2018届高三第一次联考--文科数学细目表 精品
- 格式:doc
- 大小:29.00 KB
- 文档页数:1
湖南省2018届高三 十校联考 第一次考试数学试卷(文科)满分:150分 时量:150分钟一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、函数)6cos()6sin(ππ++=x x y 的最小正周期和其图像的一条对称轴方程分别为 ( )A 、6,2ππ=xB 、12,2ππ=x C 、6,ππ=x D 、12,ππ=x 2、等差数列{}n a 的前n 项和为n S ,若1697=+a a ,77=S ,则12a 的值是 ( ) A 、15 B 、30 C 、31 D 、643、已知第一象限的点(,1)P a b -10y ++=的距离等于2,则ab 的最大值为 ( ) ABCD4、如图所示的韦恩图中,A 、B 是非空集合,定义集合A#B 为阴影部分表示的集合.若{,,|x y R A x y ∈==,{}|3.0xB y y x ==>, 则A#B 为 ( )A 、{}|02x x <<B 、{}|12x x <≤C 、{}|012x x x ≤≤≥或D 、{}|012x x x ≤≤>或5、在正三棱锥P-ABC 中,D 、E 分别是AB 、BC 的中点, 有以下四个论断:①A C ⊥PB ; ②A C ∥平面PDE ; ③A B ⊥平面PDE ; ④平面PD E ⊥平面ABC ; 其中正确的个数为 ( ) A 、1个 B 、2个 C 、3个 D 、4个6、若奇函数f (x )(x ∈R )满足f (2)=1, f (x +2)=f (x )+f (2),则f (5)= ( ) A 、0 B 、1 C 、25D 、57、已知,)1()1()1(22102n n n x a x a x a a x x x ++++=++++++ 若 ++21a a n a n -=+-291, 那么自然数n 的值为 ( )A 、3B 、4C 、5D 、68、正四棱柱ABCD -A ′B ′C ′D 的8个顶点都在同一球面上,若AB =1,AA ′=6,则A 、C 两点间的球面距离为 ( ) A 、3π B 、2π C 、32π D 、22π9、如图,PAB ∆所在的平面α和四边形ABCD 所在的平面β垂直,且,AD BC αα⊥⊥, 4AD =,8BC =,6AB =,APD CPB ∠=∠,则点P 在平面α内的轨迹是 ( )A 、圆的一部分B 、椭圆的一部分C 、双曲线的一部分D 、抛物线的一部分10、设F 为抛物线y 2=4x 的焦点,A ,B ,C 为抛物线上三点.O 为坐标原点, 若F 是△ABC 的重心△OFA ,△OFB ,△OFC 的面积分别为S 1,S 2,S 3 ,则21S +22S +23S 的值为( )β αPABCDA 、9B 、6C 、 4D 、 3二、填空题:本大题共5小题,每小题5分,满分25分.11、已知函数=--≠+=-)31(),2(2)(1f x x x x f 则 12、△ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,则角C 的大小为13、甲、乙两名划艇运动员在相同的条件下进行了6次测试,测得他们的速度(/m s )分别如下:甲:27 38 30 37 35 31 乙:29 39 38 28 36 28如果你是主教练,试根据上述数据,确定参加比赛的最佳人选是_________; 理由是____________________ _______。
2018年天津市高三毕业班联考(一)数 学(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 祝各位考生考试顺利!第I 卷(选择题,共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.选出答案后,用铅笔把答题卡上对应的题目的答案标号涂黑,如需改动,用橡皮擦干净后,再填涂其它答案,不能答在试卷上。
参考公式:•锥体的体积公式Sh V31=. 其中S 表示锥体的底面积,h 表示锥体的高. 一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一 个是正确的。
1. 已知集合}5,4,3,2,1,0{=A ,集合}10{2<=x x B ,则=⋂B A ( ) A .}4,2,0{ B .}3{ C .}3,2,1,0{ D .}3,2,1{2. 设实数,x y 满足约束条件22010220x y x y x y +-≥⎧⎪-+≥⎨⎪--≥⎩,则z x y =+的最小值是( ) A .85B .1C .2D .7 3. 执行如图所示的程序框图,输出的s 值为( ) A .23B .35C .58D .813 4.设R x ∈,则“11<x ”是“1)21(>x ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5. 已知双曲线22221(0,0)x y a b a b -=>>的右焦点到抛物线22(0)y px p =>的准线的距离为4,点)22,2(是双曲线的一条渐近线与抛物线的一个交点,则双曲线的标准方程为( )A .15422=-y xB .14522=-y xC .13622=-y xD .16322=-y x 6. 已知)(x f 是定义在),(+∞-∞上的偶函数,且在]0,(-∞上单调递增,若)3(log 51f a =,结束开始否1k k +=是4k <1s 0,k ==s1s s +=s输出)2.0(,)5(log 5.03f c f b ==,则c b a ,,的大小关系为( )A .a b c <<B .c a b <<C .c a b <<D .c b a << 7.将函数)(sin cos 3R x x x y ∈+=的图象上各点的横坐标伸长到原来的2倍,再向左平移(0)m m >个单位长度后,所得到的图象关于原点对称,则m 的最小值是( ) A .34π B .3π C .65πD .6π 8.定义在)1,1(-上的函数)(x f 满足1)1(1)(+-=x f x f ,当]0,1(-∈x 时,111)(-+=x x f ,若函数m mx x f x g ---=21)()(在)1,1(-内恰有3个零点,则实数m 的取值范围是( ) A .)169,41( B . )169,41[ C .11[,)42 D .11(,)42第Ⅱ卷 (非选择题,共110分)二.填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卷中相应的横线上. 9.已知R a ∈,i 为虚数单位,若iia 21-+为纯虚数,则a 的值为________. 10.设函数123++=x x y 的图象在点)4,1(P 处的切线为l ,则直线l 在y轴上的截距为________.11.已知一个几何体的三视图如图所示,则该几何体的体积为________. 12.已知圆C 的圆心在x 轴正半轴上,点)22,0(M 在圆C 上,且圆心到直线012=+-y x 的距离为553,则圆C 的方程为________. 13.已知R b a ∈,,且a 是b -2与b 3-的等差中项,则||||24b a ab+的最大值为________.14.在等腰梯形ABCD 中,已知CD AB //,3=AB ,2=BC ,060=∠ABC ,动点F E ,分别在线段BC 和CD 上,且λ2=,DC DF )31(λ-=,则⋅的取值范围为______.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在ABC ∆中,角C B A ,,的对边分别为c b a ,,,4π=B ,23=c ,ABC ∆的面积为6.11侧视图22俯视图正视图3322(Ⅰ)求a 及A sin 的值;(Ⅱ)求)62sin(π-A 的值.16.(本小题满分13分)为进一步贯彻落实“十九”大精神,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛。
2018届第二片区高三(上)第一次联考数学试卷(文科)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个符合题目要求的.1.已知集合A={x|y=),B={y|y﹣l<0),则A∩B=()A.(一∞,1) B.(一∞,1] C.[0,1)D.[0,1]2.若平面向量=(m,1),=(2,1),且(﹣2)∥,则m=()A.1 B.2 C.3 D.43.复数z=,则()A.|z|=2 B.z的实部为1C.z的虚部为﹣i D.z的共轭复数为﹣1+i4.已知函数f(x)=,则f(f(2))=()A.B.C.2 D.45.函数的图象与x轴的交点的横坐标构成一个公差为的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位6.阅读如图所示的程序框图,则输出的S=()A.45 B.35 C.21 D.157.若,则a,b,c大小关系为()A .b >c >aB .b >a >cC .c >a >bD .a >b >c8.某几何体的三视图如图所示.则其体积积为( )A .8πB .C .9πD .9.“直线l :y=kx+2k ﹣1在坐标轴上截距相等”是“k=﹣1”的( )条件. A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件10.已知等于( )A .B .C .D .11.如图,F 1,F 2是双曲线C :(a >0,b >0)的左、右焦点,过F 1的直线l 与C 的左、右两支分别交于A ,B 两点.若△ABF 2为等边三角形,则双曲线的离心率为( )A .B .C .D .12.已知a >0,若函数且g (x )=f (x )+2a 至少有三个零点,则a 的取值范围是( )A .(,1]B .(1,2]C .(1,+∞)D .[1,+∞)二.填空题:本大题共4个小题,每小题5分,共20分.把答案填在题中横线上.13.已知实数x ,y 满足不等式组,则z=x ﹣2y 的最小值为 .14.一个四面体的所有棱长都为,四个顶点在同一球面上,求此球的表面积.15.已知各项不为0的等差数列{a n }满足,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11的值等于 .16.若圆C 以抛物线y 2=4x 的焦点为圆心,截此抛物线的准线所得弦长为6,则该圆的标准方程是 .三.解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知等差数列{a n }的前n 项和为S n ,且a 3=3,S 7=28. (Ⅰ)求{a n }的通项公式;(Ⅱ)若b n =(﹣1)n •,求数列{b n }的前n 项和T n .18.在△ABC 中,内角A ,B ,C 对应的边长分别为a ,b ,c ,且满足c (acosB ﹣b )=a 2﹣b 2.(Ⅰ)求角A ;(2)求sinB+sinC 的最大值.19.如图所示,三棱锥D ﹣ABC 中,AC ,BC ,CD 两两垂直,AC=CD=1,,点O 为AB 中点.(Ⅰ)若过点O 的平面α与平面ACD 平行,分别与棱DB ,CB 相交于M ,N ,在图中画出该截面多边形,并说明点M ,N 的位置(不要求证明); (Ⅱ)求点C 到平面ABD 的距离.20.在平面直角坐标系xOy中,椭圆C: +=1(a>b>0)的离心率为,右焦点F(1,0).(Ⅰ)求椭圆C的方程;(Ⅱ)点P在椭圆C上,且在第一象限内,直线PQ与圆O:x2+y2=b2相切于点M,且OP⊥OQ,求点Q的纵坐标t的值.21.已知函数f(x)=ax+xlnx(a∈R)(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;(2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.请考生在第22、23二题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-4:坐标系与参数方程]22.在极坐标系中,已知圆C的圆心,半径r=3.(1)求圆C的极坐标方程;(2)若点Q在圆C上运动,P在OQ的延长线上,且|OQ|:|QP|=3:2,求动点P的轨迹方程.[选修4-5:不等式选讲]23.已知f(x)是定义在(0,+∞)上的单调递增函数,对于任意的m、n(m、n∈(0,+∞))满足.(1)求f(1);(2)若f(2)=1,解不等式f(x)<2;(3)求证:.2018届第二片区高三(上)第一次联考数学试卷(文科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个符合题目要求的.1.已知集合A={x|y=),B={y|y﹣l<0),则A∩B=()A.(一∞,1) B.(一∞,1] C.[0,1)D.[0,1]【考点】交集及其运算.【分析】求出A中x的范围确定出A,求出B中不等式的解集确定出B,找出两集合的交集即可.【解答】解:由A中y=,得到x﹣x2≥0,即x(x﹣1)≤0,解得:0≤x≤1,即A=[0,1],由B中不等式解的:y<1,即B=(﹣∞,1),则A∩B=[0,1),故选:C.2.若平面向量=(m,1),=(2,1),且(﹣2)∥,则m=()A.1 B.2 C.3 D.4【考点】平面向量共线(平行)的坐标表示.【分析】利用向量的共线的充要条件,列出方程求解即可.【解答】解:平面向量=(m,1),=(2,1),且(﹣2)∥,可得m﹣4=2(﹣1),解得m=2.故选:B.3.复数z=,则()A.|z|=2 B.z的实部为1C.z的虚部为﹣i D.z的共轭复数为﹣1+i【考点】复数代数形式的乘除运算.【分析】直接利用复数的代数形式的混合运算,化简复数为a+bi的形式,然后判断选项即可.【解答】解:复数z====﹣1﹣i.显然A、B、C都不正确,z的共轭复数为﹣1+i.正确.故选:D.4.已知函数f(x)=,则f(f(2))=()A.B.C.2 D.4【考点】函数的值.【分析】先求出f(2)=﹣,从而f(f(2))=f(﹣),由此能求出结果.【解答】解:∵函数f(x)=,∴f(2)=﹣,f(f(2))=f(﹣)=(﹣)4=(﹣)4=.故选:A.5.函数的图象与x轴的交点的横坐标构成一个公差为的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由题意可得,函数的周期为π,由此求得ω=2,由g(x)=Acosωx=sin[2(x+)+],根据y=Asin(ωx+∅)的图象变换规律得出结论.【解答】解:由题意可得,函数的周期为π,故=π,∴ω=2.要得到函数g (x )=Acos ωx=sin[2(x+)+]的图象,只需将f (x )=的图象向左平移个单位即可,故选A .6.阅读如图所示的程序框图,则输出的S=( )A .45B .35C .21D .15 【考点】循环结构.【分析】根据所给s 、i 的值先执行T=2i ﹣1,s=s ×T ,i=i+1,然后判断i 与4的关系,满足条件算法结束,不满足条件继续执行循环体,从而到结论. 【解答】解:因为s=1,i=1,执行T=2×1﹣1=1,s=1×1=1,i=1+1=2;判断2<4,执行T=2×2﹣1=3,s=1×3=3,i=2+1=3; 判断3<4,执行T=2×3﹣1=5,s=3×5=15,i=3+1=4; 此时4≥4,满足条件,输出s 的值为15. 故选D .7.若,则a ,b ,c 大小关系为( )A .b >c >aB .b >a >cC .c >a >bD .a >b >c 【考点】对数值大小的比较.【分析】根据指数函数与对数函数的图象与性质,即可得出a ,b ,c 的大小关系. 【解答】解:∵a=30.1>1, 且1<2<π,∴0<log2<1,π∴0<b<1;又0<sin<1,∴c=logsin<0,2∴a,b,c大小关系是a>b>c.故选:D.8.某几何体的三视图如图所示.则其体积积为()A.8π B.C.9π D.【考点】由三视图求面积、体积.【分析】几何体为两个尖头圆柱的组合体.它们可以组合成高为8的圆柱.【解答】解:由三视图可知几何体为两个尖头圆柱的组合体,它们可以组成高为8的圆柱,圆柱的底面半径为1,所以几何体的体积为π×12×8=8π.故选A.9.“直线l:y=kx+2k﹣1在坐标轴上截距相等”是“k=﹣1”的()条件.A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据直线截距的定义结合充分条件和必要条件的定义进行判断即可.【解答】解:当k=﹣1时,直线l :y=kx+2k ﹣1=﹣x ﹣3,即+=1,满足在坐标轴上截距相等,即必要性成立,当2k ﹣1=0,即k=时,直线方程为y=x ,在坐标轴上截距都为0,满足相等,但k=﹣1不成立,即充分性不成立,故直线l :y=kx+2k ﹣1在坐标轴上截距相等”是“k=﹣1”的必要不充分条件, 故选:B .10.已知等于( )A .B .C .D .【考点】同角三角函数基本关系的运用.【分析】利用平方关系化弦为切,代入tan α=2求值. 【解答】解:∵tan α=2,∴====.故选:A .11.如图,F 1,F 2是双曲线C :(a >0,b >0)的左、右焦点,过F 1的直线l 与C的左、右两支分别交于A ,B 两点.若△ABF 2为等边三角形,则双曲线的离心率为( )A .B .C .D .【考点】双曲线的简单性质.【分析】由△BAF2为等边三角形,设AF2=t,则AB=BF2=t,再由双曲线的定义,求得t=4a,再由余弦定理可得a,c的关系,结合离心率公式即可计算得到.【解答】解:由△BAF2为等边三角形,设A为右支上一点,且AF2=t,则AB=BF2=t,由双曲线的定义可得,AF2﹣AF1=2a,BF1﹣BF2=2a,BF1=AB+AF1,即有t+2a=2t﹣2a,解得,t=4a,AF1=6a,AF2=4a,F1F2=2c,由余弦定理可得,F 1F22=AF12+AF22﹣2AF1•AF2cos60°,即有4c2=36a2+16a2﹣2×6a×4a×,即为4c2=28a2,则有e==.故选D.12.已知a>0,若函数且g(x)=f(x)+2a至少有三个零点,则a的取值范围是()A.(,1] B.(1,2] C.(1,+∞)D.[1,+∞)【考点】函数零点的判定定理.【分析】把函数零点问题转化为方程根的问题,然后画出a=1及a=2时的分段函数的简图,由图判断a=1及a=2时满足题意,结合选项得答案.【解答】解:函数g(x)=f(x)+2a的零点的个数等价于方程f(x)=﹣2a根的个数,即函数y=f(x)的图象与直线y=﹣2a交点的个数,利用特殊值验证法:当a=1时,y=f(x)的图象如图:满足题意;当a=2时,y=f(x)的图象如图:满足题意.结合选项可知,a的范围是D.故选:D.二.填空题:本大题共4个小题,每小题5分,共20分.把答案填在题中横线上.13.已知实数x,y满足不等式组,则z=x﹣2y的最小值为﹣4 .【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A (2,3),化目标函数z=x ﹣2y 为,由图可知,当直线过A 时,直线在y 轴上的截距最小,z 有最大值为2﹣2×3=﹣4.故答案为:﹣4.14.一个四面体的所有棱长都为,四个顶点在同一球面上,求此球的表面积.【考点】球的体积和表面积.【分析】把四面体补成正方体,两者的外接球是同一个,求出正方体的棱长,然后求出正方体的对角线长,就是球的直径,即可求出球的表面积. 【解答】解:如图,将四面体补成正方体,则正方体的棱长是1,正方体的对角线长为:,则此球的表面积为:4π×=3π15.已知各项不为0的等差数列{a n }满足,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11的值等于 8 .【考点】等差数列的通项公式.【分析】由等差数列和等比数列的通项公式和性质可得b 7=a 7=2,而b 2b 8b 11=b 73,代值计算可得.【解答】解:∵各项不为0的等差数列{a n }满足,∴2a 7﹣a 72=0,解得a 7=2,∴b 7=a 7=2, ∴b 2b 8b 11=b 6b 8b 7=b 73=8, 故答案为:8.16.若圆C 以抛物线y 2=4x 的焦点为圆心,截此抛物线的准线所得弦长为6,则该圆的标准方程是 (x ﹣1)2+y 2=13 .【考点】圆的标准方程;抛物线的简单性质.【分析】确定抛物线的准线方程及焦点坐标,求出圆的圆心及半径,即可得到圆的标准方程.【解答】解:抛物线y 2=4x 的焦点坐标为(1,0),准线方程为x=﹣1, ∵圆C 截此抛物线的准线所得弦长为6,∴圆的半径为=∴圆的标准方程是(x ﹣1)2+y 2=13 故答案为:(x ﹣1)2+y 2=13三.解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知等差数列{a n }的前n 项和为S n ,且a 3=3,S 7=28. (Ⅰ)求{a n }的通项公式;(Ⅱ)若b n =(﹣1)n •,求数列{b n }的前n 项和T n .【考点】数列的求和.【分析】(Ⅰ)通过设等差数列{a n }的公差为d ,联立a 3=a 1+2d=3与S 7=7a 1+d=28,可求出首项和公差,进而计算可得结论;(Ⅱ)通过(Ⅰ)裂项知,b n =(﹣1)n (+),分n 为奇数、偶数两种情况讨论即可.【解答】解:(Ⅰ)设等差数列{a n }的公差为d ,则a 3=a 1+2d=3,S 7=7a 1+d=28,解得:a=1,d=1,1=1+n﹣1=n;所以an=(﹣1)n•=(﹣1)n=(﹣1)n(+),(Ⅱ)由(Ⅰ)知,bn当n为奇数时,T=﹣(1+)+(+)﹣…﹣(+)=﹣1﹣=﹣;n=﹣(1+)+(+)﹣…+(+)=﹣1+=﹣;当n为偶数时,Tn综上,T=﹣1+.n18.在△ABC中,内角A,B,C对应的边长分别为a,b,c,且满足c(acosB﹣b)=a2﹣b2.(Ⅰ)求角A;(2)求sinB+sinC的最大值.【考点】余弦定理;正弦定理.【分析】(1)由余弦定理化简已知可得a2=c2+b2﹣bc,根据余弦定理可求cosA==,结合范围A∈(0,π),即可解得A的值.(2)利用三角函数恒等变换的应用化简可得sinB+sinC=sin(B+),结合范围B∈(0,),可求B+∈(,),利用正弦函数的性质即可解得sinB+sinC的最大值.【解答】(本题满分为12分)解:(1)∵c(acosB﹣b)=a2﹣b2.∴由余弦定理可得:a2+c2﹣b2﹣bc=2a2﹣2b2.可得:a2=c2+b2﹣bc,∴cosA==,∵A∈(0,π),∴A=…6分(2)sinB+sinC=sinB+sin(A+B)=sinB+sinAcosB+cosAsinB=sinB+cosB=sin(B+),∵B∈(0,),∴B+∈(,),sin(B+)∈(,1],∴sinB+sinC的最大值为.…12分19.如图所示,三棱锥D﹣ABC中,AC,BC,CD两两垂直,AC=CD=1,,点O为AB中点.(Ⅰ)若过点O的平面α与平面ACD平行,分别与棱DB,CB相交于M,N,在图中画出该截面多边形,并说明点M,N的位置(不要求证明);(Ⅱ)求点C到平面ABD的距离.【考点】点、线、面间的距离计算;直线与平面平行的性质.【分析】(Ⅰ)当M为棱DB中点,N为棱BC中点时,平面α∥平面ACD.(Ⅱ)由VC﹣ABD =VD﹣ABC,利用等体积法能求出点C到平面ABD的距离.【解答】解:(Ⅰ)当M为棱DB中点,N为棱BC中点时,平面α∥平面ACD.…解:(Ⅱ)∵CD⊥AC,CD⊥BC,∴直线CD⊥平面ABC,…,.又.∴AB=BD,…设点E是AD的中点,连接BE,则BE⊥AD,∴,.又VC﹣ABD =VD﹣ABC,而,设点C到平面ABD的距离为h,则有,…即,∴,∴点C到平面ABD的距离为.…20.在平面直角坐标系xOy中,椭圆C: +=1(a>b>0)的离心率为,右焦点F(1,0).(Ⅰ)求椭圆C的方程;(Ⅱ)点P在椭圆C上,且在第一象限内,直线PQ与圆O:x2+y2=b2相切于点M,且OP⊥OQ,求点Q的纵坐标t的值.【考点】椭圆的简单性质.【分析】(Ⅰ)运用椭圆的离心率公式和焦点坐标,可得c=1,a=2,求得B ,进而得到椭圆方程;(Ⅱ)讨论当PM 垂直于x 轴时,求得P ,Q 的坐标,运用数量积为0,可得t ;当PM 不垂直于x 轴时,设P (x 0,y 0),PQ :y ﹣y 0=k (x ﹣x 0),运用直线和圆相切的条件:d=r ,结合向量垂直的条件:数量积为0,化简整理,即可得到所求值.【解答】解:(Ⅰ)由题意可得e==,c=1,解得a=2,b==,可得椭圆方程为+=1;(Ⅱ)当PM 垂直于x 轴时,可得P (,),Q (,t ),由OP ⊥OQ ,即有•=3+t=0,解得t=﹣2;当PM 不垂直于x 轴时,设P (x 0,y 0), PQ :y ﹣y 0=k (x ﹣x 0),即为kx ﹣y ﹣kx 0+y 0=0,由PQ 于圆O :x 2+y 2=3相切,可得=,平方可得(kx 0﹣y 0)2=3(1+k 2),即2kx 0y 0=k 2x 02+y 02﹣3k 2﹣3,又Q (,t ),由OP ⊥OQ ,即有•=x 0•+ty 0=0,解得t=,则t 2=======12,解得t=.综上可得,t=.21.已知函数f(x)=ax+xlnx(a∈R)(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;(2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(1)易求f′(x)=a+1+lnx,依题意知,当x≥e时,a+1+lnx≥0恒成立,即x≥e 时,a≥(﹣1﹣lnx)max,从而可得a的取值范围;(2)依题意,对任意x>1恒成立,令则,再令h (x)=x﹣lnx﹣2(x>1),易知h(x)在(1,+∞)上单增,从而可求得g(x)min =x∈(3,4),而k∈z,从而可得k的最大值.【解答】解:(1)∵f(x)=ax+xlnx,∴f′(x)=a+1+lnx,又函数f(x)在区间[e,+∞)上为增函数,∴当x≥e时,a+1+lnx≥0恒成立,∴a≥(﹣1﹣lnx)max=﹣1﹣lne=﹣2,即a的取值范围为[﹣2,+∞);(2)当x>1时,x﹣1>0,故不等式k(x﹣1)<f(x)⇔k<,即对任意x>1恒成立.令则,令h(x)=x﹣lnx﹣2(x>1),则在(1,+∞)上单增.∵h (3)=1﹣ln3<0,h (4)=2﹣ln4>0, ∴存在x 0∈(3,4)使h (x 0)=0,即当1<x <x 0时,h (x )<0,即g′(x )<0,当x >x 0时,h (x )>0,即g′(x )>0,∴g (x )在(1,x 0)上单减,在(x 0,+∞)上单增.令h (x 0)=x 0﹣lnx 0﹣2=0,即lnx 0=x 0﹣2, =x 0∈(3,4),∴k <g (x )min =x 0且k ∈Z , 即k max =3.请考生在第22、23二题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.[选修4-4:坐标系与参数方程]22.在极坐标系中,已知圆C 的圆心,半径r=3.(1)求圆C 的极坐标方程;(2)若点Q 在圆C 上运动,P 在OQ 的延长线上,且|OQ|:|QP|=3:2,求动点P 的轨迹方程.【考点】简单曲线的极坐标方程.【分析】(1)设M (ρ,θ)为圆C 上任一点,OM 的中点为N ,由垂径定理能求出圆C 的极坐标方程.(2)设点P 的极坐标为(ρ,θ),由已知求出点Q 的极坐标为(,θ),由此能求出点P 的轨迹方程.【解答】解:(1)设M (ρ,θ)为圆C 上任一点,OM 的中点为N ,∵O 在圆C 上,∴△OCM 为等腰三角形,由垂径定理得|ON|=|OC|cos (),∴|OM|=2×3cos (),即ρ=6cos ()为所求圆C 的极坐标方程.(2)设点P 的极坐标为(ρ,θ),∵P 在OQ 的延长线上,且|OQ|:|QP|=3:2,∴点Q 的极坐标为(,θ),由于点Q 在圆上,所以ρ=6cos ().故点P 的轨迹方程为ρ=10cos ().[选修4-5:不等式选讲]23.已知f (x )是定义在(0,+∞)上的单调递增函数,对于任意的m 、n (m 、n ∈(0,+∞))满足.(1)求f (1);(2)若f (2)=1,解不等式f (x )<2;(3)求证:. 【考点】函数与方程的综合运用.【分析】(1)令m=n=1,由f (m )+f (n )=f (mn ),得f (1)+f (1)=f (1),由此能求出f(1).(2)由f (2)=1,知f (x )<2=1+1=f (2)+f (2)=f (4),由f (x )在(0,+∞)上单调递增,能求出f (x )<2的解集.(3)由f (1)=0,f (x )在(0,+∞)上单调递增,知x ∈(0,1)时,f (x )<0,x ∈(1,+∞)时,f (x )>0,由|f (a )|=|f (b )|,知f (a )=f (b )或f (a )=﹣f (b ).由此能够证明.【解答】(1)解:令m=n=1,由f (m )+f (n )=f (mn ),得f (1)+f (1)=f (1)∴f (1)=0…(2)解:∵f (2)=1,∴f (x )<2=1+1=f (2)+f (2)=f (4),又f (x )在(0,+∞)上单调递增,∴0<x <4,∴f (x )<2的解集为 (0,4)…(3)证明:∵f (1)=0,f (x )在(0,+∞)上单调递增,∴x ∈(0,1)时,f (x )<0,x∈(1,+∞)时,f(x)>0,又|f(a)|=|f(b)|,∴f(a)=f(b)或f(a)=﹣f(b),∵0<a<b,∴f(a)=﹣f(b)∴f(a)+f(b)=f(ab)=0,∴ab=1,∴0<a<1<b,又∵∴,∴4b=a2+2ab+b2,4b﹣b2﹣2=a2,考虑到0<a<1,∴0<4b﹣b2﹣2<1,又b>1∴.。
江西省重点中学盟校2018届高三第一次联考数学(文科)试卷一、选择题:本大题共12小题,每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的1.设全集2,3,4,,集合3,,集合,则A. B. C. D. 3,【答案】B【解析】由题意,因为全集,集合,所以,又因为集合,所以,故选B.2.设,是虚数单位,则“”是“复数为纯虚数”的()A. 充分不必要条件B. 充要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】B【解析】由复数为纯虚数,则,解得,所以是复数为纯虚数的充要条件,故选B.3.若,满足约束条件,则的最大值为()A. 5B. 3C.D.【答案】A【解析】由约束条件不等式组,做出可行域,如图所示,化目标函数为,由图可知,当直线过点时,直线在轴上的截距最小,最大,所以,故选A.4.在中,若,,则的值为()A. B. C. D.【答案】D【解析】因为中,,所以由正弦定理得,因为,所以,化简得,因此,故选D.5.定义在上的偶函数满足,且在上单调递减,设,,,则,,的大小关系是()A. B. C. D.【答案】C【解析】因为偶函数满足,所以函数的周期为,则,,因为,且函数在上单调递减,所以,故选C.6.明朝数学家程大位将“孙子定理”(也称“中国剩余定理”)编成易于上口的《孙子歌诀》:三人同行七十稀,五树梅花廿一支,七子团圆正半月,除百零五便得知.已知正整数被除余,被除余,被除余,求的最小值.按此歌诀得算法如图,则输出的结果为()A. 53B. 54C. 158D. 263【答案】A【解析】按程序框图知的初值为,代入循环结构,第一次循环,第二次循环,推出循环,的输出值为,故选A.7.在数列中,,,则的值为()A. B. 5 C. D.【答案】B【解析】在数列中,,所以,所以是以为周期的周期数列,因为,故选B.8.函数的图象大致为()A. B.C. D.【答案】C【解析】因为函数,由,可得,所以函数的定义域为,再由,可得,且在上为单调递增函数,故选C.9.如图,在圆心角为直角的扇形区域中,分别为的中点,在两点处各有一个通信基站,其信号的覆盖范围分别为以为直径的圆,在扇形内随机取一点,则能够同时收到两个基站信号的概率是( )A. B. C. D.【答案】B【解析】由的中点为,则,半径为,所以扇形的面积为,半圆的面积为,,两个圆的弧围成的阴影部分的面积为,图中无信号部分的面积为,所以无信号部分的概率为,故选B.点睛:本题主要考查了几何概型及其概率的计算,解答的关键是求出无信号部分的面积,对于不规则图形的面积可以转化为及格不规则的图形的面积的和或差的计算,试题属于中档试题,对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件区域的几何度量,最后计算.10.设函数,若方程恰好有三个根,分别为,则的值为()A. B. C. D.【答案】D【解析】由题意,则,画出函数的大致图象,如图所示,由图可得,当时,方程恰有三个根,由得;由得,由图可知,与点关于直线对称;点和点关于对称,所以,所以,故选D.点睛:本题考查了正弦函数的图象,以及正弦函数的图象及对称性的应用,考查了整体思想和数形结合思想的应用,有关问题,一种为提供函数图象求解析式或某参数的范围,一般先根据图象的最高点或最低点确定,再根据周期,求出,最后再利用最高点或最低点坐标满足解析式,求出满足条件的值,另一种时根据题目用文字形容的函数图象特点,如对称轴或曲线经过的点的坐标,根据题意自己画出图象,再寻求待定的参变量,题型很活,求或的值或最值或范围等.11.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为()A. B. C. D.【答案】C【解析】根据三视图得出,该几何体是镶嵌在正方体中的四棱锥,正方体的棱长为,为棱的中点,最大的侧面积为,故选C.12.已知双曲线:的左右焦点分别为,,为双曲线上一点,为双曲线C渐近线上一点,,均位于第一象限,且,,则双曲线的离心率为()A. B. C. D.【答案】D【解析】由双曲线的方程的左右焦点分别为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且,可知为的三等分点,且,点在直线上,并且,则,,设,则,解得,即,代入双曲线的方程可得,解得,故选D.点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).二、填空题(每题5分,共20分,把答案填在答题纸的横线上)13.抛物线的焦点坐标是____________.【答案】【解析】抛物线方程焦点在轴,焦点坐标为14.已知,,,的夹角为,则__________.【答案】【解析】由题设,应填答案。
1 2绝密★启用前|学易教育教学研究院命制2018年第一次全国大联考【新课标卷川】文科数学(考试时间:120分钟 试卷满分:150分)注意事项: 1 •本试卷分第I 卷(选择题)和第U 卷(非选择题)两部分。
答卷前,考生务必将 自己的姓名、准考证号填写在答题卡上。
2 •回答第I 卷时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号 涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3 •回答第U 卷时,将答案写在答题卡上。
写在本试卷上无效。
4. 考试结束后,将本试卷和答题卡一并交回。
第I 卷一、选择题(本大题共12个小题,每小题5分,共60 分.在每小题给出的四个选项中 只有一个选项是符合题目要求的) 12 1 .已知集合 A {x| N},B { 1,0,123,4,5},贝U AI B () 3 xA . { 1,0,1,3}B . { 1,0,1,2}C . { 1,0,1}D . {0,1,2,3} 2 .已知复数z 1 ai a R ,且5z (3 4i ) z 0 (i 是虚数单位),则a ()B . 2 log 2(x a), xC . 23 .已知函数f(x)()A . 2101 1,若f(0)2,则 a f( 2)B . 0C . 24 .如图是半径分别为1,2,3的三个同心圆,现随机向最大圆内抛一粒豆子,则豆落入图中阴影部分的概率为()B .C.-5 .某孪生兄弟均为三口之家,2016年1 — 8月他们的家用煤气用量(单位:m 3)的茎叶图如下图所示,其中两兄弟家的家用 煤气用量的平均数之和为69,哥哥家的家用煤气用量的中位数比 弟弟家的家用煤气用量的众数大 2,则xy 的值为()哥哥9 8 2 73x78 323 24 2 1A . 5B . 10C . 15D .206 .《九章算术》中,将底面是直角三角形 的直三棱柱称之为堑堵”将底面为矩形,一条 侧棱垂直于底面的四棱锥称之为 阳马”,已知某 堑堵”与某 阳马”组合而成的几何体的三视图如 图所示,则该几何体的表面积( )102 211 .已知双曲线C :笃2 1(a 0,b 0)的左、右焦点分别为F1、F2,O为坐标原a b须作答.第22题〜第23题为选考题,考生根据要求作答.9 .阅读下列程序框图,若输出的S 6,则正整数n、填空题(本大题共4小题,每小题5分,共20 分)13 .若向量a 2,3 ,b m,6,且a b a l b,则10 .已知点P(4, 3)在角的终边上,函数f(x) cos( x14 .将半径为1的半圆面绕直径所在直线旋转(0 2 )而形成的几何体的表面积5为—,则3的图象上与y轴最近的两个对称中心的距离为,则f(i)的值为(15 .已知圆G : x2 y2 4x 4y 3 0,点P为圆C?: x2 y2 4x 12 0上且不在ABC.4 2.3 D. 3 4 /3已知x , y满足约束条件3x15y4y25 0,则目标函数3 0已知锐角三角形ABC的外接圆半径为^BC,且AC 4,则BC ()37C.z 3x y的最大值为()开始/ A-S = 5—+1i + 1 it点,倾斜角为-的直线I过右焦点F2且与双曲线的左支交于M点,若6uuuuMF2mur umur(FM F1F2)12 .已知函数A. 17第II卷0,贝U双曲线的离心率为(1f(x2)C.■."3 12x xcosx 20172x 2017,则1016f(佥)i 1001 2UI/16 C. 15本试卷包括必考题和选考题两部分.第13题〜第21题为必考题,每个试题考生都必B. 6C. 7B」1010 10直线C1C2上的任意一点,贝U △ PC1C2的面积最大值为_________16.如图,在边长为2的菱形ABCD中, B亍,EF3 3.3 B.4 3.3)(0)是以A为圆心,1为半径的圆上的一段弧,且点M是圆弧E F上任意一点,MN //AB,设MAF ,则当MN NC取得最小值时,___________________三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)1 *17 .(本小题满分12分)已知数列佝}满足印4,a n a. 1 1,n N .2(1 )若b n a n 2,求数列{b n}的通项公式;(2)若(a n 1)(2n 1 1)C n 2n,数列C n的前n项和为T n,证明:对任意n N*,都有 2 15T n 5 .18 .(本小题满分12分)2016年新高一学生入学后,为了了解新生学业水平,某区对新生进行了素质测查,随机抽取了50名学生的数学成绩(均低于100分),其相关数据统计如下:分数段数频选择题支4分[40,50) 5 2[50,60)14[60,70)5112[70,80)16[80,90)54[90,100)55(1 )若全区高一新生有5000人,试估计成绩不低于60分的人数;(2)根据表格数据试估计全区新生数学的平均成绩(同一分数段的数据取该区间的中点值作为代表,如区间[70,80)的中点值为75 );(3)从成绩在[40,60)中抽取选择题得分不低于24分的3名学生进行具体分析,求至少有2名学生成绩在[50,60)内的概率.19 .(本小题满分12分)如图所示,在多面体ABCDEFG 中,四边形ABCD与四边形ADEF均为边长为2的正方形,GBC为等腰直角三角形,GB GC,且平面ADEF 平面ABCD,平面GBC 平面ABCD .(1)求证:平面FGB 平面DGC ;(2)求多面体ABCDEFG的体积.20 .(本小题满分12分)已知点(2,3)在椭圆V ,2 2p—7~~**X2y21(a b 0)上,设A,B,C分别为左顶点、上顶点、a2 b2匚(1) 求椭圆C 的方程;(2) 如图所示,过点A 作斜率为k 的直线h 交椭圆于M ,交y 轴于点N ,若P 为AM 中点,过N 作与直线0P 垂直的直线12,证明:对于任意的k(k 0),直线J 恒过定点, 并求出此定点坐标.21.(本小题满分12分)已知函数f (x) alnx bx 2 ex c .(1 )当a 0, b c 1时,讨论函数f (x)的单调性;(2 )对于任意x (0,-),不等式f (x) (a 2)ln x bx 2恒成立,求实数c 的最大值.2设函数f x 2x 1 ,x R .(1 )解不等式 f(x) 5 f(x 1);1(2)已知不等式f (x) f(x 1) |x a|的解集为M ,若(〉1)M ,求实数a 的取值范围.请考生在第22、23两题中任选一题作答•注意:只能做所选定的题目.如果多做,则 按所做的第一个题目计分•22 .(本小题满分10分)选修4-4 :坐标系与参数方程n已知直线I 过定点P(1,1),且倾斜角为―,以坐标原点为极点,x 轴的正半轴为极轴 4 的坐标系中,曲线C 的极坐标方程为2cos —.(1) 求曲线C 的直角坐标方程与直线I 的参数方程;(2) 若直线I 与曲线C 相交于不同的两点 代B ,求|AB |及|PA||PB|的值.23 .(本小题满分10分)选修4-5 :不等式选讲下顶点,且下顶点C 到直线AB 的距离为4「7b-。
1 2893 你懂的核准通过,归档资料。
未经允许,请勿外传!安徽省皖南八校2018届高三(上)第一次联考数学试卷(文科)一.选择题(每小题5分,共50分)1.设全集U={﹣2,﹣1,0,1,2},集合A={﹣1,1,2},B={﹣1,1},则A∩(∁U B)为()A. {1,2} B.{1} C.{2} D.{﹣1,1}2.函数y=的定义域为()A.(﹣∞,] B.(﹣∞,)C.(0,] D.(﹣∞,0)∪(0,]3.已知复数,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限4.若a=20.3,b=sin1,c=log30.2,则()A. b>c>a B.b>a>c C.c>a>b D.a>b>c5.已知f(x)=那么f((1))的值是()A. 0 B.﹣2 C.1D.﹣16.等于()A. sin2+cos2 B.cos2﹣sin2 C.﹣sin2﹣cos2 D.sin2﹣cos27.已知△ABC中,a=,b=,B=60°,那么角A等于()A.45°B.60°C.120°或60°D.135°或45°8.已知向量,满足||=||≠0,且关于x的函数f(x)=x3+||x2+•x+2017在R上有极值,则与的夹角θ的取值范围为()A.(0,] B.(,π] C.(,π] D.(,)9.把曲线ysinx﹣2y+3=0先沿x轴向左平移个单位长度,再沿y轴向下平移1个单位长度,得到曲线方程是()A.(1﹣y)cosx+2y﹣3=0 B.(1+y)sinx﹣2y+1=0C.(1+y)cosx﹣2y+1=0 D.﹣(1+y)cosx+2y+1=0 10.已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2) D.(﹣∞,﹣1)二.填空题(每小题5分,共25分)11.已知sinα﹣cosα=,则sinαcosα=_________ .12.已知向量=(1,﹣2),=(﹣3,2),则=_________ .13.设直线y=x+b是曲线y=lnx(x>0)的一条切线,则实数b的值为_________ .14.已知函数y=sin(ωx+φ)(ω>0,0<φ≤)的部分图象如示,则φ的值为_________ .15.已知函数y=f(x)对任意x∈R有f(x+1)=﹣,且当x∈[﹣1,1]时,f(x)=x2+1,则以下命题正确的是:①函数y=f(x)是周期为2的偶函数;②函数y=f(x)在[2,3]单调递增;③函数y=f(x)+的最大值是4;④若关于x的方程[f(x)]2﹣f(x)﹣m=0有实根,则实数m的范围是[0,2];⑤当x1,x2∈[1,3]时,f()≥.其中真命题的序号是_________ .三.解答题(共6小题,共75分)16.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosA=.(1)求sin(B+C)的值;(2)若a=2,S △ABC=,求b,c的值.17.(12分)已知命题p:≤0,命题q:(x﹣m)(x﹣m+2)≤0.m∈R,若p是q的充分不必要条件,求实数m的取值范围.18.(12分)函数f(x)对任意x,y∈(0,+∞)满足f(xy)=f(x)+f(y)且当x>1时,f(x)<0.(1)判断函数f(x)的单调性并证明相关结论;(2)若f(2)=1,试求解关于x的不等式f(x)+f(x﹣3)≥2.19.(13分)已知向量=(mcosθ,﹣),=(1,n+sinθ)且⊥(1)若m=,n=1,求sin(θ﹣)的值;(2)m=且θ∈(0,),求实数n的取值范围.20.(13分)设函数f(x)=x2+bx+c(b,c∈R),已知不论α,β为何实数,恒有f(cosα)≥0,f(2+sinβ)≤0.(1)求证:b+c=﹣1;(2)求实数c的取值范围.21.(13分)设函数f(x)=x3+ax2﹣a2x+m(a>0)(1)若a=1时函数f(x)有三个互不相同的零点,求实数m的取值范围;(2)若对任意的a∈[3,6],x∈[﹣2,2],不等式f(x)≤1恒成立,求实数m的取值范围.皖南八校2018届第一次联考数学(文科)参考答案一.选择题二.填空题 11.1225 12.(2,2)- 13.ln 21- 14.3π15.①②④ 三.解答题16.(满分12分)解析:31cos )1(=A 分2322sin =∴AA CB -=+π又分6322sin )sin()sin( ==-=+∴A A C B π2sin 212)2(==∆A bc S ABC 得由分83 =∴bcA bc c b a cos 2222-+=又分10622 =+∴c b由上解得分123 ==c b17.(满分12分)解析:对于命题1:0x p x-≤,得(1)0x x x -≤⎧⎨≠⎩,∴ 01x <≤………3分 对于命题:()(2)0q x m x m --+≤得2m x m -≤≤………………6分 又因为p 是q 的充分不必要条件 ∴p q ⇒ ∴201m m -≤⎧⎨≥⎩∴12m ≤≤………………………………………………………………12分18.(满分12分)解析:()f x 在(0,)+∞上单调递减 (3)分分单调递减在即分分则且任取12),0()()()(0)()(90)(0)()()(6)()()()(),0(,,21121221121212112122121 +∞∴><-∴<∴<<=-∴+=⋅=+∞∈<x f x f x f x f x f x x f x x x x f x f x f x xf x f x x x f x f x x x x注:第2小题由于校稿失误,故不评分,提供答案,仅供参考题:若(2)1f =-,试求解关于x 的不等式()(3)2f x f x +-≥-.答案:{}43434)3(0300)()4())3((2)2()2()4(≤<∴≤<⎪⎩⎪⎨⎧≤->->∴∞+≥-∴-=+=x x x x x x x x f f x x f f f f 原不等式解集为解得)上单调递增,在(又原不等式可化为19.(满分13分)解析a b ⊥,0a b ∴=cos 2(sin )02m n θθ∴+=即cos 0m n θθ-= (2)分 ⑴2,1m n ==10θθ-=即1θθ=1sin()42πθ∴-=- (6)分⑵2m=0n θθ-=sin )2cos(),(0,)42n ππθθθθ∴=-=+∈ (9)分(0,)2πθ∈ 3444πππθ∴<+<cos()242πθ∴-<+<n <13分20.(满分13分)解析: ⑴令30,2παβ== 得3cos 01,2sin 12π=+=(10(10f f ∴≥≤),) (1=0f ∴)1+0b c ∴+= 即1b c +=-………………6分⑵1b c +=- 1b c ∴=--2()(1)(1)()f x x c x c x x c ∴=-++=--1sin 1β-≤≤ 12sin 3β∴≤+≤又(2sin )0f β+≤ (3)0f ∴≤3c ∴≥ (13)分21.(满分13分)解析(1)当1a =时32()f x x x x m =+-+,因为()f x 有三个互不相同的零点,所以32()f x x x x m =+-+, 即32m x x x =--+有三个互不相同的实数根。
(完整word)2018全国高考1卷文科数学试题及答案(官方)word版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)2018全国高考1卷文科数学试题及答案(官方)word版(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)2018全国高考1卷文科数学试题及答案(官方)word版(word版可编辑修改)的全部内容。
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A =,,{}21012B =--,,,,,则A B =( ) A .{}02,B .{}12,C .{}0D .{}21012--,,,,2.设121iz i i-=++,则z =( ) A .0B .12C .1D .23.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为()2,0,则C 的离心率( )A .13B .12CD5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .B .12πC .D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +8.已知函数()222cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3B .()f x的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( ) A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23α=,则a b -=( ) A .15B .5 C .25D .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分) 13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________.16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。
C • {0,2,4}D • {2,4}2•设i为虚数单位,若复数z满足丨Z |=:4 , z的实部与虚部相等且大于零,则z二IA • 1 IB • 2 2IC • . 2、2iD • 2 2 2、2i3• “3 =0 ”是关于x的方程x2 -x • a =0或ax2 - x =0有解”的A .充要条件B .充分不必要条件C •必要不充分条件D •既不充分也不必要条件1 4 •若COS2 二3:为第三象限角,则兀sin(3 :)二厂 1 ~jf^-3<3<6V6 A • B • C • D •3333A • 16二24C • 16二48&运行如图所示的程序框图,若输出的n的值为5,则判断框中可以填A • S —4? B • S—8? C • S—15?绝密★启用前2018年第一次全国大联考【新课标皿卷】文科数学A • b . a :- c B • a :::b :::c(考试时间:120分钟试卷满分:150分)注意事项:1 •本试卷分第I卷(选择题)和第n卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2•回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3•回答第n卷时,将答案写在答题卡上。
写在本试卷上无效。
4 •考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(本题共12小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的)C • a .. c .. bD • c :: a ::: b6•已知在正方形ABCD中,AE二一AB , AF = - AD,则CE在CF方向上的投影为2 422A • 4B •-5C •2\-57 •某几何体的三视图如图所示,其中正视图为一个半圆及两全等的直角三角形,则该几何体的体积为1 •设集合A ={-2,0,2,4},B={x|x=2k,k N},则A B二A • {-2}B • {-2,0,2,4}侧视图B• 8二24D •48D • S- 32?文科数学试题第1页(共6页)文科数学试题第2页(共6页)9.若函数f(x) = 3sin(2x v) cos(2x v)TTA . f (x )在(0,—)上单调递减4 2C. f(x^)在(0,上)上单调递增4 210•在△ ABC中,内角代B,C所对的边分别是(0 ::: v :::二)的图象关于直线x 对称,则4B . f (x )在(一,3)上单调递减4 4 4D . f(x )在(二3)上单调递增4 4 4a,b,c,已知b = 2a = 6,二-A = 2B,在BC 边上取一15 .在区间[-5,5]上任取一个数k,则直线y=kx-1与抛物线y= x2 - x有交点的概率为 _______________ .16 .在《九章算术》中,将四个面都是直角三角形的四面体称之为鳖臑,在如图所示的鳖臑A- BCD中,AB _平面BCD,且有BD _ CD , AB = BD = 2 , CD = 1,则该鳖臑的外接球体积为.1点D,满足BD ^DC ,过点D作直线l,记直线l在△ABC内的线段长为’,则’的取值范围为A.』.34]4 B.[』.34]2C.xme 11 .已知函数f(x)x (e为自然对数的底数),若f (x) 0在(0, •::)上恒成立,则实数m的取x 值范围是A. (2,::) 4C .(孑::)12 .已知中心在原点D .(£::)V5O,焦点在y轴上,且离心率为的椭圆与经过点C( -1,0)的直线I交于A, B两点, 3 若点C在椭圆内,△ OAB的面积被x轴分成两部分,且△ OAC与△ OBC的面积之比为3:1,则△ OAB面积的最大值为A . 1 C . 33B.-2 9 D .-4二、填空题(本题共4小题,每小题5分,共20分)工八3x 113 .不等式组x • y乞1表示的平面区域D的面积为___________x - y 乞1214 .过抛物线y = 2px(p 0)的焦点F(1,0)作垂直于x轴的直线l,交抛物线于P,Q两点,则以点F为右焦点,且过P,Q两点的双曲线的离心率为__________ 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17 .(本小题满分12分)已知数列{a n}的前n项和为Sn = 3n-1 (n N).(I)求数列{a n}的通项公式;(II)记b n=[3-log3a n],其中[x]表示不超过x的最大整数,求数列{b n}的前20项和T?。
广雅、华东中学、河南名校2018届高三阶段性联考(一)数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|16},{|2}A x x B x x =-≤≤=≥,则()R A C B = ( ) A .[]1,2- B .[1,2)- C .(2,6] D .[2,6]2. 双曲线22221(0)4x y a a a-=≠ 的渐近线方程为( )A .2y x =±B .12y x =± C .4y x =± D .y = 3.547i =+ ( ) A .471313i -+ B .471313i -- C .471313i + D .471313i - 4.曲线3x y e =在点(0,3)处的切线方程为 ( ) A .3y = B .3y x = C .33y x =+ D .33y x =-5. 现有2个正方体,3个三棱柱,4个球和1个圆台,从中任取一个几何体,则该几何体是旋转体的概率为( ) A .110 B .25 C .12 D .7106. 将函数()sin(2)6f x x π=-的图象向左平移3π个单位长度后,得到函数()g x 的图象,则函数()g x 的图象的一条对称轴方程可以是x = ( ) A .4π-B .2π C .6π- D .3π7. 已知公比不为1的等比数列{}n a 的前n 项和为123451,1024n S a a a a a =,且243,,a a a 成等差数列, 则5S = ( ) A .3316 B .3116 C .23 D .11168. 设,m n 是两条不同的直线,,αβ是两个不同的平面,则 ( ) A .若,,m n n ββα⊥⊥⊥,则m α⊥ B .若,,m n αββα⊂⊂⊥,则m n ⊥C .“直线m 与平面α内的无数条直线垂直”上“直线m 与平面α垂直”的充分不必要条件D .若,,m n n m βα⊥⊥⊥,则αβ⊥9. 已知抛物线2:2(0)C y px p =>的焦点为F ,准线3:2l x =-,点M 在抛物线C 上,点A 在左准线l 上,若MA l ⊥,且直线AF 的斜率AF k =则AFM ∆的面积为( )A ....10. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .2483π+ B .88π+ C .3283π+ D .32243π+11. 运行如图所示的程序框图,若输出的S 的值为480,则判断框中可以填 ( ) A .60i > B .70i > C .80i > D .90i >12. 已知函数()22cos 38f x x m x m m =-++-有唯一的零点,则实数m 的值为( ) A .2 B .4- C .4-或2 D .2-或4第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知在长方形ABCD 中,24AB AD ==,点E 是边AB 上的中点,则BD CE ⋅=.14. 《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱,欲以钱数多少衰出之,问各几何?”其意为:“仅有甲带了560钱,乙带了350钱,丙带了180钱,三人一起出关,共需要交关税100钱,依照钱的多少按比例出钱”,则丙应出 钱(所得结果四舍五入,保留整数).15.已知等差数列{}n a 的前n 项和为n S ,若21,3()k k S S k N +==∈,则4k S = . 16. 已知实数,x y 满足22222x yx y x y +≥⎧⎪-≤⎨⎪+≤⎩,若(0)z x my m =->的最大值为4,则(0)z x my m =->的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在ABC ∆中,内角,,A B C 的对边分别为,,a b c,已知cos cos (1)22C Aa +=. (1)求C ; (2)若c =ABC ∆的面积S 取到最大值时a 的值.18. 如图,在三棱柱111ABC A B C -中,011,90,BA BC BB ABC BB ==∠=⊥ 平面ABC ,点E 是1A B 与1AB 的交点,点D 在线段AC 上,1//B C 平面1A BD . (1)求证:1BD AC ⊥;(2)若1AB =,求点B 到平面1ABC 的距离.19. 为了调查观众对某电视剧的喜爱程度,某电视台在甲乙两地随机抽取了8名观众做问卷调查,得分结果如图所示:(1)计算甲地被抽取的观众问卷得分的中位数和乙地被抽取的观众问卷得分的平均数; (2)若从乙地被抽取的8名观众中邀请2人参加调研,求参加调研的观众中恰有1人的问卷调查成绩在90分以上(含90分)的概率.20. 已知椭圆2222:1(0)x y C a b a b +=>>倍,A 是椭圆C 的左顶点,F 是椭圆C 的右焦点,点0000(,)(0,0),M x y x y N >>都在椭圆C 上.(1)若点(D -在椭圆C 上,求的最大值; (2)若2(OM AN O =为坐标原点),求直线AN 的斜率.21.已知函数()1ln ,(1,]f x a x x a e x=-+∈ . (1)若函数()f x 在[1,)+∞上为减函数,求实数a 的取值范围; (2)记函数()()ln xg x f x a=+,若1(0,1)x ∀∈和221(1,),()()x g x g x m ∈+∞-≤,求实数m 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在平面直角坐标系xOy 中,曲线221:20C x y y +-=,倾斜角为6π的直线l 过点(2,0)M -,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程cos()4πρθ-=(1)求1C 和2C 焦点的直角坐标;(2)若直线l 与1C 交于,A B 两点,求MA MB +的值. 23.已知函数()414f x x x a =+-+ .(1)若2a =,解关于x 的不等式()0f x x +<; (2)若x R ∃∈,使()5f x ≤-,求a 的取值范围.试卷答案一、选择题1-5: BADCC 6-10: BDDCA 11、B 12:A二、填空题13. 4 14. 17 15. 10 16. 6-三、解答题17.解:(1)因为cos cos (1)sin (1)22C C a A +=⇒+=在ABC ∆中,sin 0A >1cos 12C C -=,从而sin()16C π-=,因为0C π<<,所以5666C πππ-<-<,所以2623C C πππ-=⇒=.(2)由(1)知23C π=,所以sin C =,所以1sin 2S ab C ==, 因为22222cos 62a b c C a b ab ab+-=⇒+=-, 因为222a b ab +≥,所以2ab ≤,所以42S ab =≤,当且仅当a b ==时等号成立. 18. (1)如图,连接ED ,因为1AB C 平面11,//A BD ED B C =平面1A BD ,所以1//B C ED .因为E 为1AB 的中点,所以D 为AC 的中点. 因为AB BC =,,由1A A ⊥平面,ABC BD ⊂平面ABC ,得1A A BD ⊥, 又1,A A AC 是平面11A ACC 所以内的两条相交直线,得BD ⊥平面11A ACC ,因为1AC ⊂平面11A ACC ,所以1BD AC ⊥.(2)设点B 到平面1ABC 的距离为d ,因为11B ABC B AB C V V --=,所以21111113234d ⨯⨯⨯⨯=⨯⨯,解得3d =,所以点B 到平面1ABC 的距离为d =. 19. (1)由茎叶图可知,甲地被抽取的观众问卷得分的中位数是8383832+=, 乙地被抽取的观众问卷得分的平均数是1(70280490269036907)858⨯+⨯+⨯++++++++=. (2)依题意,从8人中任选2人,包括:()76,79,(76,80),(76,86),(76,89),(76,90),(76,97)(79,80),(79,83),(79,86),(79,89),(79,97),(80,83),(80,86),(80,89),(80,90),(80,97) (83,86),(83,90),(83,89),(83,97),(86,89),(86,90),(86,97),(89,90),(89,97),(90,97),共28种选法,其中满足条件的有12种,所以所求概率为123287P ==.20. 解:(1)依题意,a b =2222159x y a a +=,将(D -代入, 解得29a =,故(2,0)F ,设11(,)N x y,则1[3,3]NF x ===∈-, 故当13x =-时,NF 有最大值为5.(2)由(1)知,5a b =2222159x y a a +=,即222595x y a +=, 设直线OM 的方程为11(0),(,)x my m N x y =>,由222595x my x y a =⎧⎨+=⎩,得2222222559559a m y y a y m +=⇒=+, 因为00y >,所以0y =,因为2//OM AN AN OM =⇒,所以直线AN 的方程为x my a =-,由222595x my a x y a=-⎧⎨+=⎩,得22(59)100m y amy +-=, 所以0y =或21059am y m =+,得121059amy m =+, 因为2OM AN =,所以0011(,)(22,2)x y x a y =+,于是012y y =,220(0)59amm m =>+,所以m =, 所以直线AN的斜率为13m =. 21.解:(1)依题意()222111a x ax f x x x x-+-'=--=,令()0f x '≤,故210x ax -+-≤,故1a x x≤+,因为函数1y x x =+在[1,)+∞上单调递增,所以12x x+≥,所以2a ≤,故(1,2]a ∈,经检验,符合题意,(2)依题意()()221()()11111()ln ()1x a x a g x a x x g x a a x a x x x---'=+-+⇒=+--=, 当(1,]a e ∈时,11a a <<,所以()g x 在1(0,)a 上单调递减,在1(,)a a上单调递增,在(,)a +∞上单调递减,对任意1(0,1)x ∈,有11()()g x g a≥,对任意1(1,)x ∈+∞,有()2()g x g a ≤,所以()()21min1()()g x g x g a g a≤=-⎡⎤⎣⎦,所以()11111()[()ln ][()ln ]g a g a a a a a a a a a a a-=+-+-+-+ 112[()ln ](),(1,]a a a M a a e a a=+-+=∈,所以22211111()2(1)ln 2()2(1)2(1)ln ,(1,]M a a a a a e a a a a a'=-+++--=-∈,所以()0M a '>,即()M a 在(1,]e 上单调递增, 所以max 114[()]()2()2()3M a M e e e e e ==++-=,所以()M a 存在最大值4e, 故4m e≥,即实数m 的取值范围为4[,)e +∞.22.解:(1)曲线2C的极坐标方程为cos()4πρθ-=化为直角坐标系的方程为20x y +-=,联立222020x y x y y +-=⎧⎨+-=⎩, 解得交点的坐标为(0,2),(1,1).(2)把直线的参数方程2(12x t y t ⎧=-⎪⎪⎨⎪=⎪⎩为参数)代入2220x y y +-=,得221212t ⎛⎫⎛⎫-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,即2121)40,1t t t t -+=+=, 易知点M 在圆2220x y y +-=外,所以121MA MB t t +=+=.23.解:(1)若2a =,则不等式化为()41420f x x x x =+--+<,若14x <-,则41420x x x --+-+<,解得3x <,故14x <-; 若1142x -≤≤,则41420x x x ++-+<,解得19x <,故1149x -≤≤;若12x >,则41420x x x +-++<,解得3x <-,故无解,综上所述,关于x 的不等式()0f x x +<的解集为1(,)9-∞,(2)x R ∃∈,使()5f x ≤-等价于()min []5f x ≤-, 因为()414(41)(4)1f x x x a x x a a =+--≤+--=-, 所以()11a f x a --≤≤-,所以()f x 的最小值为1a --, 所以15a --≤-,得4a ≥或6a ≤- 所以a 的取值范围是(,6][4,)-∞-+∞ .。
高三普通班班2018年第一次质量大检测文数试题考试说明:试卷分第I 卷(选择题)和第Ⅱ卷(非选择题),满分150分,考试时间120分钟第I 卷(选择题 共60分)一、选择题:本题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只 有一项是符合题目要求的。
1.已 知 集 合 A = {0 , 1 , 3 }, B = {}13x x-≤.则A ∩ B =A. {0 , 2 }B. {0 , 1 } C . {0 , 1 ,2, 3 } D .Φ2.如果复数21m imi++是 纯虚数 , 那么实数 m 等于A.1B.0C.0 或 1D.0 或-13.已知命题 p :“ ∀ x ∈(0,)+∞, 2x >1 0” ,命 题 q :“ ∃ x 0 ∈R ,sinx 0=cosx 0,则下列命题中的真 命 题为 A .p ∧ q B .﹁p C . ﹁p ∧q D .﹁p ∨﹁q 4. 我 国 古 代 数 学 算 经 十 书 之 一 的 《 九 章 算 术 》 有 一 衰 分 问 题 : 今 有 北 乡 八千 一 百 人 , 西 乡 七 千 四 百 八 十 八 人 , 南 乡 六 千 九 百 一 十 二 人 , 凡 三 乡 , 发 役 三 百 人 , 则 北 乡 遣 A . 10 4 人 B . 10 8 人 C . 11 2 人 D . 12 0 人 5.已知ABC ∆的三边分别是,,a b c ,设向量()()sin sin ,3,sin ,m B A a c n C a b =-+=+,且//m n ,则B 的大小是( ) A .6π B .56π C .3π D .23π6.某几何体的三视图如图所示,则该几何体的表面积是( )A .202162π+B .202164π++C .242164π+D .242162π++7.为比较甲、乙两地某月10时的气温状况,随机选取该月中的5天,将这5天,10时的气温数据(单位:C ︒ )制成如图所示的茎叶图.考虑以下结论:①甲地该月10时的平均气温低于乙地该月10时的平均气温; ②甲地该月10时的平均气温高于乙地该月10时的平均气温;③甲地该月10时的平均气温的标准差小于乙地该月10时的气温的标准差; ④甲地该月10时的平均气温的标准差大于乙地该月10时的气温的标准差.其中根据茎叶图能得到的统计结论的标号为( )A.①③B.②③C.①④D.②④8.已知不等式组210y x y kx y ≤-+⎧⎪≤+⎨⎪≥⎩所表示的平面区域为面积等于94的三角形,则实数k 的值为( )A .1B .2-C .1或2-D .29-9.已知ABC ∆的三个内角C B A ,,的对边分别为c b a ,,,若A B 2=,0cos cos cos >C B A , 则bAa sin 的取值范围是A .33⎝⎭B .⎪⎪⎭⎫ ⎝⎛23,43C .132⎛ ⎝⎭D .312⎫⎪⎪⎝⎭10.已知三棱锥ABC S -的四个顶点均在某个球面上,SC 为该球的直径,ABC ∆是边长 为4的等边三角形,三棱锥ABC S -的体积为38,则此三棱锥的外接球的表面积为A . 368πB .316πC .364πD .380π11.函数11+=x y 的图像与函数)24(sin 3≤≤-=x x y π的图像所有交点的横坐标之和 等于A .4-B .2-C .8-D .6-12.已知S 为双曲线)0,0(12222>>=-b a by a x 上的任意一点,过S 分别引其渐近线的平行线,分别交x 轴于点N M ,,交y 轴于点Q P ,,若()411≥+⋅⎪⎪⎭⎫⎝⎛+OQ OP ON OM恒成立,则双曲线离心率e 的取值范围为 A .(]2,1B .[)+∞,2C .]2,1( D .),2[+∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.在平面直角坐标系xOy 中,若动圆C 上的点都在不等式组3330330x x y x y ≤⎧⎪-+≥⎨⎪++≥⎩表示的平面区域内,则面积最大的圆C 的标准方程为.14.设函数31()2320x e x f x xmx x -⎧->⎪=⎨⎪--≤⎩,,(其中e 为自然对数的底数)有3个不同的零点,则实数m 的取值范围是.15.在平面四边形ABCD 中,已知AB =1,BC =4,CD =2,DA =3,则AC BD ⋅的值为. 16.已知a 为常数,函数22()1f x a x x =---的最小值为23-,则a 的所有值为. 13.22(1)4x y -+=14.()1+∞,15.10 16.144,三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分. 17]已知的内角,,满足:.(1)求角; (2)若的外接圆半径为1,求的面积的最大值.18. 某海产品经销商调查发现,该海产品每售出1吨可获利0.4万元,每积压1吨则亏损0.3万元.根据往年的数据,得到年需求量的频率分布直方图如图所示,将频率视为概率.(1)请补齐上的频率分布直方图,并依据该图估计年需求量的平均数;(2)今年该经销商欲进货100吨,以(单位:吨,)表示今年的年需求量,以(单位:万元)表示今年销售的利润,试将表示为的函数解析式;并求今年的年利润不少于万元的概率.19、(本小题满分12分)在四棱锥P ABCD -中,四边形ABCD 是矩形,平面PAB ⊥平面ABCD ,点E 、F 分别为BC 、AP 中点.(1)求证://EF 平面PCD ; (2)若2=12AD AP PB AB ===,求三棱锥P DEF -的体积.20.(本小题满分12分)已知点)1,0(-A 、)1,0(B ,P 为椭圆C :1222=+y x 上异于点B A ,的任意一点. (Ⅰ)求证:直线PA 、PB 的斜率之积为21-; (Ⅱ)是否存在过点)0,2(-Q 的直线l 与椭圆C 交于不同的两点M 、N ,使得||||BN BM =?若存在,求出直线l 的方程;若不存在,请说明理由. 21. 数列{}n a 的前n 项和为n S ,且112n n S =-,数列{}n b 为等差数列,且()2211121,2a b a b +==. (1)分别求数列{}n a 和{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n T .(二)选考题:共10分。