材料力学复习资料
- 格式:doc
- 大小:470.50 KB
- 文档页数:12
材料力学1. 材料与构件的许用应力值有关。
2. 切应力互等定理是由单元体静力平衡关系导出的。
3.弯曲梁的变形情况通过梁上的外载荷来衡量。
4.有集中力作用的位置处,其内力的情况为剪力阶跃,弯矩拐点。
5. 在材料力学的课程中,认为所有物体发生的变形都是小变形6. 危险截面是最大应力所在的截面。
7. 杆件受力如图所示,AB段直径为d1=30mm,BC 段直径为d2=10mm,CD段直径为d3=20mm。
杆件上的最大正应力为127.3MPa。
8. 一根两端铰支杆,其直径d=45mm,长度l=703mm,E=210GPa,σp=280MPa,λs=43.2。
直线公式σcr=461-2.568λ。
其临界压力为478kN。
9. 一个钢梁,一个铝梁,其尺寸、约束和载荷完全相同,则横截面上的应力分布相同,变形后轴线的形态不相同。
10. 当实心圆轴的直径增加1倍时,其抗扭强度增加到原来的8倍。
11. 材料力学中求内力的普遍方法是截面法。
12. 压杆在材料和横截面面积不变的情况下,采用D 横截面形状稳定性最好。
13. 图形对于其对称轴静矩和惯性矩均不为零。
14. 梁横截面上可能同时存在切应力和正应力。
15. 偏心拉伸(压缩),其实质就是拉压和弯曲的组合变形。
16. 存在均布载荷的梁段上弯矩图为抛物线。
17. 矩形的对角线的交点属于形心点。
18. 一圆轴用碳钢制作,校核其扭转角时,发现单位长度扭转角超过了许用值。
为保证此轴的扭转刚度,应增加轴的直径。
19. T形图形由1和2矩形图形组成,则T形图形关于x轴的惯性矩等于1矩形关于m轴的惯性矩与2矩形关于n轴的惯性矩的合。
20. 材料力学中关心的内力是物体由于外力作用而产生的内部力的改变量。
21.杯子中加入热水爆炸时,是外层玻璃先破裂的;单一载荷作用下的目标件,其上并不只存在一种应力。
22. 单位长度扭转角θ与扭矩、材料性质、截面几何性质有关。
23. 转角是横截面绕中性轴转过的角位移;转角是挠曲线的切线与轴向坐标轴间的夹角;转角是变形前后同一截面间的夹角24.单元体的形状可以改变;单元体上的应力分量应当足以确定任意方向面上的应力25. 可以有效改善梁的承载能力的方法是:加强铸铁梁的受拉伸一侧;将集中载荷改换为均布载荷;将简支梁两端的约束向中间移动。
第一章 绪论1. 承载能力:强度:构件在外力作用下抵抗破坏的能力刚度:构件在外力作用下抵抗变形的能力稳定性:构件在外力作用下保持其原有平衡状态的能力2. 变形体的基本假设:连续性假设、均匀性假设、各向同性假设3. 求内力的方法:截面法4. 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲第二章 拉伸、压缩1. 轴力图必须会画:轴力N F 拉为正、压为负2. 横截面上应力:均匀分布 AF N =σ 3. 斜截面上既有正应力,又有切应力,且应力为均匀分布。
ασσα2cos =αστα2sin 21=σ为横截面上的应力。
横截面上的正应力为杆内正应力的最大值,而切应力为零。
与杆件成45°的斜截面上切应力达到最大值,而正应力不为零。
纵截面上的应力为零,因此在纵截面不会破坏。
4. 低碳钢、灰铸铁拉伸时的力学性能、压缩时的力学性能低碳钢拉伸在应力应变图:图的形状、四个极限、四个阶段、各阶段的特点、伸长率(脆性材料、塑性材料如何区分)5. 强度计算脆性材料、塑性材料的极限应力分别是 拉压时的强度条件:][max max σσ≤=AF N 强度条件可以解决三类问题:强度校核、确定许可载荷、确定截面尺寸 6.杆件轴向变形量的计算 EA l F l N =∆ EA :抗拉压刚度 7. 剪切和挤压:剪切面,挤压面的判断第三章 扭转1.外力偶矩的计算公式: 2.扭矩图T 必须会画:扭矩正负的规定3.切应力互等定理、剪切胡克定律4.圆轴扭转横截面的应力分布规律:切应力的大小、作用线、方向的确定sb σσ,min /::)(9549r n kW P m N n P M ⋅=5.横截面上任一点切应力的求解公式:ρI ρT τP ρ=——点到圆心的距离6. 扭转时的强度条件:][max max ττ≤=tW T 7.实心圆截面、空心圆截面的极惯性矩、抗扭截面模量的计算公式 实心圆截面:极惯性矩432D πI p =,抗扭截面模量316D πW t = 空心圆截面:极惯性矩)1(3244αD πI P -=,抗扭截面模量)1(1643αD πW t -==, 8.圆轴扭转时扭转角:pI G l T =ϕ p I G :抗扭刚度 第四章 弯曲内力1.纵向对称面、对称弯曲的概念2. 剪力图和弯矩图必须会画:剪力、弯矩正负的规定3.载荷集度、剪力和弯矩间的关系4. 平面曲杆的弯矩方程5.平面刚架的弯矩方程、弯矩图第五章 弯曲应力1. 纯弯曲、中性层、中性轴的概念2.弯曲时横截面上正应力的分布规律:正应力的大小、方向的确定3. 横截面上任一点正应力的计算公式:zI My =σ 4. 弯曲正应力的强度校核][max max σσ≤=zW M 或][max max max σI y M σz ≤= 对于抗拉压强度不同的材料,最大拉压应力都要校核5. 矩形截面、圆截面的惯性矩和抗弯截面模量的计算 矩形截面:惯性矩,1213bh I z =抗弯截面模量:261bh W z = 实心圆截面:惯性矩464D πI z =,抗弯截面模量:332D πW z = 空心圆截面:惯性矩)1(6444αD πI z -=,抗弯截面模量:)1(3243αD πW z -=, 第七章 应力和应变分析、强度理论1. 主应力、主平面、应力状态的概念及应力状态的分类2. 二向应力状态分析的解析法:应力正负的规定:正应力以拉应力为正,压应力为负;切应力对单元体内任意点的矩顺时针转向为正;α角以逆时针转向为正D d α=D d α=任意斜截面上的应力计算最大最小正应力的计算公式最大最小正应力平面位置的确定 最大切应力的计算公式主应力、主平面的确定3. 了解应力圆的做法,辅助判断主平面4. 广义胡克定律5.四种强度理论内容及适用范围第八章 组合变形1. 组合变形的判断2. 圆截面轴弯扭组合变形强度条件 第三强度理论:[]σσ≤+=WT M r 223 第四强度理论:[]σσ≤+=W T M r 22375.0 W ——抗弯截面模量323d W π=第九章 压杆稳定1. 压杆稳定校核的计算步骤(1)计算λ1和λ2(2)计算柔度λ,根据λ 选择公式计算临界应(压)力(3)根据稳定性条件,判断压杆的稳定性2. P 1σπλE = ba s 2σλ-= ⎪⎪⎩⎪⎪⎨⎧+-=--++=ατασστατασσσσσαα2cos 2sin 22sin 2cos 22xy y x xy y x y x 22min max 22xy y x y x τσσσσσσ+⎪⎪⎭⎫ ⎝⎛-±+=⎭⎬⎫y x xy σστα--=22tan 0231max σστ-=柔度i lμλ= AI i = I ——惯性矩 μ——长度系数;两端铰支μ=1;一端铰支,一段固定μ=0.7;两端固定μ=0.5; 一端固定,一端自由μ=23. 大柔度杆1λλ≥ 22cr λπσE = 中柔度杆12λλλ<≤ λσb a -=cr小柔度杆 2λλ< s cr σσ=4. 稳定校核条件st cr n n FF ≥= F ——工作压力 cr F =cr σ A 第十章 动载荷1. 冲击动荷因数冲击物做自由落体 冲击开始瞬间冲击物与被冲击物接触时的速度为 v水平冲击时 Δst 是冲击点的静变形。
1、解释:(1)形变(应变)强化:材料经历一定的塑性变形后,其屈服应力升高了,这种现象称为应变强化;(2)弹性变形:材料受外力作用发生尺寸和形状的变形,外力除去后随之消失的变形;(3)刚度:在弹性范围内,构件抵抗变形的能力称为刚度;(4)弹性不完整性:弹性变形时加载线与卸载线并不重合,应变落后于应力,存在着弹性后效、弹性滞后、Bauschinger 效应等,这些现象属于弹性变形中的非弹性问题,称为弹性的不完整性;(5)弹性后效:在应力作用下应变不断随时间而发展的行为,以及应力去除后应变逐渐恢复的现象称为弹性后效;(6)弹性滞后:弹性变形范围内,骤然加载和卸载的开始阶段,应变总要落后于应力,不同步;(7)Bauschinger效应:经过预先加载变形,然后再反向加载变形时的弹性极限(屈服强度)降低的现象;(8)应变时效:经变形和时效处理后,材料塑性、韧性降低,脆性增加的现象;(9)韧性:指材料在断裂前吸收塑性变形功和断裂功的能力;(10)脆性断裂:按断裂前不发生宏观塑性变形;(11)韧性断裂:断裂前表现有宏观塑性变形;(12)平面应力状态:只有两个方向上存在应力的状态;(13)平面应变状态:变形只发生在x-y平面内,板厚方向变形为零;(14)低温脆性:随温度降低金属材料由韧性断裂转变为脆性断裂的现象;(15)高周疲劳:指小型试样在变动载荷(应力)试验时,疲劳断裂寿命≥105 周次的疲劳过程;(16)低周疲劳:循环塑性应变控制下的疲劳;(17)等强温度:晶粒和晶界两者强度相等时的温度;(18)弹性极限:试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力值,用σ表示,超过σel时,认为材料开始屈服;el(19)疲劳极限:在s-n曲线上水平部分所对应的应力值;(20)应力腐蚀开裂:材料或零件在应力和腐蚀的环境的共同作用下引起的开裂;(21)氢脆:在应力和过量的氢共同作用下使金属材料塑性、韧性下降的一种现象;(22)腐蚀疲劳:零构件的破坏是在疲劳和腐蚀联合作用下发生的,这种失效形式称为腐蚀疲劳;(23)蠕变极限:高温长期载荷作用下材料的塑性变形抗力指标;(24)持久强度:在高温长时载荷作用下抵抗断裂的能力;(25)松弛稳定性:金属材料抵抗应力松弛的性能;(26)磨损:物体表面互相摩擦时材料自该表面逐渐损失的过程。
一基本概念1.工程构件正常工作必须满足强度、刚度和稳定性的要求。
杆件的强度代表了杆件抵抗破坏的能力;杆件的刚度代表了杆件抵抗变形的能力;杆件的稳定性代表了杆件维持原有平衡形态的能力。
2.变形固体的基本假设是连续性假设、均匀性假设、各向同性假设。
连续性假设认为固体所占据的空间被物质连续地充满而毫无空隙;均匀性假设认为材料的力学性能是均匀的;各向同性假设认为材料沿各个方向具有相同的力学性质。
3.截面法的三个步骤是截取、代替和平衡。
4.杆件变形的基本形式有:拉压,扭转,剪切,弯曲。
5.截面上一点处分布内力的集度,称为该截面该点处的应力。
6.截面上的正应力方向垂直于截面,切应力的方向平行于截面。
7.在卸除荷载后能完全消失的变形称为弹性变形,不能消失而残留下来的变形称为塑性变形。
8.低碳钢受拉伸时,变形的四个阶段为弹性阶段、屈服阶段、强化阶段和局部变形阶段。
9.由杆件截面骤然变化而引起的局部应力骤增的现象称为应力集中。
10.衡量材料塑性的两个指标是伸长率和断面收缩率。
11.受扭杆件所受的外力偶矩的作用面与杆轴线垂直。
12.低碳钢圆截面试件受扭转时,沿横截面破坏;铸铁圆截面试件受扭转时,沿45度角截面破坏。
13.梁的支座按其对梁在荷载作用平面的约束情况,可以简化为三种基本形式,即固定端、固定铰支座、可(活)动铰支座。
14.工程上常用的三种基本形式的静定梁是:简支梁、悬臂梁、外伸梁。
15.平面弯曲梁的横截面上有两个内力分量,分别为剪力和弯矩。
16.拉(压)刚度、扭转刚度和弯曲刚度的表达式分别是EA、GI p和EI z。
17.当梁上有横向力作用时,梁横截面上既有剪力又有弯矩,该梁的弯曲称为横力弯曲。
梁横截面上没有剪力(剪力为0),弯矩为常数,该梁的弯曲称为纯弯曲。
18.在弯矩图发生拐折处,梁上必有集中力的作用。
19.在集中力偶作用处,剪力图将不变。
20.梁的最大正应力发生在最大弯矩所在截面上离中性轴最远的点处。
材料力学复习资料全材料力学复习资料一、填空题K为了保证机器或结构物正常地工作,要求每个构件都有足够的抵抗破坏的能力,即要求它们有足够的强度:冋时要求他们有足够的抵抗变形的能力?即要求它们有足够的刚度:另外,对于受压的细长直杆,还要求它们工作时能保持原有的平衡状态,即要求其有足够的稳定性「2、材料力学是研究构件强度、刚度、稳定性的学科。
3、强度是指构件抵抗破坏的能力:冈帔是指构件抵抗变形的能力:稳左性是指构件维持其原有的平衡状态的能力。
4、在材料力学中,对变形固体的基本假设是连续性假设、均匀性假设、各向同性假设5、随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫舉性变形。
6、截面法是计算力的基本方法。
7、应立是分析构件强度问题的重要依据。
8、线应变和切应变是分析构件变形程度的基本量。
9、轴向尺寸远大于横向尺寸,称此构件为枉。
10、构件每单位长度的伸长或缩短,称为线应变°11、单元体上相互垂直的两根棱边夹角的改变量.称为切应变-12、轴向拉伸与压缩时直杆横截而上的力,称为轴力,13、应力与应变保持线性关系时的最大应力,称为比例极限14、材料只产生弹性变形的最大应力,称为弹性极根:材料能承受的最大应力,称为强度极限。
15、弹性模量E是衡量材料抵抗弹性变形能力的指标。
16、延伸率6是衡量材料的塑性指标。
6 M5%的材料称为塑性材料:§ V5%的材料称为脆性材料。
17、应力变化不大,而应变显著增加的现象,称为屈服或流动18、材料在卸载过程中,应力与应变成线性关系。
19、在常温下把材料冷拉到强化阶段,然后卸载,当再次加载时,材料的比例极限提高,而塑性降低,这种现象称为冷作硬化20、使材料丧失正常工作能力的应力,称为极限应力,21、在工程计算中允许材料承受的最大应力,称为许用应力。
22、当应力不超过比例极限时,横向应变与纵向应变之比的绝对值,称为泊松比一23、胡克定律的应力适用恫是应力不超过材料的比例极限。
材料力学1:对构件正常工作的要求:强度,刚度,稳定性。
2:对可变形固体的假设有:连续性假设,均匀性假设,各向同性假设,完全弹性假设,小变形假设。
3:杆件变形的基本形式:轴向拉伸或轴向拉压缩,剪切,扭转,弯曲。
4:拉杆的纵向线应变ε=Δl/l,横向线应变ε’=Δd/d。
5:胡克定律:Δl=FnL/EA,E为弹性模量,EA称为拉伸(压缩)刚度。
6:单周应力状态下的胡克定律:ε=ζ/E,δ=ε*E泊松比V= Iε1/ΕI7:被蓄在弹性体内的应变能Vε在数值上等于外力所作的功W,即Vε=W称为功能原理,Vε=(FN*NL)/2EA或Vε=(EA/2L)ΔL²8:低碳钢的拉伸过程分为四个阶段:弹性阶段,屈服阶段,强化阶段,局部变形阶段(缩颈现象)。
9:脆性材料对应力集中比较敏感(划玻璃)。
10:弹性模量E,切变模量G与泊松比的关系:G=E/2(1+V)11:传动轴的外力偶矩:Me=9.55*10³*(P/n)=传递的功率/转速12:扭转切应力的一般计算公式:Jp=Tp/Ip=扭矩/极损性矩将Wp=Ip/r带入有Jp=T/WpWp为扭转截面系数。
13:剪切胡克定理:η=G*r和δ=EεG:切变模量,14:矩形截面Iz=bh³/12 ,Wz=bh²/6。
圆截面Iz=(πd³*d)/64,Wz=πd³/32;Ip=(πd³*d)/32,Wp=πd³/16;空心圆截面:Ip=【(πD²*D²)/32】*(1-α²α²),Wp=【(πD³)/16】(1-α²α²),α=d/D15:相对扭转角ψ=Mel/GIp或ψ=TL/GIpGIp称为扭转刚度;单位长度扭转角:ψ’=T/GIp,ψ’=dψ/dλ,Δd=T1d/E1A16:弹簧所受的内力主要是扭转切应力。
17:工程上常见的三种基本静定梁:简支梁,外伸梁,悬臂梁。
材料力学复习资料一、填空题K为了保证机器或结构物正常地工作,要求每个构件都有足够的抵抗破坏的能力,即要求它们有足够的强度:冋时要求他们有足够的抵抗变形的能力•即要求它们有足够的刚度:另外,对于受压的细长直杆,还要求它们工作时能保持原有的平衡状态,即要求其有足够的稳定性「2、材料力学是研究构件强度、刚度、稳定性的学科。
3、强度是指构件抵抗破坏的能力:冈帔是指构件抵抗变形的能力:稳左性是指构件维持其原有的平衡状态的能力。
4、在材料力学中,对变形固体的基本假设是连续性假设、均匀性假设、各向同性假设5、随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫舉性变形。
6、截面法是计算力的基本方法。
7、应立是分析构件强度问题的重要依据。
8、线应变和切应变是分析构件变形程度的基本量。
9、轴向尺寸远大于横向尺寸,称此构件为枉。
10、构件每单位长度的伸长或缩短,称为线应变°11、单元体上相互垂直的两根棱边夹角的改变量.称为切应变-12、轴向拉伸与压缩时直杆横截而上的力,称为轴力,13、应力与应变保持线性关系时的最大应力,称为比例极限14、材料只产生弹性变形的最大应力,称为弹性极根:材料能承受的最大应力,称为强度极限。
15、弹性模量E是衡量材料抵抗弹性变形能力的指标。
16、延伸率6是衡量材料的塑性指标。
6 M5%的材料称为塑性材料:§ V5%的材料称为脆性材料。
17、应力变化不大,而应变显著增加的现象,称为屈服或流动18、材料在卸载过程中,应力与应变成线性关系。
19、在常温下把材料冷拉到强化阶段,然后卸载,当再次加载时,材料的比例极限提高,而塑性降低,这种现象称为冷作硬化20、使材料丧失正常工作能力的应力,称为极限应力,21、在工程计算中允许材料承受的最大应力,称为许用应力。
22、当应力不超过比例极限时,横向应变与纵向应变之比的绝对值,称为泊松比一23、胡克定律的应力适用恫是应力不超过材料的比例极限。
2024年上学期材料力学(考试)复习资料一、单项选择题1.钢材经过冷作硬化处理后其()基本不变(1 分)A.弹性模量;B.比例极限;C.延伸率;D.截面收缩率答案:A2.在下面这些关于梁的弯矩与变形间关系的说法中,()是正确的。
(1 分)A.弯矩为正的截面转角为正;B.弯矩最大的截面挠度最大;C.弯矩突变的截面转角也有突变;D.弯矩为零的截面曲率必为零。
答案:D3.在利用积分计算梁位移时,积分常数主要反映了:( ) (1 分)A.剪力对梁变形的影响;B.支承条件与连续条件对梁变形的影响;C.横截面形心沿梁轴方向的位移对梁变形的影响;D.对挠曲线微分方程误差的修正。
答案:B4.根据小变形条件,可以认为() (1 分)A.构件不变形;B.构件不变形;C.构件仅发生弹性变形;D.构件的变形远小于其原始尺寸答案:D5.火车运动时,其轮轴横截面边缘上危险点的应力有四种说法,正确的是。
(1 分)A.脉动循环应力;B.非对称的循环应力;C.不变的弯曲应力;D.对称循环应力答案:D6.在下列结论中()是错误的(1 分)A.若物体产生位移则必定同时产生变形;B.若物体各点均无位移则必定无变形;C.若物体产生变形则物体内总有一些点要产生位移;D.位移的大小取决于物体的变形和约束状态答案:B7.在下列三种力(1、支反力;2、自重;3、惯性力)中()属于外力(1 分)B.3和2;C.1和3;D.全部答案:D8.在一截面的任意点处若正应力ζ与剪应力η均不为零则正应力ζ与剪应力η的夹角为() (1 分)A.α=90;B.α=450;C.α=00;D.α为任意角答案:A9.拉压杆截面上的正应力公式ζ=N/A的主要应用条件是() (1 分)A.应力在比例极限以内;B.外力合力作用线必须重合于杆件轴线;C.轴力沿杆轴为常数;D.杆件必须为实心截面直杆答案:A10.构件的疲劳极限与构件的()无关。
(1 分)A.材料;B.变形形式;C.循环特性;D.最大应力。
材料力学复习资料一、选择题1、材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
这是因为对可变形固体采用了()假设。
A连续均匀性B各向同性C小变形D平面2、研究构件或其一部分的平衡问题时,采用构件变形前的原始尺寸进行计算,这是因为采用了()假设。
A平面 B 连续均匀性 C 小变形 D 各向同性3、关于截面法的适用对象和范围,下列说法正确的是:()。
A等截面直杆B直杆承受基本变形C不论基本变形还是组合变形,但限于直杆的横截面D不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况4、为使材料有一定的强度储备,安全系数取值应()。
A大于1 B 等于1 C小于1 D 都有可能5、脆性材料所具有的性质是:()。
A 试件拉伸过程中出现屈服现象B 压缩强度极限比拉伸强度极限大得多C 抗冲击性能比塑性材料好D 若极件因开孔造成应力集中现象,对强度无明显影响6、与塑性材料比,脆性材料在拉伸时,力学性能的最大特点是()。
A 强度低,对应力集中不敏感B相同拉力作用下变形小C断裂前几乎没有塑性变形D应力-应变关系严格遵循胡克定律7、下列材料中,不属于各向同性材料的有()。
A钢材B塑料C浇铸很好的混凝土D松木8、关于材料的冷作硬化现象有以下四种结论,正确的是()。
A由于温度降低,其比例极限提高,塑性降低;B由于温度降低,其弹性模量提高,泊松比减小;C经过塑性变形,其比例极限提高,塑性降低;D经过塑性变形,其弹性模量不变,比例极限降低。
9、低碳钢试样拉伸时,横截面上的应力公式σ =F N/A适用于以下哪一种情况? (a)。
A 只适用于σ ≤σ pB 只适用于σ ≤σ eC 只适用于σ ≤σ sD 在试样拉断前都适用10、关于下列四种结论,正确的是( a )。
○1同一截面上正应力与切应力必相互垂直。
○2同一截面上各点的正应力必定大小相等,方向相同。
材料力学I 期末复习资料一、判断题1. 弹性体静力学的任务是尽可能的保证构件的安全工作。
(Y )2. 作用在刚体上的力偶可以任意平移,但作用在弹性体上的力偶一般不能平移。
(Y )3. 若构件上的某一点的任何方向都无应变,则该点无位移。
(N )4. 切应变是变形后构件后构件内任意两条微线段之间夹角的变化量。
(N )5. 胡克定律适用于弹性变形范围内。
(Y )6. 材料的延伸率与试件的尺寸有关。
(Y )7. 一般情况下,脆性材料的安全系数要比塑性材料的大些。
(Y )8. 受扭圆轴的最大切应力出现在横截面上。
(Y )9. 受扭圆轴的最大拉应力的值和最大剪应力的值相等。
(N )10.受扭杆件的扭矩,仅与杆件受到的外力偶矩有关,而与杆件的材料及横截面积的大小、形状无关。
(N )11.平面图形对某轴的静矩等于零,则该轴比为此图形的对称轴。
. (N )12.在一组平行轴中,平面图形对心轴的惯性矩最小。
(Y )13.两梁的跨度、承受的载荷以及支撑都相同,但材料和横截面积不同,则它们的剪力图和弯矩图不一定相同。
(N )14.最大弯矩必然发生在剪力为零的横截面上。
(N )15.若在结构对称的梁上,作用有反对称载荷,则该梁具有对称的剪力图和反对称的弯矩图。
(Y )16.控制梁弯曲强度的主要因素是最大弯矩值。
(N )17.在等截面梁中,正应力绝对值的最大值︱σ︱max比出现在弯矩值︱M︱max最大截面上。
(N )18.梁上弯矩最大的截面,挠度也最大;弯矩为零的截面,转角也为零。
(N )19.平面弯矩梁的挠曲线必定是一条与外力作用面重合或平行的平面曲线。
(Y )20.有正应力作用的方向上,必有线应变;没有正应力作用的方向上,必无线应变。
(N )21.脆性材料不会发生塑性屈服破坏,塑性材料不会发生脆性断裂破坏。
(N )22.纯剪切单元体属于单向应力状态。
(N )23.脆性材料的破坏形式一定是脆性断裂。
(N )24.材料的破坏形式由材料的种类和所处的应力状态而定。
第一章绪论§1.1 材料力学的任务二、基本概念1、构件:工程结构或机械的每一组成部分。
(例如:行车结构中的横梁、吊索等)理论力学—研究刚体,研究力与运动的关系。
材料力学—研究变形体,研究力与变形的关系。
2、变形:在外力作用下,固体内各点相对位置的改变。
(宏观上看就是物体尺寸和形状的改变)弹性变形—随外力解除而消失塑性变形(残余变形)—外力解除后不能消失刚度:在载荷作用下,构件抵抗变形的能力3、内力:构件内由于发生变形而产生的相互作用力。
(内力随外力的增大而增大)强度:在载荷作用下,构件抵抗破坏的能力。
4、稳定性:在载荷作用下,构件保持原有平衡状态的能力。
强度、刚度、稳定性是衡量构件承载能力的三个方面,材料力学就是研究构件承载能力的一门科学。
三、材料力学的任务材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全的构件,提供必要的理论基础和计算方法若:构件横截面尺寸不足或形状不合理,或材料选用不当—不满足上述要求,不能保证安全工作.若:不恰当地加大横截面尺寸或选用优质材料—增加成本,造成浪费研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。
因此在进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和手段。
四、材料力学的研究对象构件的分类:杆件、板壳*、块体*材料力学主要研究杆件﹜直杆——轴线为直线的杆曲杆——轴线为曲线的杆等截面杆——横截面的大小形状不变的杆变截面杆——横截面的大小或形状变化的杆等截面直杆——等直杆§1.2 变形固体的基本假设在外力作用下,一切固体都将发生变形,故称为变形固体。
在材料力学中,对变形固体作如下假设:1、连续性假设:认为整个物体体积内毫无空隙地充满物质灰口铸铁的显微组织球墨铸铁的显微组织22、均匀性假设:认为物体内的任何部分,其力学性能相同普通钢材的显微组织 优质钢材的显微组织3 4如右图,δ不计。
计算得到很大的简化。
材料力学复习资料(总17页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--材料力学复习一一、选择题1. 图中所示三角形微单元体,已知两个直角截面上的切应力为0τ,则斜边截面上的正应力σ和切应力τ分别为 。
A 、00,στττ==;B 、0,0σττ==;C 、00,στττ=-=;D 、0,0σττ=-=。
2.构件中危险点的应力状态如图所示,材料为低碳钢,许用应力为[]σ,正确的强度条件是 。
A 、[]σσ≤;B 、[]στσ+≤;C 、[],[][]/2σσττσ≤≤=;D []σ≤。
3. 受扭圆轴,当横截面上的扭矩不变而直径减小一半时,该横截面上的最大切应力原来的最大切应力是 。
A 、2倍B 、4倍C 、6倍D 、8倍4. 两根材料相同、抗弯刚度相同的悬臂梁I 、II 如图示,下列结论中正确的是 。
梁和II 梁的最大挠度相同 梁的最大挠度是I 梁的2倍 梁的最大挠度是I 梁的4倍 梁的最大挠度是I 梁的1/2倍P题1-4 图5. 现有两种压杆,一为中长杆,另一为细长杆。
在计算压杆临界载荷时,如中长杆误用细长杆公式,而细长杆误用中长杆公式,其后果是 。
A 、两杆都安全; B 、两杆都不安全;C 、中长杆不安全,细长杆安全;D 、中长杆安全,细长杆不安全。
6. 关于压杆临界力的大小,说法正确的答案是 A 与压杆所承受的轴向压力大小有关; B 与压杆的柔度大小有关;C 与压杆所承受的轴向压力大小有关;D 与压杆的柔度大小无关。
4545题 1-1 图二、计算题(共5题,共70分)1、如图所示矩形截面梁AB ,在中性层点K 处,沿着与x 轴成45方向上贴有一电阻应变片,在载荷F 作用下测得此处的应变值为6451025.3-︒⨯-=ε。
已知200E GPa =,0.3μ=,求梁上的载荷F 的值。
2.(16分)圆杆AB 受力如图所示,已知直径40d mm =,112F kN =,20.8F kN =,屈服应力240s MPa σ=,安全系数2n =。
材料力学一、判断题1.拉杆伸长后,横向会缩短,这是因为杆有横向应力的存在。
( N)2.平行移轴公式表示图形对任意两个相互平行轴的惯性矩和惯性积之间的关。
( N)3.圆截面杆件受扭时,横截面上的最大切应力发生在横截面离圆心最远处。
( Y)4.单元体上最大切应力作用面上必无正应力。
(N)6.未知力个数多于独立的平衡方程数目,则仅由平衡方程无法确定全部未知力,这类问题称为超静定问题。
( Y)7.两梁的材料、长度、截面形状和尺寸完全相同,若它们的挠曲线相同,则受力相同。
( Y )8.主应力是过一点处不同方向截面上正应力的极值。
( Y )10.第四强度理论宜采用于塑性材料的强度计算。
(N )11.拉杆伸长后,横向会缩短,这是因为杆有横向应力的存在。
( N)12.圆截面杆件受扭时,横截面上的最大切应力发生在横截面离圆心最远处。
(Y) 13.细长压杆,若其长度系数增加一倍,临界压力增加到原来的4倍。
(N)14.两梁的材料、长度、截面形状和尺寸完全相同,若它们的挠曲线相同,则受力相同。
(Y )15.主应力是过一点处不同方向截面上正应力的极值。
( Y )16.由切应力互等定理可知:相互垂直平面上的切应力总是大小相等。
(N)17.矩形截面梁横截面上最大切应力τmax出现在中性轴各点。
(Y )18.强度是构件抵抗破坏的能力。
(Y)19.均匀性假设认为,材料内部各点的应变相同。
(N)20.稳定性是构件抵抗变形的能力。
(N)21.对于拉伸曲线上没有屈服平台的合金塑性材料,工程上规定2.0σ作为名义屈服极限,此时相对应的应变为2.0%=ε。
(N)22.任何情况下材料的弹性模量E都等于应力和应变的比值。
(N)23.求解超静定问题,需要综合考察结构的平衡、变形协调和物理三个方面。
(Y )24.第一强度理论只用于脆性材料的强度计算。
(N)25.有效应力集中因数只与构件外形有关。
(N )26.工程上将延伸率δ≥10%的材料称为塑性材料。
(N )27.理论应力集中因数只与构件外形有关。
(Y )28.矩形截面杆扭转变形时横截面上凸角处切应力为零。
(Y )29.有效应力集中因数只与构件外形有关。
(N )30.压杆的临界压力(或临界应力)与作用载荷大小有关。
(N )31.两根材料、长度、截面面积和约束条件都相同的压杆,其临界压力也一定相同。
(N )32.压杆的临界应力值与材料的弹性模量成正比。
(N )33.细长压杆,若其长度系数增加一倍,cr P 增加到原来的1/4倍。
(Y )34.一端固定,一端自由的压杆,长1.5m ,压杆外径mm 76=D ,内径mm 64=d 。
材料的弹性模量GPa 200=E ,压杆材料的p λ值为100,则杆的临界应力MPa 135≈cr σ。
(Y )35.正应力是指垂直于杆件横截面的应力。
正应力又可分为正值正应力和负值正应力。
(Y)36.构件的工作应力可以和其极限应力相等。
(N)37.挤压面的计算面积一定是实际挤压的面积。
(N)38.剪切和挤压总是同时产生,所以剪切面和挤压面是同一个面。
(N)二、填空题1.受力后几何形状和尺寸均保持不变的物体称为 刚体 。
2.构件抵抗 破坏 的能力称为强度。
3.梁上作用着均布载荷,该段梁上的弯矩图为 二次抛物线 。
4.构件保持 原有平衡状态 的能力称为稳定性5.梁的中性层与横截面的交线称为 中性轴 。
7.临界应力的欧拉公式只适用于 细长 杆。
9.在截面突变的位置存在 应力 集中现象。
10.若一段梁上作用着均布载荷,则这段梁上的剪力图为 斜直线 。
11.受力后几何形状和尺寸均保持不变的物体称为接触面的公法线。
12.光滑接触面约束的约束力沿应力指向物体。
13.梁上作用着均布载荷,该段梁上的弯矩图为2τx≤[σ]。
18. 大柔度压杆和中柔度压杆一般是因失稳而失效,小柔度压杆是因强度不足而失效。
21.圆轴扭转时,横截面上各点的切应力与其到圆心的距离成正比。
22.力对轴之矩在力与轴线相交或平行情况下为零。
23.梁的中性层与横截面的交线称为中性轴。
24.图所示点的应力状态,其最大切应力是100MPa25.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则杆中最大正应力为5F/2A 。
26.梁上作用集中力处,其剪力图在该位置有突变。
27.光滑接触面约束的约束力沿接触面的公法线指向物体。
28.平面任意力系平衡方程的三矩式,只有满足三个矩心接触面的公法线的条件时,才能成为力系平衡的充要条件。
29.图所示,梁最大拉应力的位置在 C 点处。
30.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是根号下б^2+4τx^2≤[б]。
31、变形固体的变形可分为:___弹性变形___和__塑性变形___。
32、杆件变形的基本形式有_拉(压)变形___、__剪切变形_、___扭转变形_、___弯曲变形。
33.下图所示各杆件中受拉伸的杆件有__AB,BC,CD,AD_____;三、选择题1.一根空心轴的内、外径分别为d、D。
当D=2d时,其抗扭截面模量为(B)。
(A).7/16d3;(B).15/32d3;(C).15/32d4;(D).7/16d4。
2.构件的强度、刚度和稳定性(C)。
(A)只与材料的力学性质有关;(B)只与构件的形状尺寸关(C)与二者都有关;(D)与二者都无关。
3.轴向拉伸杆,正应力最大的截面和切应力最大的截面(A)。
(A)分别是横截面、45°斜截面;(B)都是横截面,(C)分别是45°斜截面、横截面;(D)都是45°斜截面。
4.应力-应变曲线的纵、横坐标分别为σ=FN /A,ε=△L / L,其中(A)。
(A)A 和L 均为初始值;(B)A 和L 均为瞬时值;(C)A 为初始值,L 为瞬时值;(D)A 为瞬时值,L 均为初始值。
5.梁在集中力偶作用的截面处,它的内力图为(C)。
(A)Q图有突变,M图无变化;(B)Q图有突变,M图有转折;(C)M图有突变,Q图无变化;(D)M图有突变,Q图有转折。
6.非对称的薄壁截面梁承受横向力时,若要求梁只产生平面弯曲而不发生扭转,则横向力作用的条件是(D )(A ) 作用面与形心主惯性平面重合;(B )作用面与形心主惯性平面平行;(C )通过弯曲中心的任意平面;(D )通过弯曲中心,平行于主惯性平面。
7.通常计算组合变形构件应力和变形的过程是,先分别计算每种基本变形各自引起的应力和变形,然后再叠加这些应力和变形。
这样做的前提条件是构件必须为(C )(A )线弹性杆件; (B )小变形杆件;(C )线弹性、小变形杆件; (D )线弹性、小变形直杆。
8.细长压杆,若其长度系数增加一倍,则(D )。
(A ) 增加一倍; (B ) 增加到原来的4倍;(C ) 为原来的二分之一倍;(D ) 增为原来的四分之一倍16. 轴向拉压杆,在与其轴线平行的纵向截面上(D )。
(A ) 正应力为零,切应力不为零;(B ) 正应力不为零,切应力为零;(C ) 正应力和切应力均不为零;(D ) 正应力和切应力均为零。
18. 钢材经过冷作硬化处理后,其(A )基本不变。
(A) 弹性模量;(B )比例极限;(C )延伸率;(D )截面收缩率。
19. 设一阶梯形杆的轴力沿杆轴是变化的,则发生破坏的截面上 (D )。
(A )外力一定最大,且面积一定最小;(B )轴力一定最大,且面积一定最小;(C )轴力不一定最大,但面积一定最小;(D )轴力与面积之比一定最大。
20. 一个结构中有三根拉压杆,设由这三根杆的强度条件确定的结构许用载荷分别为F 1、F 2、F 3,且F 1 > F 2 > F 3,则该结构的实际许可载荷[ F ]为(C )。
(A ) F 1 ; (B )F 2; (C )F 3; (D )(F 1+F 3)/2。
21.应用拉压正应力公式A N =σ的条件是(B ) (A )应力小于比极限;(B )外力的合力沿杆轴线;(C )应力小于弹性极限;(D )应力小于屈服极限。
22.在连接件上,剪切面和挤压面分别(B )于外力方向。
(A )垂直、平行; (B )平行、垂直;(C )平行; (D )垂直。
23. 连接件应力的实用计算是以假设(A )为基础的。
(A ) 切应力在剪切面上均匀分布;(B ) 切应力不超过材料的剪切比例极限;(C ) 剪切面为圆形或方行;(D ) 剪切面面积大于挤压面面积。
24.在连接件剪切强度的实用计算中,剪切许用力[τ]是由( D )得到的.(A ) 精确计算;(B )拉伸试验;(C )剪切试验;(D )扭转试验。
25. 置于刚性平面上的短粗圆柱体AB ,在上端面中心处受到一刚性圆柱压头的作用,如图所示。
若已知压头和圆柱的横截面面积分别为150mm 2、250mm 2,圆柱AB 的许用压应力[]c 100MPa σ=,许用挤压应力[]bs 220MPa σ=,则圆柱AB 将( C )。
(A )发生挤压破坏;(B )发生压缩破坏; (C )同时发生压缩和挤压破坏; (D )不会破坏。
26.电动机传动轴横截面上扭矩与传动轴的(A )成正比。
(A )传递功率P ; (B )转速n ;(C )直径D ; (D )剪切弹性模量G 。
27.圆轴横截面上某点剪切力τρ的大小与该点到圆心的距离ρ成正比,方向垂直于过该点的半径。
这一结论是根据( B )推知的。
(A ) 变形几何关系,物理关系和平衡关系;(B ) 变形几何关系和物理关系;(C ) 物理关系;(D ) 变形几何关系。
28.铸铁试件扭转破坏是(B )。
F(A)沿横截面拉断;(B)沿横截面剪断;(C)沿450螺旋面拉断;(D)沿450螺旋面剪断。
正确答案是。
29.非圆截面杆约束扭转时,横截面上(C)。
(A)只有切应力,无正应力;(B)只有正应力,无切应力;(C)既有正应力,也有切应力;(D)既无正应力,也无切应力;30. 设直径为d、D的两个实心圆截面,其惯性矩分别为I P(d)和I P(D)、抗扭截面模量分别为W t(d)和W t(D)。
则内、外径分别为d、D的空心圆截面的极惯性矩I P和抗扭截面模量W t分别为(B)。
(A)I P=I P(D)-I P(d),W t=W t(D)-W t(d);(B)I P=I P(D)-I P(d),W t≠W t(D)-W t(d);(C)I P≠I P(D)-I P(d),W t=W t(D)-W t(d);(D)I P≠I P(D)-I P(d),W t≠W t(D)-W t(d)。
31.当实心圆轴的直径增加一倍时,其抗扭强度、抗扭刚度分别增加到原来的(A)。
(A)8和16;(B)16和8;(C)8和8;(D)16和16。