+y 2+z 2=50与锥面x 2+y 2=z 2所截出的曲线在(3,4,5)处的切线与法平面方程.解:记F=x 2+y 2+z 2-50, G=x 2+y 2-z 2,∵F x =G x =2x, F y =G y =2y, F z =2z, G z =-2z 在(3,4,5)都连续, 又y),x ()G (F,∂∂=0, 0P z),y ()G (F,∂∂=-160, 0P x),z ()G (F,∂∂=120, ∴曲线在P 0处的切线方程为:1603-x -=1204-y =05-z , 即⎩⎨⎧==+5z 04)-4(y 3)-3(x ;法平面方程为:-4(x-3)+3(y-4)+0(z-5)=0, 即4x-3y=0.三、曲面的切平面与法线设曲面由方程F(x,y,z)=0给出,它在点以P 0(x 0,y 0,z 0)的某邻域内满足隐函数定理条件(不妨设F z (x 0,y 0,z 0)≠0),则该方程在点P 0附近确定惟一连续可微的隐函数z=f(x,y),使得z 0=f(x 0,y 0), 且z x ∂∂=-)z y,(x ,F )z y,(x ,F zx , z y ∂∂=-)z y,(x,F )z y,(x,F z y .由于在点P 0附近F(x,y,z)=0与z=f(x,y)表示同一曲面, 从而该曲面在P 0处有切平面方程为:z-z 0=-)z ,y ,(x F )z ,y ,(x F 000z 000x (x-x 0)-)z ,y ,(x F )z ,y ,(x F 000z 000y (y-y 0)或F x (x 0,y 0,z 0)(x-x 0)+F y (x 0,y 0,z 0)(y-y 0)+F z (x 0,y 0,z 0)(z-z 0)=0. 法线方程为:)z ,y ,(x F )z ,y ,(x F x -x 000z 000x 0-=)z ,y ,(x F )z ,y ,(x F y -y 000z 000y 0-=1z -z 0- 或)z ,y ,(x F x -x 000x 0=)z ,y ,(x F y -y 000y 0=)z ,y ,(x F z -z 000z 0.其中,两方程的第二种形式对F x (x 0,y 0,z 0)≠0或F y (x 0,y 0,z 0)≠0也适合.注:1、函数F(x,y,z)在点P(x,y,z)的梯度gradF(P)就是等值面F(x,y,z)=c 在点P 的法向量n=(F x (P),F y (P),F z (P)). 2、将曲线L :⎩⎨⎧==0z)y,G(x,0z)y,F(x,看成两个曲面F(x,y,z)=0和G(x,y,z)=0的交线,则L 在点P 0的切线与两个曲面在P 0的法线都垂直,这两个法向量为n 1=(F x ,F y ,F z )|0P 与n 2=(G x ,G y ,G z )|0P ,即 L 在P 0的切向量可取n 1与n 2的向量积τ=n 1×n 2=)()()()()()(000000P G P G P G P F P F P F kj i z y x z y x =i P 0)z (y,)G (F,∂∂+j P 0)x (z,)G (F,∂∂+k P 0)y (x,)G (F,∂∂.例3:求椭球面x 2+2y 2+3z 2=6在(1,1,1)处的切平面方程与法线方程. 解:设F(x,y,z)=x 2+2y 2+3z 2-6, F x =2x, F y =4y, F z =6z 在全空间上处处连续, 在(1,1,1)处,F x =2, F y =4, F z =6,∴切平面方程为2(x-1)+4(y-1)+6(z-1)=0, 法线方程为:11-x =21-y =31-z .例4:证明:曲面f ⎪⎭⎫⎝⎛c -z b -y ,c -z a -x =0的任一切平面都过某个定点,其中f 是连续可微函数. 解:令F(x,y,z)=f ⎪⎭⎫⎝⎛c -z b -y ,c -z a -x ,∵(F x ,F y ,F z )=⎪⎪⎭⎫⎝⎛+-22121c)-(z b)f -(y a)f -(x ,c -z f ,c -z f , ∴曲面在其上任意一点P 0(x 0,y 0,z 0)的法向量可取为: n=⎪⎪⎭⎫⎝⎛+-c -z )(b)f -(y )(a)f -(x ),(f ),(f 00200100201P P P P , 由此可得切平面方程: f 1(P 0)(x-x 0)+f 2(P 0)(y-y 0)-c-z )(b)f -(y )(a)f -(x 0020010P P +(z-z 0)=0.以(x,y,z)=(a,b,c)代入切平面方程,可得:f 1(P 0)(a-x 0)+f 2(P 0)(b-y 0)-c-z )(b)f -(y )(a)f -(x 0020010P P +(c-z 0)≡0,即定点(a,b,c)在曲面的任一切平面上.习题1、求平面曲线32x +32y =32a (a>0)上任一点处的切线方程,并证明这些切线被坐标轴所截取的线段等长. 解:记F(x,y)=32x +32y -32a , 则F x =3x32, F y =3y32,∴曲线上任一点(x 0,y 0)处的切线方程为:3x 1(x-x 0)+3y 1(y-y 0)=0, 即3x x+3y y=32a . 切线与在坐标轴上的截距分别为320a x 与320a y ,∴切线被坐标轴所截取的线段为()()23202320a y a x +=a, 得证!2、求下列曲线在所示点处的切线与法平面: (1)x=asin 2t, y=bsintcost, z=ccos 2t, 在点t=4π; (2)2x 2+3y 2+z 2=9,z 2=3x 2+y 2, 在点(1,-1,2). 解:(1)∵x ’(4π)=a, y ’(4π)=0, z ’(4π)=-c,∴切线方程为:a 2a -x =02b -y =c 2c -z -, 即⎪⎩⎪⎨⎧==+2b y 1c z a x .法平面方程为:a(2a -x )-c(2c -z )=0, 即ax-cz=21(a 2-c 2).(2)记F(x,y,z)=2x 2+3y 2+z 2-9, G(x,y,z)=3x 2+y 2-z 2, 则 F x =4x,F y =6y,F z =2z; G x =6x,G y =2y,G z =-2z; ∴(1,-1,2)y),x ()G (F,∂∂=28; (1,-1,2)z),y ()G (F,∂∂=32;(1,-1,2)x),z ()G (F,∂∂=40;∴切线方程为:81-x =101y +=72-z . 法平面方程为:8(x-1)+10(y+1)+7(z-2)=0.3、求下列曲面在所示点处的切平面与法线: (1)y-e2x-z=0, 在点(1,1,2);(2)222222c z b y a x ++=1, 在点⎪⎪⎭⎫⎝⎛3c ,3b ,3a . 解:(1)记F=y-e 2x-z , 则F x (1,1,2)=-2, F y (1,1,2)=1, F z (1,1,2)=1, ∴切平面方程为:-2(x-1)+(y-1)+(z-2)=0; 法线方程为:2-1-x =y-1=z-2. (2)记F=222222c z b y a x ++-1, 则在点⎪⎪⎭⎫⎝⎛3c ,3b ,3a , F x =a 32, F y =b 32, F z =c 32. ∴切平面方程为:a1(x-3a )+b 1(y-3b )+c 1(z-3c )=0, 即a x +b y +c z=3;法线方程为:a(x-3a )=b(y-3b )=c(z-3c ).4、证明对任意常数ρ,φ,球面x 2+y 2+z 2=ρ2与锥面x 2+y 2=z 2tan 2φ正交. 证:设(x,y,z)是球面与锥面交线上的任一点,则 球面上该点的法向量为1n =(2x,2y,2z), 锥面上该点的法向量为2n =(2x,2y,-2ztan 2φ),∵21n n =4x 2+4y 2-4z 2tan 2φ=0, ∴对任意常数ρ,φ,球面与锥面正交.5、求曲面x 2+2y 2+3z 2=21的切平面,使它平行于平面x+4y+6z=0. 解:记F(x,y,z)=x 2+2y 2+3z 2-21, 在曲面上的任一点(x 0,y 0,z 0)有, F x (x 0,y 0,z 0)=2x 0, F y (x 0,y 0,z 0)=4y 0, F z (x 0,y 0,z 0)=6z 0,∴曲面在该点的切平面方程为:2x 0(x-x 0)+4y 0(y-y 0)+6z 0(z-z 0)=0, 即 x 0x+2y 0y+3z 0z-21=0. ∵2x 0=y 0=z 0, 代入曲面方程得:x 02+8x 02+4x 02=21, 解得:x 0=±1,∴曲平面在(1,2,2)和(-1,-2,-2)处有符合条件的切平面:x+4y+6z=±21.6、在曲线x=t, y=t 2, z=t 3上求出一点,使曲线在此点的切线平行于平面x+2y+z=4.解:∵x t =1, y t =2t, z=3t 2, 设在t=t 0处切线平行于平面x+2y+z=4, 则(1,2t 0,3t 02)(1,2,1)=0, 即1+4t 0+3t 02=0,解得t 0=-1或t 0=-31. ∴所求的点为(-1,1,-1)或(-31,91,-271).7、求函数u=222z y x x ++在点M(1,2,-2)沿曲线x=t, y=2t 2, z=-2t 4在该点切线的方向导数.解 :∵曲线过点(1,2,-2), ∴t 0=1; ∵x t (t 0)=1, y t (t 0)=4, z t (t 0)=-8. ∴曲线在点M 的切线的方向余弦为:91, 94, -98. 又 u x (M)=278, u y (M)=-272, u z (M)=272; ∴所f 求方向导数为: 91278⋅+94272⋅⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⋅98272=-24316.8、试证明:函数F(x,y)在点P 0(x 0,y 0)的梯度恰好是F 的等值线在点P 0的法向量(设F 有连续一阶偏导数).证: F 的等值线为F(x,y)=c, 它在点P 0的切线方程为: F x (x 0,y 0)(x-x 0)+F y (x 0,y 0)(y-x 0)=0. ∴等值线在点P 0的法向量为: (F x (x 0,y 0),F y (x 0,y 0)), 恰为函数F 在点P 0梯度,得证!9、确定正数λ, 使曲面xyz=λ与椭球面22a x +22b y +22cz =1在某一点相切(即在该点有公共切平面).解:设两曲面在点P 0(x 0,y 0,z 0)相切,则曲面xyz=λ在点P 0的切平面: y 0z 0(x-x 0)+x 0z 0(y-y 0)+x 0y 0(z-z 0)=0与椭球面在点P 0的切平面:20a x (x-x 0)+20b y (y-y 0)+2c z (z-z 0)=0是同一平面,∴0020z y a x =0020z x b y =0020y x c z , 即220a x =220b y =220c z , 又220a x +220b y +220c z =1, ∴220a x =220b y =220cz =31,∴x 02y 02z 02=271a 2b 2c 2,∴λ=x 0y 0z 0=33|abc |.10、求x 2+y 2+z 2=x 的切平面, 使其垂直于平面x-y-21z=2和x-y-z=2. 解:设曲面在点P 0(x 0,y 0,z 0)处的切平面垂直于所给两平面,由 曲面在P 0处切平面方程:(2x 0-1)(x-x 0)+2y 0(y-y 0)+2z 0(z-z 0)=0知P 0应满足:⎪⎪⎩⎪⎪⎨⎧=++=--⋅-=--⋅-0202020000000xz y x 0)1,1,1()z 2,y 2,1x 2(0)21,1,1()z 2,y 2,1x 2(, 解得:x 0=422±, y 0=42±, z 0=0, ∴所求切平面为:x+y=221±.11、求双曲面F(x,y,z)=0, G(x,y,z)=0的交线在xy 平面上的投影曲线的切线方程.解:对方程组F(x,y,z)=0, G(x,y,z)=0关于z 求导得:⎪⎩⎪⎨⎧=++=++00z y x z y x G dz dy G dzdx G F dz dy F dz dx F , 解得:dz dx =),(),(z y G F ∂∂/),(),(y x G F ∂∂,dz dy =),(),(x z G F ∂∂/),(),(y x G F ∂∂, ∴交线在xy 平面上的投影曲线的切线方程为: (x-x 0)/0P dz dx =(y-y 0)/0P dzdy ,即(x-x 0)/),(),(P z y G F ∂∂=(y-y 0)/),(),(P x z G F ∂∂.。
1 隐函数1.1隐函数的定义设,X R Y R ⊂⊂,函数:.F X Y R ⨯→对于方程(,)0F x y = ()1若存在集合I X J Y ⊂⊂与对于任何x I ∈,恒有唯一确定的y J ∈,它与x 一起满足方程(1),则称由方程(1)确定一个在I 上,值域含于J 的隐函数.若把它记为(),,,f x y x I y J =∈∈则成立恒等式(,())0F x f x ≡,x I ∈.例如方程10xy y +-=能确定一个定义在(,1)(1,)-∞-⋃-+∞上的隐函数.1.2. 隐函数存在定理定理1 若满足下列条件1)(,)F x y 在以000(,)P x y 为内点的某一区域2R D ⊂上连续; 2)00(,)0F x y =;3)(,)y F x y 在D 内连续;4)0,()0y o F x y ≠.则在0()U P D ⊂内,方程(,)0F x y =惟一地确定了一个定义在00(,)x x αα-+内的隐函数()y f x =,使得00001(),(,)f x y x x x αα=∈-+时0(,())()x f x U P ∈且(,())0F x f x ≡. 02()f x 在00(,)x x αα-+内连续.这里有几点需要注意,i )定理的条件只是充分的,ii ).定理的条件(3),(4)还可减弱.iii )定理的条件(3),(4)换为:x F 连续,0()0x F P ≠,则可确定隐函数()x f y =.1.3. 隐函数的可导条件定理2 若(1)(,)F x y 在以000(,)P x y 为内点的某一区域2R D ⊂上连续; (2)(,)F x y ;(3)(,)(,)y x F x y F x y 在D 内连续;(4)0()0y F P ≠.则(,)0F x y =确定的隐函数()y f x =,在00(,)x x αα-+内有连续的导数,且 ()xyF f x F '=-.若已知(,)0F x y =存在连续可微的隐函数()y f x =,利用复合函数求导法则,也求出'()f x .例 1 讨论笛卡儿叶形线3330x y axy +-=所确定的函数()yf x =的一阶与二阶导数解 由隐函数定理知,在使得23()0y F y ax =-≠的点(,)x y 附近,方程确定隐函数()y f x =.方程两边对x 求导并整理可得,22ay x y y ax -'=- 2()0y ax -≠ .两边再对x 求导,并将上式代入可得:3232()a xyy y ay ''=--.例2 讨论方程323(,,)0F x y z xyz x y z =++-=在原点附近所确定的二元隐数及其偏导数.解 (0,0,0)0,(0,0,0)10z F F ==-≠且,,x y z F F F F 处处连续,因此在原点(0,0,0)附近能惟一地确定连续可微的隐函数(,)z f x y =,且可求得它的偏导数如下:32213x z x y F yz z F xyz ∂+=-=∂- , 322313y z y z F xz y F xyz∂+=-=∂-. 2.隐函数组2.1 隐函数组概念设(,,,),(,,,)F x y u v G x y u v 为定义在4R 上的四元函数.若存在2D R ⊂,对任意(,)x y D ∈,都有惟一确定的,u v ,使(,,,)0(,,,)0F x y u v G x y u v =⎧⎨=⎩成立,则在D 上定义了两个函数:(,),(,)u f x y v g x y ==.称它们是由方程确定的隐函数组.2.2 隐函数组存在条件定理3 若(1) (,,,),(,,,)F x y u v G x y u v 在以00000(,,,)P x y u v =为内点的区域4V R ⊂内连续(2) 00000000(,,,)0,(,,,)0F x y u v G x y u v ==;(3) 在V 内,,F G 有连续的偏导数;(4)(,)(,)F G J U V ∂=∂在点0P 不等于零. 则在点0P 的某一邻域0()U P V ⊂内,方程组惟一地确定了定义点000(,)Q x y 的某一邻域0()U Q 内的两个二元隐函数:(,),(,)u f x y v g x y ==.使得1. 000000(,),(,),u f x y v g x y ==(,,(,),(,))0F x y f x y g x y ≡(,,(,),(,))0.G x y f x y g x y ≡.2 .(,),(,)u f x y v g x y ==在0()U Q 内有连续的偏导数,且:1(,)1(,),,(,)(,)u u x F G F G J x v y J y v ∂∂∂∂=-⋅=-⋅∂∂∂∂1(,)1(,),(,)(,)v v x y F G F G J u x J u y ∂∂∂∂=-⋅=-⋅∂∂∂∂例3 讨论方程组2222(,,,)0(,,,)10F x y u v u v x yG x y u v u v x y ⎧=+--=⎨=-+-+=⎩ 在点0(2,1,1,2)P 的邻域能确定怎样的隐函数组,并求其偏导数.解 00()()0F P G P ==且2,1,2,2.x y u v x F x F F u F v G y =-=-===-,,y G x =- 1,1u v G G =-=.在点0P 处的所有雅可比行列式中仅有(,)0(,)F G x v ∂=∂因此,仅有(,)x v 不能断定能否作为以(,)y u 为自变量的隐函数.除此之外,在点0P 附近,任意两个变量都可作为以其余两个变量为自变量的隐函数.如,要求(,),(,)x f u v y g u v ==的偏导数,对方程组分别关于,u v 求偏导数,得22010u u u u u xx y yx xy --=⎧⎨---=⎩, 22010v v v v v xxy xy yx --=⎧⎨--=⎩分别解之,得221,2u xu x x y +=- 221;2v xvx x y -=- 222,2u x yu y x y +=--222.2v x yvy x y -=-3 隐函数的几何应用本节的重点是掌握用隐函数和隐函数组求导法求平面曲线的切线与法线,空间曲线的切线与法平面以及求曲面的切平面与法线.3.1 平面曲线的切线与法线设平面曲线的方程为 (,)0F x y =,F 在000(,)P x y 的某邻域内满足隐函数定理的条件.隐函数 ()y f x =在0x 的导数 '000()()/()x y f x F P F P =-.曲线在0x 的切线方程为0000()()()()0x y F P x x F P y y -+-=.法线方程为0000()()()()0y x F P x x F P y y ---=.例4 求曲线 332()90x y xy +-=在(2,1)处的切线与法线. 解 设33(,)2()9F x y x y xy =+-,则2269,69x y F x y F y x =-=-处处连续, 且(2,1)15,(2,1)12x y F F ==-.因此曲线在(2,1)处的切线与法线分别为5460,x y --=及45130x y +-=3.2 空间曲线的切线与法平面设有空间曲线 []0:(),(),(),,,L x x t y t z z t t P L αβ===∈∈.且 []000000000(,,)((),(),()),,P x y z P x t y t z t t αβ=∈.再设L 为光滑曲线.在L 上任取一点0000(,,)P x x y y z z +∆+∆+∆,则割线 0P P 的方程为00,x x y yz z x y z ---==∆∆∆因此:00o x x y y z zx y z z t t---==∆∆∆∆∆∆令 0t ∆→,则由L 为光滑曲线知,0p p →.所以L 在0p 的切线方程是000000()()()x x y y z z x t y t z t ---=='''.过0p 与切线垂直的平面称为L 在0p 的法平面,其方程为 000000()()()()()()0x t x x y t y y z t z z '''-+-+-=.(,,)0:(,,)0F x y z LG x y z =⎧⎨=⎩ 且在0000(,,)P x y z 的某一个邻域内满足隐函数组定理的条件(不妨设0(0(,)P x y ∂≠∂F,G)) 方程组在0P 附近确定惟一连续可微的隐函数组:(),()x z y z ϕψ==.则()()x z y z z z ϕψ=⎧⎪=⎨⎪=⎩.且 (,)(,),(,)(,)x z F G d z y F G d x y ∂∂=-∂∂ (,)(,)(,)(,)y z F G d x z F G d x y ∂∂=∂∂ 所以L 在0P 的切线方程是000(,)(,)(,)(,)(,)(,)x x y y z z F G F G F G y z z x x y ---==∂∂∂∂∂∂. 例5:求曲线22222250x y z x y z⎧++=⎪⎨+=⎪⎩在(3,4,5)处的切线与法平面. 解:令22222250,F x y z G x y z =++-=+-.在(3,4,5)处,6,x F = 8,y F = 10,z F = 6,x G = 8,y G = 10z G =- (,)160,(,)F G y z ∂=-∂ (,)120,(,)F G z x ∂=∂ (,)0(,)F G x y ∂=∂ 所求切线为3451601200x y z ---==- . 所求法平面为430x y -= .3.3空间曲面的切平面与法线设曲面S 的方程是:0000(,,)0,(,,)F x y z P x y z S =∈.在0()U p 内满足隐函数定理的条件,不妨设0()0z F p ≠.方程在0p 附近确定隐函数 (,)z f x y =,且0000()(,),()x x z F p f x y F p =- 0000()(,)()y y z F p f x y F p =-由此得S 在0p 处的切平面为000000()()()()()()0y x z F P x x F P y y F P z z -+-+-=.法线为000000()()()x y z x x y y z z F P F P F P ---==.例6.求曲面:222236x y z ++=在点(1,1,1)处的切平面与法线方程. 解:设222(,,)236F x y z x y z =++-,则在(1,1,1)处,2,4,6x y z F F F ===. 因此,切平面方程2(1)4(1)6(1)0x y z -+-+-=即236x y z ++=. 所得法线方程:111123x y z ---==.。