材料力学重点公式复习
- 格式:doc
- 大小:725.00 KB
- 文档页数:8
材料力学公式汇总一、应力与强度条件 1、拉压σmax N=A≤[σ]max4、平面弯曲①σmax=②σtmax=σcmaxMWz≤[σ]max2、剪切τmax=Q≤[τ] A挤压σ挤压=P挤压A≤σ挤压[]Mmaxytmax≤[σtmax] IzM=maxycmax≤[σcnax]IzIz⋅b*③τmax=QmaxSz max≤[τ]3、圆轴扭转τmax=5、斜弯曲σmax= T≤[τ] Wt≤[σ]maxMzMy+WzWy6、拉(压)弯组合σmax=σtmax=NM+AWz≤[σ]maxMzNMzN+ytmax≤[σt] σcmax=ycmax-≤[σc] AIzIzA注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论σr3=②第四强度理论σr4=二、变形及刚度条件 NL1、拉压∆L==EANiLi=EAN(x)dxEA2w2+4τn==22Mw+MnWzWz≤[σ]≤[σ]2w2+3τn22Mw+0.75Mn∑⎰LTiLiT(x)dxTLΦT1800=∑=⋅2、扭转Φ= φ== ( /m)GIpGIpGIpLGIpπ⎰3、弯曲(1)积分法:EIy''(x)=M(x) EIy'(x)=EIθ(x)=⎰M(x)dx+C EIy(x)=[M(x)dx]dx+Cx+D (2)叠加法:f(P1,P2)…=f(P1)+f(P2)+…,θ(P1,P2)=θ(P1)+θ(P2)+…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)MALq⎰⎰PALBBALBMLPL2qL3θB= θB= θB=EI2EI6EIqL4ML2PL3fB= fB= fB=8EI3EI2EIMLMLqL3PL2,θA= θB=θA= θB=θA= θB=6EI3EI24EI16EIqL4ML2PL3fc= fc= fc= 16EI48EI384EI(4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)Mi2LiM2LM2(x)dx=∑= U=2EIi2EI2EI⎰(5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)∆i=M(x)∂M(x)∂U=∑dx EI∂Pi∂Pi⎰三、应力状态与强度理论1、二向应力状态斜截面应力σx+σyσx-σyσx-σyσα=+cos2α-τxysin2α τα=sin2α+τxyco2sα 2222、二向应力状态极值正应力及所在截面方位角σx-σy2-2τxyσmaxσx+σy2=±()+τxy tg2α0= σminσx-σy223、二向应力状态的极值剪应力τmax=(σx-σy22)2+τxy0注:极值正应力所在截面与极值剪应力所在截面夹角为454、三向应力状态的主应力:σ1≥σ2≥σ3σ-σ3最大剪应力:τmax=1 25、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变)τxy11μεx=(σx-μσy) εy=(σy-μσx) εz=-(σx+σy) γxy= EEEG(2)、表达形式之二(用应变表示应力)σx=E1-μ2(εx+μεy) σy=E1-μ2(εy+μεx) σz=0 τxy=Gγxy6、三向应力状态的广义胡克定律εx=τxy1σx-μσy+σz (x,y,z) γxy= (xy,yz,zx) EG[()]27、强度理论(1)σr1=σ1≤[σ1] σr2=σ1-μ(σ2+σ3)≤[σ] [σ]=(2)σr3=σ1-σ3≤[σ] σr4=σbnb1(σ1-σ2)2+(σ2-σ3)2+(σ3-σ1)2≤[σ] [σ]=σsns28、平面应力状态下的应变分析εx+εyεx-εy⎛γxy⎫⎪sin2α (1)εα=+cos2α- - ⎪22222⎛εx-εy⎫⎛γxy⎫εmaxεx+εy⎪+ ⎪ =±(2)⎪⎪εmin2⎝2⎭⎝2⎭⎛γxy⎛γα⎫εx-εysin2α+ -⎪= -22⎝2⎭⎝⎫⎪co2sα ⎪⎭γxytg2α0=εx-εy四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)π2EIminπ2E①细长受压杆λ≥λp Pcr= σcr=2 2λ(μL)②中长受压杆λp≥λ≥λs σcr=a-bλ ③短粗受压杆λ≤λs “σcr”=σs 或σba-σsπ2E2、关于柔度的几个公式λ= λp= λs=iσpbμL3、惯性半径公式i=Izd(圆截面 iz=,矩形截面iminA4=b(b为短边长度))五、动载荷(只给出冲击问题的有关公式)能量方程∆T+∆V=∆U 2h冲击系数 Kd=1++(自由落体冲击) Kd=∆st2v0(水平冲击)g∆st六、截面几何性质1、惯性矩(以下只给出公式,不注明截面的形状)dπd4πD42IP=ρdA= 1-α4 α=D3232⎰()bh3hb3Iz=ydA=1-α 64641212Izπd3πD3hb2bh24Wz== 1-αymax326326⎰2πd4πD4((4))2、惯性矩平移轴公式Iz=Izc+a2A。
材料力学公式汇总材料力学是研究物质在受力作用下的变形和破坏规律的科学。
在材料力学中,有一些重要的公式常被用来描述材料的力学性能。
下面是一些常见的材料力学公式的汇总。
1. 应力(Stress)的公式:应力是单位面积上的力,通常用σ表示。
常见的应力公式有:①弹性应力公式:σ=Eε其中,σ为应力,E为杨氏模量,ε为材料的应变(strain)。
②纵向应力公式:σ=P/A其中,σ为纵向应力,P为作用在材料上的纵向力,A为材料的受力面积。
③剪切应力公式:τ=F/A其中,τ为剪切应力,F为作用在材料上的剪切力,A为材料的受力面积。
2. 应变(Strain)的公式:应变是物体的变形程度,通常用ε表示。
常见的应变公式有:①纵向应变公式:ε=δL/L其中,ε为纵向应变,δL为物体的纵向位移,L为物体的原始长度。
②剪切应变公式:γ=δθ其中,γ为剪切应变,δθ为物体的剪切角。
③ 体积变形(Poisson's Ratio)公式:ν = -ε_lat / ε_long其中,ν为体积变形,ε_lat为横向应变,ε_long为纵向应变。
3. 弹性模量(Elastic Modulus)的公式:弹性模量是衡量材料抵抗应变的能力,常见的弹性模量公式有:① 杨氏模量(Young's Modulus):E=σ/ε其中,E为杨氏模量,σ为应力,ε为应变。
② 剪切模量(Shear Modulus):G=τ/γ其中,G为剪切模量,τ为剪切应力,γ为剪切应变。
③ 体积模量(Bulk Modulus):K=-∆V/V/∆p其中,K为体积模量,∆V为体积的变化量,V为原始体积,∆p为压力的变化量。
4. 破坏强度(Ultimate Strength)的公式:破坏强度是材料能够承受的最大应力,常见的破坏强度公式有:① 抗拉强度(Tensile Strength):σ_max = F_max / A其中,σ_max为抗拉强度,F_max为材料所能承受的最大拉力,A为受力面积。
材料力学公式总结材料力学是研究材料在外力作用下的力学性能和变形规律的学科,它是材料科学的基础和核心。
在材料力学中,有许多重要的公式,它们可以帮助我们理解材料的性能和行为。
本文将对材料力学中的一些重要公式进行总结,希望能对大家的学习和工作有所帮助。
1. 应力和应变的关系公式。
在材料力学中,应力和应变是两个非常重要的概念。
应力是单位面积上的力,通常用σ表示,而应变是材料单位长度的变形量,通常用ε表示。
它们之间的关系可以用胡克定律来描述,即σ = Eε,其中E为杨氏模量,是描述材料抵抗变形能力的一个重要参数。
2. 弹性模量的计算公式。
弹性模量是描述材料在受力后能够恢复原状的能力的一个重要参数。
对于各向同性材料,弹性模量E可以用杨氏模量和泊松比来表示,即E = 2G(1+μ),其中G 为剪切模量,μ为泊松比。
3. 应力-应变曲线的公式。
材料在受力时,应力和应变之间的关系通常通过应力-应变曲线来描述。
对于线弹性材料来说,应力-应变曲线是一条直线,其斜率就是杨氏模量E。
而对于非线性材料来说,应力-应变曲线通常是一条曲线,可以用一些复杂的数学公式来描述。
4. 塑性变形的公式。
当材料受到超过其屈服强度的应力时,就会发生塑性变形。
塑性变形的特点是应力和应变不再呈线性关系,而是出现了一定的变形硬化。
塑性变形的公式通常比较复杂,需要根据具体的材料和加载条件来确定。
5. 断裂力学的公式。
材料在受到过大的应力时会发生断裂,断裂力学是研究材料断裂行为的学科。
在断裂力学中,有许多重要的公式,如格里菲斯断裂准则、弗兰克-雷迪公式等,它们可以帮助我们预测材料的断裂行为。
总结。
材料力学中的公式是我们理解材料性能和行为的重要工具,通过对这些公式的学习和掌握,我们可以更好地应用材料力学知识,解决工程实际问题。
希望本文对大家有所帮助,也希望大家能够深入学习材料力学,为材料科学的发展做出贡献。
材料力学公式完全版材料力学是研究材料在外力作用下的力学性质和变形行为的一门学科。
在材料力学中,有很多的公式被广泛应用于计算和分析材料的力学行为。
下面是一些常见的材料力学公式:1. 应力(Stress):应力是单位面积上的力,通常用σ 表示,计算公式为:σ = F / A,其中 F 是力的大小,A 是面积。
2. 应变(Strain):应变是物体在受力作用下发生变形的程度,通常用ε 表示,计算公式为:ε = ΔL / L,其中ΔL 是长度的变化量,L 是初始长度。
3. 弹性模量(Young's modulus):弹性模量是衡量材料抵抗变形的能力的物理量,通常用 E 表示,计算公式为:E = σ / ε。
4. 剪切应力(Shear stress):剪切应力是垂直方向上的切应力,通常用τ 表示,计算公式为:τ = F / A,其中 F 是切力的大小,A 是垂直于切力方向的面积。
5. 剪切应变(Shear strain):剪切应变是物体在受剪切力作用下的变形程度,通常用γ 表示,计算公式为:γ = tanθ,其中θ 是切变角度。
6. 泊松比(Poisson's ratio):泊松比是衡量材料横向收缩相对于纵向伸长的程度的物理量,通常用ν 表示,计算公式为:ν = -ε横 /ε纵。
7. 屈服强度(Yield strength):屈服强度是材料开始产生塑性变形的临界点,通常用σy 表示。
8. 极限强度(Ultimate strength):极限强度是材料在破坏前能承受的最大应力,通常用σu 表示。
9. 可延性(Elonagation):可延性是材料在断裂前的拉伸变形量,通常用δ 表示,计算公式为:δ = (L - L0) / L0。
10. 硬度(Hardness):硬度是材料抵抗划伤或压痕的能力,常用的硬度测量方法有布氏硬度、维氏硬度等。
11. 柯尔摩根关系(Hooke's law):柯尔摩根关系是描述弹性固体在小应变下的力学行为的线性关系,计算公式为:σ = Eε,其中 E 是杨氏模量,σ 是应力,ε 是应变。
材料力学公式大全材料力学是研究材料在外力作用下的变形、破坏和稳定性等力学性能的学科。
在工程实践中,材料力学公式是工程师们进行材料设计、分析和计算的重要工具。
本文将为大家介绍一些常用的材料力学公式,希望能对大家有所帮助。
1. 应力和应变。
在材料力学中,应力和应变是最基本的概念。
应力是单位面积上的内力,通常用σ表示,其公式为:σ = F/A。
其中,F为受力,A为受力面积。
应变是材料单位长度的变形量,通常用ε表示,其公式为:ε = ΔL/L。
其中,ΔL为长度变化量,L为原始长度。
2. 弹性模量。
弹性模量是材料在弹性阶段的应力和应变关系的比例系数,通常用E表示,其公式为:E = σ/ε。
3. 餐极限。
屈服极限是材料在受力作用下开始发生塑性变形的应力值,通常用σy表示。
4. 断裂韧性。
断裂韧性是材料在破坏前所能吸收的能量,通常用K表示,其公式为:K = σ√πc。
其中,σ为应力,c为裂纹长度。
5. 疲劳强度。
疲劳强度是材料在交变应力作用下能够承受的最大应力值,通常用σf表示。
6. 塑性体积变形。
塑性体积变形是材料在塑性变形过程中体积的变化,通常用ΔV表示,其公式为:ΔV = V(ε1-ε2+ε3)。
其中,V为原始体积,ε1、ε2、ε3分别为三个主应变。
7. 岛壳理论。
岛壳理论是用于计算薄壁结构的强度和稳定性的理论,通常用T表示,其公式为:T = P/A。
其中,P为受力,A为受力面积。
8. 塑性流动理论。
塑性流动理论是用于描述金属材料在塑性变形过程中的流动规律的理论,通常用ε表示,其公式为:ε = ln(ε0/εf)。
其中,ε0为初始应变,εf为终止应变。
以上就是一些常用的材料力学公式,希望对大家有所帮助。
在工程实践中,我们可以根据具体情况选择合适的公式进行分析和计算,以保证工程设计的安全可靠性。
材料力学是一个复杂而又有趣的领域,希望大家能够在学习和工作中不断深入研究,提升自己的专业能力。
《材料力学》公式材料力学是研究材料在外力作用下的力学性能和行为的一门学科。
它是工程力学的一个重要分支,广泛应用于工程结构、材料开发和制造等领域。
以下是《材料力学》中常用的一些公式,供参考。
1.应力(σ)和应变(ε)的关系:材料的应力与应变之间存在一定的线性关系,可表示为σ=Eε,其中E为弹性模量。
2.应力的计算:材料在外力作用下受到的内力为应力,可计算为σ=F/A,其中F为作用力,A为受力面积。
3.应变的计算:材料受到外力作用后的形变称为应变,可计算为ε=(ΔL/L),其中ΔL为变形长度,L为初始长度。
4.弹性模量(E):材料在弹性阶段的应力和应变之间的比值称为弹性模量,可表示为E=σ/ε。
5.屈服强度(σy):材料在受到一定应力作用后开始发生塑性变形的最大应力值,常用于评估材料的强度。
6.抗拉强度(σu):材料在拉伸过程中的最大抗拉应力值。
7.韧性(τ):材料在破坏前能吸收的能量,可表示为τ=∫σdε,即韧性为应力-应变曲线下的面积。
8.断后伸长率(Ag):材料在断裂后的伸长量与原始长度的比值,常用于评估材料的延展性。
9.拉伸应力(σ):材料在拉伸过程中受到的应力。
10.断裂韧性(Kc):材料对裂纹扩展的抵抗能力,用来评估材料的断裂性能。
11.断裂韧性(Gc):材料对裂纹扩展的抵抗能力,通常作为评估材料断裂韧性的指标。
12.蠕变:材料在长期受持续应力作用下发生的形变,其速率与应力、温度等因素有关。
13.疲劳:材料在循环应力作用下产生的破坏,通常以疲劳寿命来评估材料的耐久性。
14.断裂力学:研究材料在受到外力作用下产生裂纹并扩展的过程,分析裂纹的尖端应力场、断裂断面等。
15.刚度(k):材料在受到外力作用下的抵抗形变的能力,可表示为k=F/δ,其中F为作用力,δ为形变量。
以上是《材料力学》中的一些常用公式,通过对材料的力学性能和行为的研究,可以更好地理解和应用材料,为工程结构的设计和材料的选择提供科学的依据。
材料力学公式大全材料力学是研究材料在外力作用下的力学性能和变形规律的学科,是材料科学的重要组成部分。
在工程实践中,材料力学公式是工程师们设计和分析结构、零部件等工程问题时必不可少的工具。
本文将为大家介绍一些常用的材料力学公式,希望能对大家的工程实践有所帮助。
1. 应力公式。
在材料力学中,应力是指单位面积上的力的大小,通常用σ表示,其公式为:\[ \sigma = \frac{F}{A} \]其中,F为受力,A为受力面积。
2. 应变公式。
应变是指材料在受力作用下产生的变形程度,通常用ε表示,其公式为:\[ \varepsilon = \frac{\Delta L}{L} \]其中,ΔL为长度变化量,L为原始长度。
3. 弹性模量公式。
弹性模量是材料抵抗形变的能力,通常用E表示,其公式为:\[ E = \frac{\sigma}{\varepsilon} \]4. 剪切应力公式。
在材料力学中,剪切应力是指垂直于受力方向的力,通常用τ表示,其公式为:\[ \tau = \frac{F}{A} \]其中,F为受力,A为受力面积。
5. 剪切应变公式。
剪切应变是指材料在受剪切力作用下产生的变形程度,通常用γ表示,其公式为:\[ \gamma = \frac{\Delta x}{h} \]其中,Δx为位移,h为原始长度。
6. 泊松比公式。
泊松比是材料在拉伸或压缩时,在垂直方向上的收缩或膨胀程度的比值,通常用ν表示,其公式为:\[ \nu = -\frac{\varepsilon_{y}}{\varepsilon_{x}} \]其中,εy为垂直方向的应变,εx为拉伸或压缩方向的应变。
7. 弯曲应力公式。
在材料力学中,弯曲应力是指材料在受弯曲力作用下的应力,其公式为:\[ \sigma = \frac{M \cdot c}{I} \]其中,M为弯矩,c为截面到中性轴的距离,I为惯性矩。
8. 弯曲应变公式。
弯曲应变是指材料在受弯曲力作用下产生的变形程度,其公式为:\[ \varepsilon = \frac{M \cdot c}{E \cdot I} \]其中,M为弯矩,c为截面到中性轴的距离,E为弹性模量,I为惯性矩。
材料力学常用公式材料力学是研究材料在受力下的力学性质和变形行为的学科,它在工程领域中有着广泛的应用。
常用的材料力学公式包括应力、应变、热应变、应力-应变关系等。
下面是一些常用的材料力学公式的介绍:1. 应力(Stress)公式:应力定义为单位面积上的力,常用公式为:σ=F/A其中,σ为应力,F为受力,A为受力面积。
2. 应变(Strain)公式:应变定义为材料单位长度的变化,常用公式为:ε=ΔL/L其中,ε为应变,ΔL为长度变化,L为原始长度。
3. 霍克定律(Hooke's Law):霍克定律描述了弹性固体在小应变下应力和应变的线性关系,常用公式为:σ=Eε其中,σ为应力,ε为应变,E为材料的弹性模量。
4. 应力-应变关系(Stress-Strain Relationship):应力-应变关系用来描述材料在受力下的变形行为,通常用应力与应变的曲线来表示。
其中弹性阶段遵循霍克定律,塑性阶段存在应力和应变不再线性相关的情况。
5.等效应力(von Mises Stress):等效应力是衡量材料在多轴载荷作用下发生破坏的临界值,常用公式为:σ_eq = √(σ_x^2 + σ_y^2 + σ_z^2 - σ_xσ_y - σ_yσ_z -σ_zσ_x + 3τ^2)其中,σ_eq为等效应力,σ_x、σ_y、σ_z为主应力,τ为主应力间的剪应力。
6. 拉伸强度(Tensile Strength):拉伸强度是材料在拉伸状态下破坏前的最大抗拉应力,常用公式为:σ_u = P_max / A_0其中,σ_u为拉伸强度,P_max为最大拉伸力,A_0为原始横截面积。
7. 弯曲应力(Bending Stress):当材料受弯曲作用时,所产生的应力称为弯曲应力,常用公式为:σ_b=(M*y)/I其中,σ_b为弯曲应力,M为弯矩,y为材料中点位置,I为截面惯性矩。
8. 剪切应力(Shear Stress):剪切应力是材料在剪切载荷作用下的应力,常用公式为:τ=F/A其中,τ为剪切应力,F为剪切力,A为剪切面积。
1、应力全应力正应力切应力线应变外力偶矩当功率P单位为千瓦(kW),转速为n(r/min)时,外力偶矩为PMe 9549(N.m) n当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为PMe 7024(N.m) n拉(压)杆横截面上的正应力F拉压杆件横截面上只有正应力 ,且为平均分布,其计算公式为 N (3-1) A 式中FN为该横截面的轴力,A为横截面面积。
正负号规定拉应力为正,压应力为负。
公式(3-1)的适用条件:(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;(2)适用于离杆件受力区域稍远处的横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;(4)截面连续变化的直杆,杆件两侧棱边的夹角 20时拉压杆件任意斜截面(a图)上的应力为平均分布,其计算公式为全应力正应力 0p cos (3-2) cos2 (3-3)1sin2 (3-4) 2切应力式中 为横截面上的应力。
正负号规定:由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。
拉应力为正,压应力为负。
对脱离体内一点产生顺时针力矩的 为正,反之为负。
两点结论:。
当(1)当 0时,即横截面上, 达到最大值,即 max=90时,即纵截面上, =90=0。
00000(2)当 45时,即与杆轴成45的斜截面上, 达到最大值,即( )max1.2 拉(压)杆的应变和胡克定律(1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。
如图3-2。
图3-2轴向变形 l l1 l 轴向线应变横向线应变 l 横向变形 b b1 b l b 正负号规定伸长为正,缩短为负。
b(2)胡克定律当应力不超过材料的比例极限时,应力与应变成正比。
即 E (3-5)或用轴力及杆件的变形量表示为 l FNl (3-6) EA式中EA称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。
材料力学公式大全一、轴向拉伸与压缩。
1. 内力 - 轴力(N)- 截面法:N = ∑ F_外(外力沿杆件轴线方向的代数和)2. 应力 - 正应力(σ)- σ=(N)/(A),其中A为杆件的横截面面积。
3. 变形 - 轴向变形(Δ l)- 胡克定律:Δ l=(NL)/(EA),其中L为杆件的原长,E为材料的弹性模量。
4. 应变 - 线应变(varepsilon)- varepsilon=(Δ l)/(l)二、剪切。
1. 内力 - 剪力(V)- 截面法:V=∑ F_外(垂直于杆件轴线方向外力的代数和)2. 应力 - 切应力(τ)- τ=(V)/(A)(A为剪切面面积)3. 剪切胡克定律。
- τ = Gγ,其中G为材料的切变模量,γ为切应变。
三、扭转。
1. 内力 - 扭矩(T)- 截面法:T=∑ M_外(外力偶矩的代数和)2. 应力 - 切应力(τ)- 对于圆轴扭转:τ=(Tρ)/(I_p),在圆轴表面ρ = R时,τ_max=(TR)/(I_p),其中R为圆轴半径,I_p=(π D^4)/(32)(对于实心圆轴,D为直径),I_p=(π(D^4 - d^4))/(32)(对于空心圆轴,d为内径)。
3. 变形 - 扭转角(φ)- φ=(TL)/(GI_p)(单位为弧度)四、弯曲内力。
1. 剪力(V)和弯矩(M)- 截面法:V=∑ F_外(垂直于梁轴线方向外力的代数和),M=∑ M_外(外力对所求截面形心的力矩代数和)- 剪力图和弯矩图的绘制规则:- 无荷载段:V为常数,M为一次函数(斜直线)。
- 均布荷载段:V为一次函数(斜直线),M为二次函数(抛物线)。
- 集中力作用处:V图有突变(突变值等于集中力大小),M图有折角。
- 集中力偶作用处:V图无变化,M图有突变(突变值等于集中力偶大小)。
五、弯曲应力。
1. 正应力(σ)- 对于梁的纯弯曲:σ=(My)/(I_z),其中y为所求点到中性轴的距离,I_z为截面对中性轴z的惯性矩。
材料力学公式总结材料力学是研究材料在外力作用下的力学性能和变形规律的学科,它在工程领域中具有重要的应用价值。
在材料力学的研究中,我们常常需要运用一些公式来描述材料的力学性能和变形规律。
下面,我将对材料力学中常用的一些公式进行总结和归纳,以便大家更好地掌握和运用这些公式。
1. 应力和应变的关系公式。
在材料力学中,应力和应变是两个基本的物理量。
它们之间的关系可以用应力-应变关系公式来描述。
一般而言,线弹性材料的应力和应变之间满足线性关系,即应力等于弹性模量乘以应变。
其数学表达式为:σ = Eε。
其中,σ表示应力,E表示弹性模量,ε表示应变。
2. 杨氏模量的计算公式。
杨氏模量是描述材料抗拉伸和压缩能力的重要参数,它可以用来表征材料的硬度和刚度。
对于各向同性材料,杨氏模量的计算公式为:E = (σ/ε)。
其中,E表示杨氏模量,σ表示拉伸或压缩的应力,ε表示相应的应变。
3. 泊松比的计算公式。
泊松比是描述材料在拉伸或压缩时横向收缩或膨胀的程度的物理量,它可以用来表征材料的变形性能。
泊松比的计算公式为:ν = -ε横/ε轴。
其中,ν表示泊松比,ε横表示横向应变,ε轴表示轴向应变。
4. 屈服强度的计算公式。
材料的屈服强度是描述材料开始发生塑性变形的应力值,它可以用来评估材料的抗拉伸能力。
一般而言,材料的屈服强度可以通过材料的拉伸试验来测定,其计算公式为:σy = Fy/A0。
其中,σy表示屈服强度,Fy表示屈服点的拉伸力,A0表示原始横截面积。
5. 断裂韧性的计算公式。
断裂韧性是描述材料抗断裂能力的物理量,它可以用来评估材料的抗破坏能力。
一般而言,材料的断裂韧性可以通过材料的冲击试验来测定,其计算公式为:Kc = Yσ√(πa)。
其中,Kc表示断裂韧性,Y表示材料的弹性模量,σ表示应力,a表示裂纹长度。
以上就是我对材料力学中常用的一些公式进行的总结和归纳。
希望这些公式能够对大家在材料力学的学习和工程实践中有所帮助。
材料力学公式总结完美版材料力学是研究物体变形和破坏行为的一门学科,它涉及材料的弹性、塑性、破坏等方面。
在材料力学中,有许多重要的公式用于描述物体的变形行为和力学特性。
以下是材料力学中一些重要的公式的总结。
1.应变-应力关系在弹性区域内,应变与应力之间存在线性关系,可以用胡克定律来描述:σ=Eε其中,σ是应力,E是弹性模量,ε是应变。
2.应力-应变能力关系材料的应力和应变能力之间存在线性关系,该关系可以用杨氏模量来描述:ε=σ/E其中,ε是应变能力,σ是应力,E是杨氏模量。
3.拉伸变形在拉伸变形中,变形后的长度L和原始长度L0之间存在线性关系,可以用拉伸应变来表示:ε=(L-L0)/L0其中,ε是拉伸应变,L是变形后的长度,L0是原始长度。
4.柯西应力张量柯西应力张量用于描述材料内部的应力状态,它可以用以下公式表示:σ = [σx σxy σxzσyx σy σyzσzx σzy σz]其中,σ是柯西应力张量,σx,σy,σz是应力分量,σxy,σxz,σyx,σyz,σzx,σzy是剪切应力分量。
5.简单剪切应力简单剪切应力是指与横截面积A垂直的平面上的剪切力F和横截面积A之间的比值,可以用以下公式表示:τ=F/A其中,τ是简单剪切应力,F是剪切力,A是横截面积。
6.剪切变形剪切变形是指物体内各处的剪切角度。
在小角度下,剪切变形可以用剪切应变来表示:γ=θL/h其中,γ是剪切应变,θ是变形前后的剪切角度,L是变形前后的长度,h是变形前后的厚度。
7.杨氏模量杨氏模量是描述材料刚度的一项重要指标,可以用以下公式表示:E=σ/ε其中,E是杨氏模量,σ是应力,ε是应变能力。
8.泊松比泊松比是描述材料纵向和横向变形关系的参数,可以用以下公式表示:ν=-εy/εx其中,ν是泊松比,εy是纵向应变,εx是横向应变。
9.体积模量体积模量是描述材料体积变化的一项重要指标,可以用以下公式表示:K=-P/ΔV/V其中,K是体积模量,P是外部施加的压力,ΔV是体积的变化量,V是初始体积。
- 1 - 材料力学常用公式1、胡克定律:EA l F l N ⋅=∆或εσ⋅=E 2、杆件轴向拉、压强度条件:[]σσ≤=⋅AFN nax max 3、剪切强度条件:[]ττ≤=AF S;挤压强度条件:[]bc bc bc bc F A σσ=≤4、外力偶矩计算公式:min/||||9550||r kWm N n P M =⋅5、圆轴扭转切应力:pI T ρτρ⋅=;扭转强度条件:[]max max t T W ττ=≤6、圆轴扭转变形:p I G lT ⋅⋅=ϕ;扭转刚度条件:[]θπθ≤⋅=0max max 180p GI T7、极惯性矩:Dd,)1(32;32444=-==ααππD I D I p p 空心实心; 扭转截面系数:)1(16;16433αππ-==D W D W p p 空心实心8、梁弯曲正应力:z I yM ⋅=σ;弯曲正应力强度条件:[]σσ≤=zW M max max 9、惯性矩:1212;)1(64;6433444hb I bh I D I D I y z z z ==-==或矩形空心圆实心圆αππ 10、弯曲截面系数:66)1(32;3222433hb W bh W ;D W D W y z z z ==-==或矩形空心圆实心圆αππ11、拉压-弯曲组合变形强度条件:[]][,max max ,max max ,c zN c t z N t W M A F W M A F σσσσ≤-=≤+=12、圆轴弯扭组合变形强度条件:[][]σσσσ≤+=≤+=zr z r W T M W T M 22422375.0或13、压杆临界应力公式:欧拉公式()2222;cr cr EI EF L ππσλμ==;直线公式λσb a cr -= 14、柔度i l μλ=;惯性半径:AI i = 15、压杆的稳定条件:[]cr cr st st A Fn n F F σ==≥ 16、平面应力状态下斜截面应力的一般公式 cos 2sin 222sin 2cos 22x y x yαxy x y xy σσσσσσσαατατατα+-⎧=+-⎪⎪⎨-⎪=+⎪⎩- 2 -17、最大最小正应力:18、主平面方位计算公式:19、面内最大切应力: 20、20、三向应力状态最大切应力:21、胡克定律:21四大强度理论:max 13()2τσσ=-max min 2x y σσσσ+⎫=±⎬⎭132σσσ⎫=±⎬⎭()11231E εσμσσ=-+⎡⎤⎣⎦()22311E εσμσσ=-+⎡⎤⎣⎦()33121Eεσμσσ=-+⎡⎤⎣⎦,11[]r σσσ=≤,313[]r σσσσ=-≤,2123()[]r σσμσσσ=-+≤,4[]r σσ=≤。
材料力学公式完全版材料力学是研究材料内部力学性能的一门学科。
它是工程学中的一个重要分支,广泛应用于机械、土木、航空航天等领域。
在材料力学中,有一些重要的公式和方程式,下面是材料力学公式的完全版,共包含了应力、应变、变形、强度和刚度等方面的内容。
1.应力方面应力(σ):表示单位面积上的内力。
常用的单位是Pa(帕斯卡)。
σ=F/A其中,F为受力,A为受力面积。
2.应变方面线性弹性应变(ε):表示材料由于受力而发生的形变。
ε=ΔL/L其中,ΔL为长度变化,L为初始长度。
3.变形方面胀缩变形(ΔL):表示材料由于受热导致的体积变化。
ΔL=α×L×ΔT其中,α为热膨胀系数,ΔT为温度变化。
4.应力-应变关系钢材的Hooke定律:描述材料的线性弹性行为。
σ=E×ε其中,E为弹性模量。
5.弯曲方面梁的弯曲应变(ε):表示材料在弯曲时发生的形变。
ε=M/(E×I)其中,M为弯矩,E为弹性模量,I为截面转动惯量。
6.胀缩方面热膨胀(ΔL):表示材料在受热时的线膨胀。
ΔL=α×L×ΔT其中,α为热膨胀系数,L为初始长度,ΔT为温度变化。
7.强度方面拉伸强度(σt):表示材料在拉伸过程中能承受的最大应力。
σt=F/A其中,F为拉伸力,A为受力面积。
8.刚度方面弹性模量(E):表示材料在受力后发生弹性变形的能力。
E=σ/ε其中,σ为应力,ε为应变。
9.复合材料方面拉伸强度(σt):表示复合材料在拉伸过程中能承受的最大应力。
σt=F/A其中,F为拉伸力,A为受力面积。
10.断裂方面断裂强度(σf):表示材料在断裂前能承受的最大应力。
σf=F/A其中,F为断裂力,A为受力面积。
11.龙骨方面龙骨截面面积(A):表示材料的截面面积。
A=b×h其中,b为龙骨宽度,h为龙骨高度。
12.塑性方面屈服强度(σy):表示材料开始产生塑性变形的最大应力。
σy=F/A其中,F为受力,A为受力面积。
1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)纵向线应变和横向线应变泊松比胡克定律受多个力作用的杆件纵向变形计算公式承受轴向分布力或变截面的杆件,纵向变形计算公式轴向拉压杆的强度计算公式许用应力,脆性材料,塑性材料延伸率截面收缩率剪切胡克定律(切变模量G,切应变g )拉压弹性模量E、泊松比和切变模量G之间关系式圆截面对圆心的极惯性矩(a)实心圆(b)空心圆圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)圆截面周边各点处最大切应力计算公式扭转截面系数,(a)实心圆(b)空心圆薄壁圆管(壁厚,为圆管的平均半径)扭转切应力计算公式圆轴扭转角与扭矩T、杆长l、扭转刚度的关系式同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或等直圆轴强度条件塑性材料;脆性材料扭转圆轴的刚度条件或受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,平面应力状态下斜截面应力的一般公式,平面应力状态的三个主应力主平面方位的计算公式面内最大切应力受扭圆轴表面某点的三个主应力,,三向应力状态最大与最小正应力 ,三向应力状态最大切应力广义胡克定律四种强度理论的相当应力一种常见的应力状态的强度条件,组合图形的形心坐标计算公式,任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式截面图形对轴z和轴y的惯性半径,平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)纯弯曲梁的正应力计算公式横力弯曲最大正应力计算公式矩形、圆形、空心圆形的弯曲截面系数,,几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)矩形截面梁最大弯曲切应力发生在中性轴处工字形截面梁腹板上的弯曲切应力近似公式轧制工字钢梁最大弯曲切应力计算公式圆形截面梁最大弯曲切应力发生在中性轴处圆环形薄壁截面梁最大弯曲切应力发生在中性轴处弯曲正应力强度条件几种常见截面梁的弯曲切应力强度条件弯曲梁危险点上既有正应力又有切应力作用时的强度条件或,梁的挠曲线近似微分方程梁的转角方程梁的挠曲线方程轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式偏心拉伸(压缩)弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为圆截面杆横截面上有两个弯矩和同时作用时强度计算公式弯拉扭或弯压扭组合作用时强度计算公式剪切实用计算的强度条件挤压实用计算的强度条件等截面细长压杆在四种杆端约束情况下的临界力计算公式压杆的约束条件:(a)两端铰支(b)一端固定、一端自由(c)一端固定、一端铰支(d)两端固定压杆的长细比或柔度计算公式,细长压杆临界应力的欧拉公式欧拉公式的适用范围压杆稳定性计算的安全系数法压杆稳定性计算的折减系数法72.关系需查表求得。
1、应力 全应力正应力切应力线应变 的大小; 外力偶矩当功率P 当功率拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N FAσ= 3-1式中N F 为该横截面的轴力,A 为横截面面积;正负号规定 拉应力为正,压应力为负; 公式3-1的适用条件:1杆端外力的合力作用线与杆轴线重合,即只适于轴向拉压杆件; 2适用于离杆件受力区域稍远处的横截面;3杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀; 4截面连续变化的直杆,杆件两侧棱边的夹角020α≤时 拉压杆件任意斜截面a 图上的应力为平均分布,其计算公式为全应力 cos p ασα= 3-2正应力 2cos ασσα=3-3切应力1sin 22ατα=3-4 式中σ为横截面上的应力;正负号规定:α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负;ασ 拉应力为正,压应力为负;ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负;两点结论:1当00α=时,即横截面上,ασ达到最大值,即()max ασσ=;当α=090时,即纵截面上,ασ=090=0;2当045α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αατ=1.2 拉压杆的应变和胡克定律 1变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长;如图3-2;图3-2 轴向变形 1l l l ∆=- 轴向线应变 llε∆= 横向变形 1b b b ∆=- 横向线应变 bbε∆'=正负号规定 伸长为正,缩短为负; 2胡克定律当应力不超过材料的比例极限时,应力与应变成正比;即 E σε= 3-5 或用轴力及杆件的变形量表示为 N F ll EA∆=3-6 式中EA 称为杆件的抗拉压刚度,是表征杆件抵抗拉压弹性变形能力的量;公式3-6的适用条件:a 材料在线弹性范围内工作,即p σσ〈;b 在计算l ∆时,l 长度内其N 、E 、A 均应为常量;如杆件上各段不同,则应分段计算,求其代数和得总变形;即1ni ii i iN l l E A =∆=∑3-7 3泊松比 当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值;即 ενε'=3-8强度计算许用应力 材料正常工作容许采用的最高应力,由极限应力除以安全系数求得; 塑性材料 σ=s s n σ ; 脆性材料 σ=b bn σ其中,s b n n 称为安全系数,且大于1;强度条件:构件工作时的最大工作应力不得超过材料的许用应力; 对轴向拉伸压缩杆件[]NAσσ=≤ 3-9 按式1-4可进行强度校核、截面设计、确定许克载荷等三类强度计算; 2.1 切应力互等定理受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小相等,方向同时垂直指向或者背离两截面交线,且与截面上存在正应力与否无关;2.2纯剪切单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态; 2.3切应变切应力作用下,单元体两相互垂直边的直角改变量称为切应变或切应变,用τ表示; 2.4 剪切胡克定律在材料的比例极限范围内,切应力与切应变成正比,即 G τγ= 3-10式中G 为材料的切变模量,为材料的又一弹性常数另两个弹性常数为弹性模量E 及泊松比ν,其数值由实验决定;对各向同性材料,E 、 ν、G 有下列关系 2(1)EG ν=+ 3-112.5.2切应力计算公式横截面上某一点切应力大小为 p pT I ρτ=3-12 式中p I 为该截面对圆心的极惯性矩,ρ为欲求的点至圆心的距离;圆截面周边上的切应力为 max tTW τ=3-13 式中p t I W R=称为扭转截面系数,R 为圆截面半径;2.5.3 切应力公式讨论(1) 切应力公式3-12和式3-13适用于材料在线弹性范围内、小变形时的等圆截面直杆;对小锥度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内; (2) 极惯性矩p I 和扭转截面系数t W 是截面几何特征量,计算公式见表3-3;在面积不变情况下,材料离散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强;因此,设计空心轴比实心轴更为合理;2.5.4强度条件圆轴扭转时,全轴中最大切应力不得超过材料允许极限值,否则将发生破坏;因此,强度条件为[]max maxt T W ττ⎛⎫=≤⎪⎝⎭ 3-14 对等圆截面直杆 []maxmax tT W ττ=≤ 3-15式中[]τ为材料的许用切应力; 3.1.1中性层的曲率与弯矩的关系1zMEI ρ=3-16 式中,ρ是变形后梁轴线的曲率半径;E 是材料的弹性模量;E I 是横截面对中性轴Z 轴的惯性矩; 3.1.2横截面上各点弯曲正应力计算公式 ZMy I σ=3-17 式中,M 是横截面上的弯矩;Z I 的意义同上;y 是欲求正应力的点到中性轴的距离最大正应力出现在距中性轴最远点处 max max max max z zM My I W σ=•= 3-18 式中,max z z I W y =称为抗弯截面系数;对于h b ⨯的矩形截面,216z W bh =;对于直径为D 的圆形截面,332z W D π=;对于内外径之比为d a D =的环形截面,34(1)32z W D a π=-; 若中性轴是横截面的对称轴,则最大拉应力与最大压应力数值相等,若不是对称轴,则最大拉应力与最大压应力数值不相等;3.2梁的正应力强度条件梁的最大工作应力不得超过材料的容许应力,其表达式为 []maxmax zM W σσ=≤ 3-19 对于由拉、压强度不等的材料制成的上下不对称截面梁如T 字形截面、上下不等边的工字形截面等,其强度条件应表达为[]maxmax 1l t z M y I σσ=≤ 3-20a []maxmax 2y c zM y I σσ=≤ 3-20b 式中,[][],t c σσ分别是材料的容许拉应力和容许压应力;12,y y 分别是最大拉应力点和最大压应力点距中性轴的距离;3.3梁的切应力 z z QS I bτ*= 3-21式中,Q 是横截面上的剪力;z S *是距中性轴为y 的横线与外边界所围面积对中性轴的静矩;z I 是整个横截面对中性轴的惯性矩;b 是距中性轴为y 处的横截面宽度; 3.3.1矩形截面梁切应力方向与剪力平行,大小沿截面宽度不变,沿高度呈抛物线分布;切应力计算公式 22364Q h y bh τ⎛⎫=- ⎪⎝⎭3-22最大切应力发生在中性轴各点处,max 32QAτ=; 3.3.2工字形截面梁切应力主要发生在腹板部分,其合力占总剪力的95~97%,因此截面上的剪力主要由腹板部分来承担;切应力沿腹板高度的分布亦为二次曲线;计算公式为 ()2222824z Q B b h H h y I b τ⎡⎤⎛⎫=-+-⎢⎥ ⎪⎝⎭⎣⎦3-23近似计算腹板上的最大切应力:dhFs 1max=τd 为腹板宽度 h 1为上下两翼缘内侧距3.3.3圆形截面梁横截面上同一高度各点的切应力汇交于一点,其竖直分量沿截面宽度相等,沿高度呈抛物线变化;最大切应力发生在中性轴上,其大小为 2max42483364z z d d Q QS Q d I b Adππτπ*⋅⋅===⨯ 3-25 圆环形截面上的切应力分布与圆截面类似;3.4切应力强度条件梁的最大工作切应力不得超过材料的许用切应力,即 []max max maxz z Q S I bττ*=≤ 3-26式中,max Q 是梁上的最大切应力值;max z S *是中性轴一侧面积对中性轴的静矩;z I 是横截面对中性轴的惯性矩;b 是maxτ处截面的宽度;对于等宽度截面,max τ发生在中性轴上,对于宽度变化的截面,max τ不一定发生在中性轴上; 4.2剪切的实用计算名义切应力:假设切应力沿剪切面是均匀分布的 ,则名义切应力为 AQ=τ 3-27 剪切强度条件:剪切面上的工作切应力不得超过材料的 许用切应力[]τ,即 []ττ≤=AQ3-285.2挤压的实用计算名义挤压应力 假设挤压应力在名义挤压面上是均匀分布的,则 []bsbs bs bsP A σσ=≤ 3-29 式中,bs A 表示有效挤压面积,即挤压面面积在垂直于挤压力作用线平面上的投影;当挤压面为平面时为接触面面积,当挤压面为曲面时为设计承压接触面面积在挤压力垂直面上的 投影面积;挤压强度条件挤压面上的工作挤压应力不得超过材料的许用挤压应力 []bs bsbs A Pσσ≤=3-30 1, 变形计算圆轴扭转时,任意两个横截面绕轴线相对转动而产生相对扭转角;相距为l 的两个横截面的相对扭转角为dx GI TlP⎰=0ϕ rad 4.4 若等截面圆轴两截面之间的扭矩为常数,则上式化为PGI Tl=ϕ rad 4.5 图4.2式中P GI 称为圆轴的抗扭刚度;显然,ϕ的正负号与扭矩正负号相同;公式4.4的适用条件:(1) 材料在线弹性范围内的等截面圆轴,即P ττ≤;(2) 在长度l 内,T 、G 、P I 均为常量;当以上参数沿轴线分段变化时,则应分段计算扭转角,然后求代数和得总扭转角;即 ∑==ni P i ii iI G l T 1ϕ rad 4.6 当T 、P I 沿轴线连续变化时,用式4.4计算ϕ; 2, 刚度条件扭转的刚度条件 圆轴最大的单位长度扭转角max 'ϕ不得超过许可的单位长度扭转角[]'ϕ,即[]''maxmax ϕϕ≤=PGI T rad/m 4.7 式 []'180'max max ϕπϕ≤⨯=︒P GI T m /︒ 4.82,挠曲线的近似微分方程及其积分在分析纯弯曲梁的正应力时,得到弯矩与曲率的关系EIM=ρ1对于跨度远大于截面高度的梁,略去剪力对弯曲变形的影响,由上式可得()()EIx M x =ρ1 利用平面曲线的曲率公式,并忽略高阶微量,得挠曲线的近似微分方程,即 ()EIx M =''ω 4.9 将上式积分一次得转角方程为 ()C dx EIx M +==⎰'ωθ 4.10再积分得挠曲线方程 ()D Cx dx dx EI x M ++⎥⎦⎤⎢⎣⎡=⎰⎰ω 4.11 式中,C,D 为积分常数,它们可由梁的边界条件确定;当梁分为若干段积分时,积分常数的确定除需利用边界条件外,还需要利用连续条件; 3,梁的刚度条件限制梁的最大挠度与最大转角不超过规定的许可数值,就得到梁的刚度条件,即 []ωω≤max ,[]θθ≤max 4.12 3,轴向拉伸或压缩杆件的应变能在线弹性范围内,由功能原理得 l F W V ∆==21ε 当杆件的横截面面积A 、轴力F N 为常量时,由胡克定律EAlF l N =∆,可得 EA l F V N 22=ε 4.14杆单位体积内的应变能称为应变能密度,用εV 表示;线弹性范围内,得 σεε21=V 4.15 4,圆截面直杆扭转应变能 在线弹性范围内,由功能原 ϕe r M W V 21== 将T M e =与P GI Tl =ϕ代入上式得 Pr GI lT V 22= 4.16图4.5根据微体内的应变能在数值上等于微体上的内力功,得应变能的密度r V : r V r τ21= 4.175,梁的弯曲应变能在线弹性范围内,纯弯曲时,由功能原理得 将M M e =与EIMl=θ代入上式得 EI l M V 22=ε 4.18图4.6横力弯曲时,梁横截面上的弯矩沿轴线变化,此时,对于微段梁应用式4.18,积分得全梁的弯曲应变能εV ,即()⎰=lEI dxx M V 22ε 4.192.截面几何性质的定义式列表于下:静 矩 惯性矩惯性半径惯性积 极惯性矩3.惯性矩的平行移轴公式静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示; 定义式: ⎰=Ay zdA S ,⎰=Az ydA S Ⅰ-1量纲为长度的三次方;由于均质薄板的重心与平面图形的形心有相同的坐标C z 和C y ;则由此可得薄板重心的坐标 C z 为 AS A zdA z yAC==⎰同理有 A S y zC =所以形心坐标 A S z y C =,ASy z C = Ⅰ-2或 C y z A S ⋅=,C z y A S ⋅=由式Ⅰ-2得知,若某坐标轴通过形心轴,则图形对该轴的静矩等于零,即0=C y ,0=z S ;0=C z ,则 0=y S ;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心;静矩与所选坐标轴有关,其值可能为正,负或零;如一个平面图形是由几个简单平面图形组成,称为组合平面图形;设第 I 块分图形的面积为 i A ,形心坐标为Ci Ci z y , ,则其静矩和形心坐标分别为 Ci i n i z y A S 1=∑=,Ci i ni y z A S 1=∑= Ⅰ-3∑∑====ni ini Cii z C AyA AS y 11,∑∑====ni ini cii y C AzA AS z 11 Ⅰ-4§Ⅰ-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示;⎰=Ay dA z I 2,⎰=Az dA y I 2 Ⅰ-5量纲为长度的四次方,恒为正;相应定义AI i y y =,AI i zz =Ⅰ-6 为图形对 y 轴和对 z 轴的惯性半径;组合图形的惯性矩;设 zi yi I I , 为分图形的惯性矩,则总图形对同一轴惯性矩为yi ni y I I 1=∑=,zi ni z I I 1=∑= Ⅰ-7若以ρ表示微面积dA 到坐标原点O 的距离,则定义图形对坐标原点O 的极惯性矩⎰=Ap dA I 2ρ Ⅰ-8因为 222z y +=ρ所以极惯性矩与轴惯性矩有关系 ()z y Ap I I dA z yI +=+=⎰22Ⅰ-9式Ⅰ-9表明,图形对任意两个互相垂直轴的轴惯性矩之和,等于它对该两轴交点的极惯性矩;下式 ⎰=Ayz yzdA I Ⅰ-10定义为图形对一对正交轴 y 、z 轴的惯性积;量纲是长度的四次方; yz I 可能为正,为负或为零;若 y ,z 轴中有一根为对称轴则其惯性积为零;§Ⅰ-3平行移轴公式由于同一平面图形对于相互平行的两对直角坐标轴的惯性矩或惯性积并不相同,如果其中一对轴是图形的形心轴()c cz ,y时,如图Ⅰ-7所示,可得到如下平行移轴公式⎪⎩⎪⎨⎧+=+=+=abA II A b I I Aa I I C C C C z y yzz z y y 22 Ⅰ-13 简单证明之: 其中⎰AC dA z 为图形对形心轴 C y 的静矩,其值应等于零,则得同理可证I-13中的其它两式;结论:同一平面内对所有相互平行的坐标轴的惯性矩,对形心轴的最小;在使用惯性积移轴公式时应注意 a ,b 的正负号;把斜截面上的总应力p 分解成与斜截面垂直的正应力n σ和相切的切应力n τ图222123n l m n σσσσ=++ 2222222123n n l m n τσσσσ=++-在以n σ为横坐标、n τ截面上的正应力n σ和切应力n τ区域图13.2中阴影中的一点;由图13.2显见。