流体力学第十章
- 格式:ppt
- 大小:4.15 MB
- 文档页数:59
《流体力学》教学大纲一、课程性质与任务1.课程性质:本课程是安全工程专业的主要专业基础课程之一。
该课程的主要任务是使学生掌握流体运动的一般规律和有关的基本概念、基本原理、基本方法和一定的数值计算及实验技能,注意培养学生较好地分析和解决本专业中涉及流体力学问题的能力,为学习专业课程、从事专业技术工作或进行科学研究打下坚实的基础2.课程任务:本课程的目的是为安全工程专业学生提供学习专业课之前的重要的基础理论课程。
通过本课程的学习,要求学生能够掌握流体力学的一些基本原理,并要求能够学会理论联系实际分析和解决工程中各种流体力学方面的有关问题。
二、课程教学内容及要求注重基本理论、基本概念、基本方法的理解和掌握,只有这样才能对专业范围内的流体力学现象做出合乎实际的定性判断,进行足够精确的定量估计,正确地解决专业范围内的流体力学的设计和计算问题。
第一章绪论 (2学时)·流体力学的研究对象、任务和方法,流体力学的发展概况·作用在运动流体上的力,流体的主要力学性质,流体力学模型。
基本要求:掌握质量力、表面力、粘滞力的物理含义,研究流体力学的主要方法,流体力学模型。
重点:粘滞力的物理含义、牛顿内摩擦定律、流体的力学模型。
难点:惯性力是质量力,牛顿内摩擦定律的应用计算。
第二章流体静力学(4学时)·流体的静压强及其特性、流体静压强的分布规律、压强的计算基准和量度单位·流体平衡微分方程、液体的相对平衡·作用于平面的液体压力、作用于曲面的液体压力基本要求:流体静压强的概念、特性、分布规律;两种计算基准、量度单位;液柱测压计;作用在平面上的流体压力;作用在曲面上的流体压力;流体的平衡微分方程和相对平衡。
重点:等压面的概念,流体静压强的计算,作用在平面上的流体压力的计算。
难点:绝对压强和相对压强,作用在平面上的流体压力的计算,流体的平衡微分方程和相对平衡。
第三章流体运动学(2学时)·描述流体运动的两种方法,恒定流动和非恒定流动、流线和迹线、一元流动模型·连续性方程基本要求:描述流体运动的两种方法,基本概念,流动分类;连续性方程,重点:流线和迹线、一元流动模型难点:流线和迹线的区别,第四章流体动力学基础(6学时)流体运动微分方程、元流伯努利方程、总流能量方程及其应用·总水头线和测压管水头线总流动量方程基本要求:连续性方程,能量方程及其应用,动量方程,总水头线和测压管水头线,气流的能量方程,总压线和全压线。
第八章 边界层理论基础一、主要内容(一)边界层的基本概念与特征1、基本概念:绕物体流动时物体壁面附近存在一个薄层,其内部存在着很大的速度梯度和漩涡,粘性影响不能忽略,我们把这一薄层称为边界层。
2、基本特征:(1)与物体的长度相比,边界层的厚度很小;(2)边界层内沿边界层厚度方向的速度变化非常急剧,即速度梯度很大; (3)边界层沿着流体流动的方向逐渐增厚;(4)由于边界层很薄,因而可以近似地认为边界层中各截面上压强等于同一截面上边界层外边界上的压强;(5)在边界层内粘性力和惯性力是同一数量级;(6)边界层内流体的流动与管内流动一样,也可以有层流和紊流2种状态。
(二)层流边界层的微分方程(普朗特边界层方程)22100y x x xy y x v pv v v v xy x y py v v x y νρ⎧∂∂∂∂+=-+⎪∂∂∂∂⎪⎪∂⎪=⎨∂⎪⎪∂∂⎪+=∂∂⎪⎩其边界条件为:在0y =处,0x y v v == 在δ=y 处,()x v v x =(三)边界层的厚度从平板表面沿外法线到流速为主流99%的距离,称为边界层的厚度,以δ表示。
边界层的厚度δ顺流逐渐加厚,因为边界的影响是随着边界的长度逐渐向流区内延伸的。
图8-1 平板边界层的厚度1、位移厚度或排挤厚度1δδδδ=-=-⎰⎰1001()(1)x x v v v dy dy v v2、动量损失厚度2δδρρ∞∞=-=-⎰⎰221()(1)x x x x v vv v v dy dy v v v(四)边界层的动量积分关系式δδρρδτ∂∂∂-=--∂∂∂⎰⎰200x x w Pv dy v v dy dx x x x对于平板上的层流边界层,在整个边界层内每一点的压强都是相同的,即P =常数。
这样,边界层的动量积分关系式变为δδτρ∞-=-⎰⎰200w x x d d v dy v v dy dx dx 二、本章难点(一)平板层流边界层的近似计算 根据三个关系式:(1)平板层流边界层的动量积分关系式;(2)层流边界层内的速度分布关系式;(3)切向应力关系式。
流体力学-笔记参考书籍:《全美经典-流体动力学》《流体力学》张兆顺、崔桂香《流体力学》吴望一《一维不定常流》《流体力学》课件清华大学王亮主讲目录:第一章绪论第二章流体静力学第三章流体运动的数学模型第四章量纲分析和相似性第五章粘性流体和边界层流动第六章不可压缩势流第七章一维可压缩流动第八章二维可压缩流动气体动力学第九章不可压缩湍流流动第十章高超声速边界层流动第十一章磁流体动力学第十二章非牛顿流体第十三章波动和稳定性第一章绪论1、牛顿流体:剪应力和速度梯度之间的关系式称为牛顿关系式,遵守牛顿关系式的流体是牛顿流体。
2、理想流体:无粘流体,流体切应力为零,并且没有湍流?。
此时,流体内部没有内摩擦,也就没有内耗散和损失。
层流:纯粘性流体,流体分层,流速比较小;湍流:随着流速增加,流线摆动,称过渡流,流速再增加,出现漩涡,混合。
因为流速增加导致层流出现不稳定性。
定常流:在空间的任何点,流动中的速度分量和热力学参量都不随时间改变,3、欧拉描述:空间点的坐标;拉格朗日:质点的坐标;4、流体的粘性引起剪切力,进而导致耗散。
5、无黏流体—无摩擦—流动不分离—无尾迹。
6、流体的特性:连续性、易流动性、压缩性 不可压缩流体:0D Dtρ= const ρ=是针对流体中的同一质点在不同时刻保持不变,即不可压缩流体的密度在任何时刻都保持不变。
是一个过程方程。
7、流体的几种线流线:是速度场的向量线,是指在欧拉速度场的描述; 同一时刻、不同质点连接起来的速度场向量线; (),0dr U x t dr U ⇒⨯=迹线:流体质点的运动轨迹,是流体质点运动的几何描述; 同一质点在不同时刻的位移曲线; 涡线:涡量场的向量线,(),,0U dr x t dr ωωω=∇⨯⇒⨯=涡线的切线和当地的涡量或准刚体角速度重合,所以,涡线是流体微团准刚体转动方向的连线,形象的说:涡线像一根柔性轴把微团穿在一起。
第二章 流体静力学1、压强:0limA F dFp A dA ∆→∆==∆静止流场中一点的应力状态只有压力。
第十章堰流堰流是明渠缓流由于流动边界急剧变化而引起的明渠急变流现象。
本章主要介绍各类堰流的水力特征、基本公式、应用特点及水力计算方法。
概述一、堰和堰流堰:在明渠缓流中设置障壁,它既能壅高渠中的水位,又能自然溢流,这障壁就称为堰。
堰流(weir flow):缓流越过阻水的堰墙溢出流动的局部水流现象称为堰流。
选择:堰流特定的局部现象是: A.缓流通过障壁; B.缓流溢过障壁; C.急流通过障壁; D.急流溢过障壁。
研究堰流的主要目的:探讨流经堰的流量Q及与堰流有关的特征量之间的关系。
堰流的基本特征量(图10-1)1.堰顶水头H;2.堰宽b;3.上游堰高P、下游堰高P1;图10-14.堰顶厚度δ;5.上、下水位差Z;6.堰前行近流速υ0。
二、堰的分类1.根据堰壁厚度d与水头H的关系,如图10-2:图10-2图10-32.根据上游渠道宽度B与堰宽b的关系,图10-4:3.根据堰与水流方向的交角:图10-44.按下游水位是否影响堰流性质:5.按堰口的形状:堰可分为矩形堰、梯形堰、三角堰。
三、堰流及孔流的界限1.堰流:当闸门启出水面,不影响闸坝泄流量时。
孔流:当闸门未启出水面,以致影响闸坝泄流量时。
2.堰流和孔流的判别式(1)宽顶堰式闸坝堰流:e/H ≥0.65 孔流:e/H <0.65(2)实用堰式闸坝(闸门位于堰顶最高点时)堰流:e/H ≥0.75 孔流:e/H <0.75式中:e——闸门开启高度; H——堰孔水头。
判断:从能量角度看,堰流和闸孔出流的过程都是一种势能转化为动能的过程。
对第一节堰流的基本公式一、堰流基本公式推导(图10-7)由大孔口的流量公式(7-6)及,并考虑上游行近流速的影响,令图10-6得堰流的基本公式:(10-1)式中:m——堰流流量系数,m=。
二、堰流公式图10-7若考虑到侧收缩影响及淹没影响,则堰流公式为:(10-2)(10-3)式中:——淹没系数,≤1.0;——侧收缩系数,≤1.0 。
《流体力学》各章节复习要点第一章:流体力学基本概念1.流体力学的研究对象是流体运动的性质、规律和力学行为。
2.流体和固体的区别,流体的分类和性质。
3.流体的基本力学性质,包括压强、密度和粘度等。
4.流体的运动描述,包括质点、流线、流管和速度场等概念。
5.流体的变形和应力,包括剪切应力、正应力、黏性和流变性等。
第二章:流体静力学1.流体静压力的基本特征,流体静力学方程和压强的传递规律。
2.流体的浮力,浸没体和浮力的计算方法。
3.子液面、大气压和液体柱的压强和压力计的应用。
4.流体的液面,压强分布和压力容器。
第三章:流体动力学基本方程1.流体运动描述的方法,包括拉格朗日方法和欧拉方法。
2.质点、质点流函数和速度场等的关系。
3.流体的基本方程,包括连续性方程、动量方程和能量方程。
4.流体的不可压缩性和可压缩性假设。
第四章:定常流动和流动的形态1.定常流动和非定常流动的概念和特点。
2.流体流动的形态,包括层流和紊流。
3.流体的压强分布和速度分布。
4.流体的速度分布和速度云。
第五章:流体的动能和势能1.流体的动能、动能方程和功率。
2.流体的势能、势能方程和能率。
3.流体的势能和扬程。
第六章:粘性流体力学基本方程1.粘性流体的三个基本性质,包括黏性、切变应力和流变规律。
2.线性流体的黏性流动,包括牛顿黏性流体模型和黏性损失。
3.非线性流体的黏性流动,包括非牛顿流体和粘弹性流体。
第七章:边界层流动1.边界层的概念和特点。
2.压强分布和速度分布的边界层。
3.边界层和物体间的摩擦阻力。
第八章:维持边界层流动的力1.维持边界层流动的作用力,包括压力梯度、粘性力和凸面力。
2.维持边界层流动的条件和影响因素。
第九章:相似定律和模型试验1.流体力学中的相似原理和相似定律。
2.物理模型和模型试验的概念和应用。
第十章:流体力学的应用1.流体力学在水利工程中的应用,包括水力学、河流动力学和波动力学等。
2.流体力学在能源领域中的应用,包括风力发电和水力发电等。
理学院物理系陈强第10章流体力学1理学院物理系陈强第10章流体力学•§10-1. 流体静力学•§10-2. 理想流体的流动•§10-3. 粘滞流体23理学院物理系陈强第10章流体力学§10-1. 流体静力学一流体液体和气体统称为流体,最鲜明的特征是形状不定,具有流动性。
液体:气体:易压缩不易压缩二压强F d rdS F d r S d r 面积元两侧流体相互作用的弹性力方向为面元内法线方向S d Fd p r r =单位面积上的压力称为压强在静止流体中任何一点的压强与过该点面元取向无关.4理学院物理系陈强第10章流体力学三流体的可压缩性K pΔρρΔ=K ——体积模量1.静态流体的可压缩性在中等压强下,液体压缩性不显著,气体压缩性十分显著。
2. 流动气体的压缩性很小)(420Ma 8Ma 211γρρ+−≈1u Ma <=v——马赫数声速流速当流速接近声速或超过声速,气体的压缩性很显著.5理学院物理系陈强第10章流体力学四粘性与粘度粘性——流体流动时,在内部产生的切应力。
流体流动时,各层流体的流速不同。
快层必然带动慢层,慢层必然阻滞快层。
层与层之间的相对滑动,产生内摩擦力。
z F v 0f f vv+d vS dz dvf Δη=η——粘度系数或粘度单位:牛·秒/米,N ·s/m 2或Pa ·s理学院物理系陈强第10章流体力学流体的粘性•液体的粘度随温度的增加而减小。
•气体的粘度随温度的增加而增大。
注意:•流体的粘性力与速度梯度相联系,即非弹性恢复力。
实际流体的流动性、可压缩性和粘性,构成了流体力学的物理基础,也预示著流体力学问题的复杂性。
静止流体内部压强分布规律:1:等高点的压强相等;ρ2:高度差为h的两点的压强差为:g h适用条件:同一静止流体内部67理学院物理系陈强第10章流体力学§10-2. 理想流体的流动一理想流体的概念理想流体——没有粘性并且不可压缩的流体。