离散数学树知识点总结
- 格式:doc
- 大小:24.50 KB
- 文档页数:6
离散数学知识点总结离散数学是一门重要的数学学科,它涉及到离散的对象和离散的结构,而不是连续的对象和结构。
以下是离散数学的几个重要知识点的总结:集合论- 集合:集合是由元素组成的对象的集合。
集合的运算包括并集、交集和差集等。
集合:集合是由元素组成的对象的集合。
集合的运算包括并集、交集和差集等。
- 子集和超集:如果一个集合的所有元素都是另一个集合的元素,则称前者为后者的子集,反之则称后者为前者的超集。
子集和超集:如果一个集合的所有元素都是另一个集合的元素,则称前者为后者的子集,反之则称后者为前者的超集。
- 幂集:一个集合的幂集是所有可能的子集构成的集合。
幂集:一个集合的幂集是所有可能的子集构成的集合。
逻辑- 命题:一个命题是一个陈述句,可以被判断为真或假。
命题:一个命题是一个陈述句,可以被判断为真或假。
- 逻辑运算:逻辑运算包括与、或、非等,用来连接和否定命题,构成复合命题。
逻辑运算:逻辑运算包括与、或、非等,用来连接和否定命题,构成复合命题。
- 真值表:用来列出复合命题在各种可能情况下的真值。
真值表:用来列出复合命题在各种可能情况下的真值。
关系- 关系:关系用来描述元素之间的联系。
关系可以是二元的或多元的。
关系:关系用来描述元素之间的联系。
关系可以是二元的或多元的。
- 等价关系:等价关系是一种满足自反性、对称性和传递性的关系。
等价关系:等价关系是一种满足自反性、对称性和传递性的关系。
- 偏序关系:偏序关系是一种满足自反性、反对称性和传递性的关系。
偏序关系:偏序关系是一种满足自反性、反对称性和传递性的关系。
- 图的表示:图可以用邻接矩阵或邻接表来表示。
图的表示:图可以用邻接矩阵或邻接表来表示。
图论- 连通性:图中的连通性用来描述图中顶点之间是否存在路径。
连通性:图中的连通性用来描述图中顶点之间是否存在路径。
- 最短路径:最短路径问题是寻找两个顶点之间最短路径的问题。
最短路径:最短路径问题是寻找两个顶点之间最短路径的问题。
离散数学必备知识点总结资料离散数学是指离散的数学概念和结构,独立于连续的数学。
它是在计算机科学、信息科学、数学基础研究、工程技术等领域中的基础课程之一。
以下是离散数学必备的一些知识点总结。
一、逻辑与集合1. 命题与谓词:命题是一个陈述,可以被判断为真或假,而谓词是一种用来描述命题所涉及实体之间关系的语句。
2. 命题逻辑:重点关注命题真假和与或非等运算关系,包括真值表和主范式。
3. 一阶谓词逻辑:注意包含全称量词和存在量词,也包括a|b, a//b等符号的理解。
4. 集合与运算:集合是指不同元素组成的一个整体。
基本的集合运算包括并、交、差等。
5. 关系与函数:关系是一种元素之间的对应关系,而函数是一种具有确定性的关系,即每一个自变量都对应唯一的函数值。
6. 等价关系与划分:等价关系是指满足自反性、对称性和传递性的关系。
划分是指将一个集合分成若干个不相交的子集,每个子集称为一个等价类。
二、图论1. 图的定义和基本概念:图由节点和边构成,节点间的连线称为边。
包括度、路径、连通性等概念。
2. 图的表示方法:邻接矩阵和邻接表。
3. 欧拉图与哈密顿图:欧拉图是指能够一笔画出的图,哈密顿图是指含有一条经过每个节点恰好一次的路径的图。
4. 最短路径与最小生成树:最短路径问题是指在图中找出从一个节点到另一个节点的最短路径。
最小生成树问题是指在图中找出一棵覆盖所有节点的树,使得边权之和最小。
三、代数系统1. 代数结构:包括群、环、域等概念。
2. 群的定义和基本概念:群是在一个集合中定义一种二元运算满足结合律、单位元存在和逆元存在的代数结构。
四、组合数学1. 排列、组合和二项式系数:排列是指从n个元素中任选r个进行排序,组合是指从n个元素中任选r个但不考虑排序,二项式系数是指组合数。
2. 生成函数:将组合数与多项式联系起来的一种工具,用于求出某种算法或结构的某些特定函数。
3. 容斥原理:一个集合的容斥原理指在集合的并、交、补之间的关系。
离散数学树
离散数学中的树(Tree)是一种常见的图论结构,它是一种无向、连通且没有简单回路的无向图,或者是一个有向连通图,其中每个节点都只有唯一一个父节点(除了根节点)。
树形结构中的每一个节点都可以视为一个子树的根节点,因为它下面连接了若干个子节点,这样就形成了一棵向下生长的树状结构。
树形结构还有一个重要的特点就是它具有很好的递归性质,因为每个节点下面都可以再建立一棵子树,这样就可以逐层递归地构建出整棵树。
在离散数学中,树被广泛应用于算法设计、数据结构以及对计算机网络和信息系统进行建模等领域。
树的深度和广度优先遍历、树的一些基本性质(如高度、度、叶子节点等)以及树的遍历应用在图的搜索算法、排序、哈夫曼编码、抽象语法树等算法中都有广泛的应用。
第六章树一、掌握根本概念树的子树是互不相交的,树可以为空〔空树〕非空的树中,只有一个结点是没有前趋的,那就是根。
非空树只有一个树根,是一对多的关系。
叶子结点、结点的度、树的度、结点的层次、树的深度、树的四种表示方法二、二叉树的定义、特点、五种根本形态二叉树是有序树,左右子树不能互相颠倒二叉树中结点的最大度为2,但不一定都是2。
三、二叉树的性质要掌握性质1:二叉树的第i层上至多有2 i-1〔i 1〕个结点。
性质2:深度为k的二叉树中至多2k-1个结点。
性质3:对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,那么n0=n2+1。
证明:1)结点总数n=n0+n1+n2 (n1是度为1的结点数)2)进入分支总数m(每个结点唯一分支进入) n=m+13)m个分支是由非叶子结点射出m=n1+2n2性质4:具有n个结点的完全二叉树的深度k为[log2n]+1四、满二叉树和完全二叉树的区别是什么?满二叉树一定是完全二叉树,但是完全二叉树不一定是满二叉树。
深度为k的二叉树,最少有k个结点,最多有2k-1深度为k的完全二叉树,最少有2k-1-1+1个结点,最多有2k-1五、二叉树的存储构造〔可以通过下标找结点的左右孩子〕1.顺序存储构造适用于满二叉树和完全二叉树。
〔其缺点是必须把其他二叉树补成完全二叉树,从上到下,从左到右依次存储在顺序存储空间里,会造成空间浪费〕2.二叉链表存储构造〔其优点是找左孩子和右孩子方便,但缺点是找父节点麻烦〕lchild Data rchild〔重点〕3. 三叉链表存储构造不仅找其左、右孩子很方便,而且找其双亲也方便六、遍历的概念是什么?七、二叉树的遍历有三种:前序〔先序、先根〕遍历、中序〔中序、中根〕遍历、后序〔后序、后根〕遍历1.给出一棵二叉树,要会二叉树的三种遍历2.给出两种遍历〔必须有中序遍历〕,要求会画该二叉树。
八、了解引入线索〔中序、先序、后序〕二叉树的原因是什么?九、会在二叉树上画先序线索化、中序线索化、后序线索化。
离散数学知识点总结离散数学是数学的一个分支,主要研究离散的数学结构和离散的数学对象。
它包括了许多重要的概念和技术,是计算机科学、通信工程、数学和逻辑学等领域的基础。
本文将对离散数学的一些核心知识点进行总结,包括命题逻辑、一阶逻辑、图论、集合论和组合数学等内容。
1. 命题逻辑命题逻辑是离散数学的一个重要分支,研究命题之间的逻辑关系。
命题是一个陈述语句,要么为真,要么为假,而且不能同时为真和为假。
命题逻辑包括逻辑运算和逻辑推理等内容,是离散数学的基础之一。
1.1 逻辑运算逻辑运算包括与(∧)、或(∨)、非(¬)、蕴含(→)和双条件(↔)等运算。
与、或和非是三种基本的逻辑运算,蕴含和双条件则是基于这三种基本运算得到的复合运算。
1.2 逻辑等值式逻辑等值式是指在命题逻辑中具有相同真值的两个复合命题。
常见的逻辑等值式包括德摩根定律、双重否定定律、分配率等。
1.3 形式化证明形式化证明是命题逻辑的一个重要内容,研究如何利用逻辑规则和等值式来推导出给定命题的真值。
形式化证明包括直接证明、间接证明和反证法等方法,是离散数学中的常见技巧。
2. 一阶逻辑一阶逻辑是命题逻辑的延伸,研究命题中的量词和谓词等概念。
一阶逻辑包括量词、谓词逻辑和形式化证明等内容,是离散数学中的重要部分。
2.1 量词量词包括全称量词(∀)和存在量词(∃),用来对命题中的变量进行量化。
全称量词表示对所有元素都成立的命题,而存在量词表示至少存在一个元素使命题成立。
2.2 谓词逻辑谓词逻辑是一阶逻辑的核心内容,研究带有量词的语句和谓词的逻辑关系。
谓词是含有变量的函数,它可以表示一类对象的性质或关系。
2.3 形式化证明形式化证明在一阶逻辑中同样起着重要作用,通过逻辑规则和等值式来推导出给定命题的真值。
一阶逻辑的形式化证明和命题逻辑类似,但更复杂和抽象。
3. 图论图论是离散数学中的一个重要分支,研究图和图的性质。
图是由节点和边组成的数学对象,图论包括图的表示、图的遍历、最短路径、最小生成树等内容,是离散数学中的一大亮点。
离散数学知识点全归纳离散数学是数学的一个分支,研究的是离散对象和离散结构。
在计算机科学、信息技术以及其他领域中,离散数学具有重要的应用价值。
以下是离散数学的一些重要知识点的全面总结。
1. 集合论和逻辑- 集合:基本概念、运算、包含关系、并集、交集、差集、幂集等。
- 命题逻辑:命题、命题的连接词、真值表、逻辑等价、析取范式、合取范式等。
- 谓词逻辑:谓词、量词、逻辑推理、存在量词和全称量词等。
2. 证明方法- 直接证明:利用已知事实和逻辑推理,直接得出结论。
- 对证法:从假设的反面出发,利用矛盾推理得出结论。
- 数学归纳法:证明基础情况成立,再证明递推步骤成立。
3. 图论- 图的基本概念:顶点、边、路径、回路、度、连通性等。
- 图的表示:邻接矩阵、邻接表等。
- 最短路径:Dijkstra算法、Floyd-Warshall算法等。
- 最小生成树:Prim算法、Kruskal算法等。
4. 关系与函数- 关系及其性质:自反性、对称性、传递性、等价关系等。
- 函数及其性质:定义域、值域、单射、满射、双射等。
- 逆函数和复合函数:求逆函数、复合函数的定义和性质。
5. 组合数学- 排列和组合:排列、组合的计算公式和性质。
- 递归关系:递推公式、递归算法等。
- 图的着色:色数、四色定理等。
6. 代数系统- 半群、幺半群、群、环、整环和域的定义和性质。
- 同态:同态映射、同构等。
- 应用:编码理论、密码学等。
以上是离散数学的一些重要知识点的概括。
深入理解和掌握这些知识,对于解决实际问题和在相关领域中取得成功非常重要。
在学习过程中,建议结合实际例子和习题进行练习,加深对知识的理解和应用能力。
离散数学知识点总结(9)-树⼀、⽆向树和有向树对于任何⽆向图,若图中不存在简单回路,则 m≤n-1⽆向图是⽆向树的四个条件互相等价:连通、不存在简单回路、m=n-1满⾜⾄少2个 每⼀对相异顶点之间存在唯⼀的简单道路 极⼩连通(每⼀条边都是桥) 极⼤⽆圈因此⽆向树必定不含重边和⾃环,⼀定是简单图,⼀定是平⾯图。
⽆向树中度数为1的顶点称为叶⼦,度数⼤于1的顶点称为分枝点。
平凡树:⼀阶简单图,既⽆叶⼦⼜⽆分枝点任何⾮平凡树⾄少有2个叶⼦顶点证明:设n(n≥2) 阶⽆向连通图G的边数满⾜m=n-1,设图中度数为1的顶点数为t,则2m=deg(v1)+...+dev(v n)≥t+2(n-t),得t≥2 或者设⽆向树中存在着a i个度为i的顶点,a1+2a2+...=2m,a1+a2+...=n=m+1,故叶⼦数=a3+2a4+3a5+...+2≥2森林:不含任何简单回路的图。
森林的每个连通分⽀都是树⼆、有向树和根树有向树:不考虑边的⽅向时是⼀棵⽆向树的有向图根树:只有⼀个⼊度为0的顶点,其它顶点⼊度均为1的有向树根树中出度为0的顶点称为叶⼦,出度⼤于0的顶点称为分枝点在根树中,从根到任⼀其它顶点都存在唯⼀的简单道路以v为根的根树:有向图中存在顶点v,使得从v到图中任意其它顶点都存在唯⼀简单道路,⽽且不存在从v到v的简单回路在根树中,由根到顶点v的道路长度称作v的层数(level) ;所有顶点的层数的最⼤值称为根树的⾼度(height)若T的每个分⽀点最多m个⼉⼦,则称T为m叉树;若其每个分⽀点都恰好m个⼉⼦,则称T为m叉正则树正则m叉树,其叶⼦数为t,分枝点数为i,则所有顶点出度之和为mi=所有顶点的⼊度之和t+i-1,故(m-1)i=t-1三、标号树前序遍历结果-+×421×÷632称作前缀表⽰、波兰式将波兰式压栈,当插⼊到×42时将其替换为8后序遍历结果42×1+63÷2×-称作后缀表⽰、逆波兰式将波兰式压栈,当插⼊到42×时将其替换为8中序遍历表达式4×2+1-6÷3×2称作中缀表⽰由前缀表⽰或后缀表⽰可以唯⼀构造表⽰运算式的有序树,但是由中缀表⽰则不⾏此外还有⼀些关于遍历、哈夫曼编码的知识点,数据结构中就有。
第六章树
一、掌握基本概念
树的子树是互不相交的,树可以为空(空树)
非空的树中,只有一个结点是没有前趋的,那就是根。
非空树只有一个树根,是一对多的关系。
叶子结点、结点的度、树的度、结点的层次、树的深度、树的四种表示方法
二、二叉树的定义、特点、五种基本形态
二叉树是有序树,左右子树不能互相颠倒
二叉树中结点的最大度为2,但不一定都是2。
三、二叉树的性质要掌握
性质1:二叉树的第i层上至多有2 i-1(i 1)个结点。
性质2:深度为k的二叉树中至多2k-1个结点。
性质3:对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1。
证明:1)结点总数 n=n0+n1+n2 (n1是度为1的结点数)
2)进入分支总数m(每个结点唯一分支进入) n=m+1
3)m个分支是由非叶子结点射出 m=n1+2n2
性质4:具有n个结点的完全二叉树的深度k为[log2n]+1
四、满二叉树和完全二叉树的区别是什么?
满二叉树一定是完全二叉树,但是完全二叉树不一定是满二叉树。
深度为k的二叉树,最少有k个结点,最多有2k-1
深度为k的完全二叉树,最少有2k-1-1+1个结点,最多有2k-1
五、二叉树的存储结构(可以通过下标找结点的左右孩子)
1.顺序存储结构适用于满二叉树和完全二叉树。
(其缺点是必须把其他二叉树补成完全二叉树,从上到下,从左到右依次存储在顺序存储空间里,会造成空间浪费)
2.二叉链表存储结构(其优点是找左孩子和右孩子方便,但缺点是找父节点麻烦)
lchild Data rchild
(重点)
3. 三叉链表存储结构
不仅找其左、右孩子很方便,而且找其双亲也方便
六、遍历的概念是什么?
七、二叉树的遍历有三种:前序(先序、先根)遍历、中序(中序、中根)遍历、后序(后序、后根)遍历
1.给出一棵二叉树,要会二叉树的三种遍历
2.给出两种遍历(必须有中序遍历),要求会画该二叉树。
八、了解引入线索(中序、先序、后序)二叉树的原因是什么?
九、会在二叉树上画先序线索化、中序线索化、后序线索化。
在线索二叉树的格式中,可以找到任意结点的直接后继。
(错)
在线索二叉树中,如果某结点的右孩子为空,那么可以找到该结点的直接后继。
(对)
在线索二叉树中,如果某结点的左孩子为空,那么可以找到该结点的直接前趋。
(对)十、树.森林和二叉树的相互转换
树转换成二叉树后,转换后的二叉树根的右子树为空。
十一、森林的遍历(只有先序遍历和后序遍历)
先序遍历一棵树,相当于先序遍历该树所对应的二叉树。
后序遍历一棵树,相当于中序遍历该树所对应的二叉树。
十二、赫夫曼树(又称最优二叉树或哈夫曼树)、赫夫曼树编码
1. 赫夫曼树中,权越大的叶子离根越近,其形态不唯一,但是WPL带权路径长度一定是最小。
2.一定要会构造哈夫曼树,在构造好的哈夫曼树上会构造哈夫曼编码。
(认真看题目要求)第6章算法设计题
1.已知二叉树中的结点类型用BiTNode表示,被定义描述为:
Typedef struct BiTNode {
TElemType data ;
struct BiTNode * LChild , *RChild;
} BiTNode,*BiTree;
其中data为结点值域,LChild和RChild分别为指向左、右孩子结点的指针域,编写出求一棵二叉树高度的算法。
Int BTreeHeight(BiTree BT){
if (BT==NULL) return 0;
else {
h1=BTreeHeight(BT->LChild);
h2=BTreeHeight(BT->RChild);
if (h1>h2) return(h1+1);
else return( h2+1);
}
}
2.已知二叉树中的结点类型用BiTNode表示,被定义描述为:
Typedef struct BiTNode {
TElemType data ;
struct BiTNode * LChild , *Rchild;
} BiTNode,*BiTree;
BiTree T;
其中data为结点值域,LChild和RChild分别为指向左、右孩子结点的指针域,编写算法,求出二叉树中2度结点个数。
int degree2nodenum(BiTree T)
{if (T){
if(T->lchild!=NULL &&T->child!=NULL)
count++;
leafnodenum(l->lchild);
leafnodenum(l->rchild);
}
return count;
}
3.已知二叉树中的结点类型用BiTNode表示,被定义描述为:
Typedef struct BiTNode {
TElemType data ;
struct BiTNode * LChild , *RChild;
} BiTNode,*BiTree;
BiTree T;
其中data为结点值域,LChild和RChild分别为指向左、右孩子结点的指针域,写一算法,求出二叉树中的叶子结点个数。
void BTreeLeaf (BiTree BT)
{
if(BT)
{
if(BT-> LChild==NULL && BT->RChild==NULL) count++;
BTreeLeaf (BT->LChild); // 访问左子树
BTreeLeaf (BT->RChild); // 访问右子树
}
}
或下面算法均可
编写递归算法,计算二叉树中叶子结点的数目。
int LeafCount_BiTree(Bitree T)//求二叉树中叶子结点的数目
{
if(!T) return 0; //空树没有叶子
else if(!T->lchild&&!T->rchild) return 1; //叶子结点
else return Leaf_Count(T->lchild)+Leaf_Count(T->rchild);//左子树的叶子数加上右子树的叶子数
}//LeafCount_BiTree
4.PPT上的三种遍历递归算法和课本上P131先序递归创建二叉链表。
5. 给定一棵二叉树,其根指针为root。
试写出求二叉树结点数目的算法(递归算法或非递归算法)。
【提示】采用递归算法实现。
int count(BiTree t){
if (t==NULL)
return 0;
else
return count(t->lchild)+count(t->rchild)+1;
}
6. 以二叉链表为存储结构,写一算法交换各结点的左右子树。
【分析】
依题意,设t 为一棵用二叉链表存储的二叉树,则交换各结点的左右子树的运算基于后序遍历实现:交换左子树上各结点的左右子树;交换右子树上各结点的左右子树;再交换根结点的左右子树。
【算法】
void Exchg(BiTree *t){
BinNode *p;
if (t){
P=(*t)->lchild;
(*t)->lchild=(*t)->rchild;
(*t)->rchild=p;
Exchg(&((*t)->lchild));
Exchg(&((*t)->rchild));
}
}
7. 已知一棵二叉树采用二叉链表结构存储,每个结点的值为整数类型。
要求:给出相应的语言描述,在此基础上设计计算二叉树中所有结点值之和的算法。
typedef struct link
{int data;
struct link * lchild;
struct link * rchild;
} bitnode , *bitree ;
void sum(bitree *bt,int &s)
{
if(bt!=0) {s=s+bt->data; sum(bt->lchild,s); sum(bt->rchild,s);}
}
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。