第二章 第一节 函数及其表示
- 格式:ppt
- 大小:2.82 MB
- 文档页数:49
第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln1-x x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则(1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1lnx +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +1x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f x +f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f x -1,x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f 2x +1log 2x +1的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f 2x +1log 2x +1有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x=f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③. 9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1. 所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,则f (f (-9))=________. 解析:∵函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2. 答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________. 解析:由题意知⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故所求x 的取值范围是[-4,2].答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。
第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).[基本知识]1.函数与映射的概念函数映射两集合A,B 设A,B是两个非空的数集设A,B是两个非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x),x∈A 对应f:A→B(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)函数是特殊的映射.()(2)与x轴垂直的直线和一个函数的图象至多有一个交点.()(3)函数y=1与y=x0是同一个函数.()答案:(1)√ (2)√ (3)× 二、填空题1.函数f (x )=2x -1+1x -2的定义域为______________. 解析:由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0且x ≠2.答案:[0,2)∪(2,+∞)2.已知函数f (x )=2x -3,x ∈{x ∈N|1≤x ≤5},则函数f (x )的值域为____________. 解析:∵x =1,2,3,4,5,∴f (x )=2x -3=-1,1,3,5,7.∴f (x )的值域为{-1,1,3,5,7}. 答案:{-1,1,3,5,7}3.下列f (x )与g (x )表示同一函数的是________. (1)f (x )=x 2-1与g (x )=x -1·x +1; (2)f (x )=x 与g (x )=x 3+xx 2+1;(3)y =x 与y =(x )2; (4)f (x )=x 2与g (x )=3x 3. 答案:(2)[全析考法]考法一 求函数的定义域常见基本初等函数定义域的基本要求 (1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =x 0的定义域是{x |x ≠0}.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R. (6)y =log a x (a >0且a ≠1)的定义域为(0,+∞). (7)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x | x ≠k π+π2,k ∈Z .[例1] (1)(2019·合肥八中期中)函数f (x )=ln (x +3)1-2x的定义域是( ) A .(-3,0) B .(-3,0]C .(-∞,-3)∪(0,+∞)D .(-∞,-3)∪(-3,0)(2)(2019·东北师大附中摸底)已知函数f (x )的定义域是[0,2],则函数g (x )=f ⎝⎛⎭⎫x +12+f ⎝⎛⎭⎫x -12的定义域是( ) A.⎣⎡⎦⎤12,1 B.⎣⎡⎦⎤12,2 C.⎣⎡⎦⎤12,32D.⎣⎡⎦⎤1,32 [解析] (1)∵f (x )=ln (x +3)1-2x,∴要使函数f (x )有意义,需使⎩⎪⎨⎪⎧x +3>0,1-2x >0,解得-3<x <0,即函数的定义域为(-3,0).故选A.(2)由题意得⎩⎨⎧0≤x +12≤2,0≤x -12≤2,∴⎩⎨⎧-12≤x ≤32,12≤x ≤52,∴12≤x ≤32.故选C. [答案] (1)A (2)C [方法技巧]1.根据具体的函数解析式求定义域的策略已知解析式的函数,其定义域是使解析式有意义的自变量的取值集合,求解时只要根据函数解析式列出自变量满足的不等式(组),得出不等式(组)的解集即可.2.求抽象函数的定义域的策略(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. 3.求函数定义域应注意的问题(1)不要对解析式进行化简变形,以免定义域发生变化;(2)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.考法二 已知函数的定义域求参数[例2] (2019·安阳模拟)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是( )A .[0,4)B .(0,4)C .[4,+∞)D .[0,4][解析] 由题意可得mx 2+mx +1≥0恒成立.当m =0时,1≥0恒成立;当m ≠0时,则⎩⎪⎨⎪⎧m >0,m 2-4m ≤0,解得0<m ≤4.综上可得0≤m ≤4. [答案] D [方法技巧]已知函数的定义域求参数问题的解题步骤(1)调整思维方向,根据已知函数,将给出的定义域问题转化为方程或不等式的解集 问题.(2)根据方程或不等式的解集情况确定参数的取值或范围.[集训冲关]1.[考法一]函数f (x )=-x 2+9x +10-2ln (x -1)的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使原函数有意义,则⎩⎪⎨⎪⎧-x 2+9x +10≥0,x -1>0,x -1≠1,解得1<x ≤10且x ≠2,所以函数f (x )=-x 2+9x +10-2ln (x -1)的定义域为(1,2)∪(2,10],故选D.2.[考法一]若函数f (x +1)的定义域是[-1,1],则函数f (log 12x )的定义域为________. 解析:∵f (x +1)的定义域是[-1,1],∴f (x )的定义域是[0,2]. 令0≤log 12x ≤2,解得14≤x ≤1,∴函数f (log 12x )的定义域为⎣⎡⎦⎤14,1. 答案:⎣⎡⎦⎤14,1 3.[考法二]已知函数y =1kx 2+2kx +3的定义域为R ,则实数k 的取值范围是________.解析:当k =0时,y =13,满足条件;当k ≠0时,由⎩⎪⎨⎪⎧k >0,4k 2-12k <0,得0<k <3.综上,0≤k <3.答案:[0,3)突破点二 函数的表示法[基本知识]1.函数的表示方法函数的表示方法有三种,分别为解析法、列表法和图象法.同一个函数可以用不同的方法表示.2.应用三种方法表示函数的注意事项 方法 注意事项解析法 一般情况下,必须注明函数的定义域 列表法 选取的自变量要有代表性,能反映定义域的特征图象法注意定义域对图象的影响:与x 轴垂直的直线与其最多有一个公共点一、判断题(对的打“√”,错的打“×”) (1)若f (x )满足f ⎝⎛⎭⎫1x =x -1,则f (x )=1x-1.( ) (2)若f (x )=2x +1,x ∈[1,3],则f (x -1)=2x -1,x ∈[2,4].( ) 答案:(1)× (2)√ 二、填空题1.已知f (x )是一次函数,满足3f (x +1)=6x +4,则f (x )=________. 解析:设f (x )=ax +b (a ≠0),则f (x +1)=a (x +1)+b =ax +a +b , 依题设得3ax +3a +3b =6x +4,∴⎩⎪⎨⎪⎧3a =6,3a +3b =4,∴⎩⎪⎨⎪⎧a =2,b =-23,则f (x )=2x -23.答案:2x -232.已知x ≠0,函数f (x )满足f ⎝⎛⎭⎫x -1x =x 2+1x 2,则f (x )=________. 解析:f ⎝⎛⎭⎫x -1x =x 2+1x 2=⎝⎛⎭⎫x -1x 2+2, 所以f (x )=x 2+2. 答案:x 2+23.已知函数f (2x +1)=3x +2,且f (a )=4,则a =________.解析:因为f (2x +1)=32(2x +1)+12,所以f (x )=32x +12.又f (a )=4,所以32a +12=4,a =73.答案:73[典例感悟]1.已知f (x )是一次函数,且f [f (x )]=4x +3,则f (x )的解析式为________________.解析:由题意设f (x )=ax +b (a ≠0),则f [f (x )]=f (ax +b )=a (ax +b )+b =a 2x +ab +b =4x +3,∴⎩⎪⎨⎪⎧ a 2=4,ab +b =3,解得⎩⎪⎨⎪⎧ a =-2,b =-3或⎩⎪⎨⎪⎧a =2,b =1. 故所求解析式为f (x )=-2x -3或f (x )=2x +1. 答案:f (x )=-2x -3或f (x )=2x +12.已知f (x +1)=x +2x ,则f (x )的解析式为________________. 解析:法一:设t =x +1(t ≥1),则x =(t -1)2, ∴f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1, ∴f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1,∴f (x )=x 2-1(x ≥1). 答案:f (x )=x 2-1(x ≥1)3.已知f (0)=1,对任意的实数x ,y ,都有f (x -y )=f (x )-y (2x -y +1),则f (x )的解析式为________________.解析:令x =0,得f (-y )=f (0)-y (-y +1)=1+y 2-y , ∴f (y )=y 2+y +1, 即f (x )=x 2+x +1. 答案:f (x )=x 2+x +1[方法技巧]求函数解析式的3种方法1.下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x解析:选C 选项A ,f (2x )=|2x |=2|x |,2f (x )=2|x |,故f (2x )=2f (x );选项B ,f (2x )=2x -|2x |=2x -2|x |,2f (x )=2x -2|x |,故f (2x )=2f (x );选项C ,f (2x )=2x +1,2f (x )=2x +2,故f (2x )≠2f (x );选项D ,f (2x )=-2x ,2f (x )=-2x ,故f (2x )=2f (x ).故选C.2.(2019·南阳第一中学模拟)已知f (1-cos x )=sin 2x ,则f (x 2)的解析式为________________________.解析:因为f (1-cos x )=sin 2x =1-cos 2x ,令1-cos x =t ,t ∈[0,2],则cos x =1-t ,所以f (t )=1-(1-t )2=2t -t 2,t ∈[0,2].则f (x 2)=-x 4+2x 2,x ∈[-2,2].答案:f (x 2)=-x 4+2x 2,x ∈[-2,2]3.已知函数f (x )满足f (x )=2f ⎝⎛⎭⎫1x +x ,则f (x )的解析式为________________. 解析:由f (x )=2f ⎝⎛⎭⎫1x +x ,得f ⎝⎛⎭⎫1x =2f (x )+1x, 联立得⎩⎨⎧f (x )=2f ⎝⎛⎭⎫1x +x , ①f ⎝⎛⎭⎫1x =2f (x )+1x, ②①+②×2得f (x )=x +4f (x )+2x ,则f (x )=-23x -13x .答案:f (x )=-23x -13x突破点三 分段函数[基本知识]1.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.2.分段函数的相关结论(1)分段函数虽由几个部分组成,但它表示的是一个函数.(2)分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.[基本能力]一、判断题(对的打“√”,错的打“×”) (1)分段函数是两个或多个函数.( )(2)若f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,f (a )+f (-1)=2,则a =1.( )答案:(1)× (2)×1.若f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +2),x ≤0,则f (-5)=________.解析:f (-5)=f (-5+2)=f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=2×1=2. 答案:22.(2019·西安质检)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x +1,x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14的值是________. 解析:由题意可得f ⎝⎛⎭⎫14=log 214=-2, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫14=f (-2)=3-2+1=109. 答案:1093.函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≤2,45x ,x >2.若f (x 0)=8,则x 0=________.解析:当x 0≤2时,f (x 0)=x 20+2=8,即x 20=6,∴x 0=-6或x 0=6(舍去);当x 0>2时,f (x 0)=45x 0=8,∴x 0=10.综上可知,x 0=-6或x 0=10. 答案:-6或10[全析考法]考法一 分段函数求值问题[例1] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3, ②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x+1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2,故选B.[方法技巧]分段函数求值的解题思路求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.考法二 分段函数与方程、不等式问题[例2] (1)(2019·长春模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3(2)函数f (x )=⎩⎨⎧12x -1,x ≥0,1x ,x <0,若f (a )≤a ,则实数a 的取值范围是________.[解析] (1)当a >0时,由f (a )+f (1)=0得2a +2=0,无实数解;当a ≤0时,由f (a )+f (1)=0得a +1+2=0,解得a =-3,满足条件,故选A.(2)当a ≥0时,由f (a )=12a -1≤a ,解得a ≥-2,即a ≥0;当a <0时,由f (a )=1a ≤a ,解得-1≤a ≤1,即-1≤a <0.综上所述,实数a 的取值范围是[-1,+∞).[答案] (1)A (2)[-1,+∞) [方法技巧]解分段函数与方程或不等式问题的策略求解与分段函数有关的方程或不等式问题,主要表现为解方程或不等式.应根据每一段的解析式分别求解.若自变量取值不确定,则要分类讨论求解;若自变量取值确定,则只需依据自变量的情况直接代入相应的解析式求解.解得值(范围)后一定要检验是否符合相应段的自变量的取值范围.[集训冲关]1.[考法一]已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,1-log 2x ,x >0,则f (f (3))=( )A.43 B.23 C .-43D .-3解析:选A 因为f (3)=1-log 23=log 223<0,所以f (f (3))=f ⎝⎛⎭⎫log 223=222log +13=224log 3=43,故选A.2.[考法二]设函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≥2,log 2x ,x <2,若f (m )=7,则实数m 的值为( )A .0B .1C .-3D .3解析:选D ①当m ≥2时,由f (m )=7得m 2-2=7,解得m =3或m =-3(舍去),则m =3;②当m <2时,由f (m )=7得log 2m =7,解得m =27>2,舍去.综上可得,实数m 的值是3.故选D.3.[考法二]已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,-3x ,x <0,若a [f (a )-f (-a )]>0,则实数a 的取值范围为( )A .(1,+∞)B .(2,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-2)∪(2,+∞)解析:选D 当a ≥0时,不等式可化为a (a 2+a -3a )>0, 即a 2+a -3a >0,即a 2-2a >0,解得a >2或a <0(舍去); 当a <0时,不等式可化为a (-3a -a 2+a )>0, 即-3a -a 2+a <0,即a 2+2a >0, 解得a <-2或a >0(舍去).综上,实数a 的取值范围为(-∞,-2)∪(2,+∞).[课时跟踪检测][A 级 基础题——基稳才能楼高]1.(2019·重庆五校联考)下列函数中,与y =x 相同的函数是( ) A .y =x 2 B .y =lg 10x C .y =x 2xD .y =(x -1)2+1解析:选B 选项A ,y =x 2=|x |与y =x 的对应法则和值域不同,不是相同函数;选项B ,y =lg 10x=x ,是相同函数;选项C ,y =x 2x =x (x ≠0)与y =x 的定义域不同;选项D ,函数的定义域不相同,不是相同函数.故选B.2.(2019·山西名校联考)若函数f (x )=⎩⎪⎨⎪⎧e x -1,x ≤1,5-x 2,x >1,则f (f (2))=( )A .1B .4C .0D .5-e 2解析:选A 由题意知,f (2)=5-4=1,f (1)=e 0=1,所以f (f (2))=1.3.(2019·马鞍山质量检测)已知函数f (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (1)+f (2)+f (3)+…+f ( 2 020)=( )A .44B .45C .1 009D .2 018解析:选A 由442=1 936,452=2 025可得1,2,3,…, 2 020中的有理数共有44个,其余均为无理数,所以f (1)+f (2)+f (3)+…+f ( 2 020)=44.4.(2019·邯郸调研)函数y =lg (1-x 2)2x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C.⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫-12,1 D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选C 要使函数有意义,需⎩⎪⎨⎪⎧1-x 2>0,2x 2-3x -2≠0,即⎩⎪⎨⎪⎧-1<x <1,x ≠2且x ≠-12,所以函数y=lg (1-x 2)2x 2-3x -2的定义域为⎩⎨⎧⎭⎬⎫x |-1<x <-12或-12<x <1.5.(2019·衡阳县联考)若函数f (x )=x -2a +ln(b -x )的定义域为[2,4),则a +b =( ) A .4 B .5 C .6D .7解析:选B 要使函数有意义,则⎩⎪⎨⎪⎧x -2a ≥0,b -x >0,解不等式组得⎩⎪⎨⎪⎧x ≥2a ,x <b .∵函数f (x )=x -2a +ln(b -x )的定义域为[2,4),∴⎩⎪⎨⎪⎧ 2a =2,b =4,∴⎩⎪⎨⎪⎧a =1,b =4,∴a +b =1+4=5.故选B.6.(2019·乌鲁木齐一诊)函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,-log 3(x -1),x ≥2,则不等式f (x )>1的解集为( )A .(1,2) B.⎝⎛⎭⎫-∞,43 C.⎝⎛⎭⎫1,43 D .[2,+∞)解析:选A 当x <2时,不等式f (x )>1即e x -1>1,∴x -1>0,∴x >1,则1<x <2;当x ≥2时,不等式f (x )>1即-log 3(x -1)>1,∴0<x -1<13,∴1<x <43,此时不等式无解.综上可得,不等式的解集为(1,2).故选A.[B 级 保分题——准做快做达标]1.(2019·玉溪模拟)与函数y =10lg(x -1)的图象相同的函数是( ) A .y =x -1B .y =|x -1|C .y =⎝ ⎛⎭⎪⎫x -1x -12D .y =x 2-1x +1解析:选C 函数y =10lg(x-1)的定义域为{x |x >1}.y =x -1与y =|x -1|的定义域都为R ,故排除A ,B ;y =x 2-1x +1的定义域为{x |x ≠-1},故排除D ;y =⎝ ⎛⎭⎪⎫x -1x -12的定义域为{x |x >1},解析式可化简为y =x -1,因此正确,故选C.2.(2019·全国名校联考)设函数f (x )=⎩⎪⎨⎪⎧3a x ,x ≤1,log a (2x +4),x >1,且f (1)=6,则f (2)=( )A .1B .2C .3D .6解析:选C 由题意,得f (1)=3a =6,解得a =2,所以f (2)=log 2(2×2+4)=log 28=3,故选C.3.(2019·山西名校联考)若函数f (x )满足f (3x +2)=9x +8,则f (x )的解析式是( ) A .f (x )=9x +8 B .f (x )=3x +2 C .f (x )=-3x -4D .f (x )=3x +2或f (x )=-3x -4解析:选B 令t =3x +2,则x =t -23,所以f (t )=9×t -23+8=3t +2.所以f (x )=3x +2,故选B.4.(2019·郑州外国语学校月考)若函数f (1-2x )=1-x 2x 2(x ≠0),则f ⎝⎛⎭⎫12=( ) A .1 B .3 C .15D .30解析:选C 由于f (1-2x )=1-x 2x 2(x ≠0),则当1-2x =12时,x =14,所以f ⎝⎛⎭⎫12=1-116116=15.故选C.5.(2019·福州检测)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0,若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3 D .-1516或3 解析:选A 若a >0,则f (a )=log 2a +a =3,解得a =2,则f (a -2)=f (0)=4-2-1=-1516;若a ≤0,则4a -2-1=3,解得a =3,不合题意.综上f (a -2)=-1516.故选A. 6.(2019·邵阳检测)设函数f (x )=log 2(x -1)+2-x ,则函数f ⎝⎛⎭⎫x 2的定义域为( ) A .[1,2] B .(2,4] C .[1,2)D .[2,4)解析:选B ∵函数f (x )=log 2(x -1)+2-x 有意义,∴⎩⎪⎨⎪⎧x -1>0,2-x ≥0,解得1<x ≤2,∴函数的f (x )定义域为(1,2],∴1<x2≤2,解得x ∈(2,4],则函数f ⎝⎛⎭⎫x 2的定义域为(2,4].故选B.7.设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数f (x )在区间(a ,a +1)上单调递增,则实数a的取值范围是( )A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)解析:选D 作出函数f (x )的图象如图所示, 由图象可知,若f (x )在(a ,a +1)上单调递增, 需满足a ≥4或a +1≤2, 即a ≤1或a ≥4,故选D.8.(2019·山东省实验中学段考)已知函数f (x )的定义域为(0,+∞),则函数y =f (x +1)-x 2-3x +4的定义域是________. 解析:∵函数f (x )的定义域为(0,+∞),∴f (x +1)的定义域为(-1,+∞),要使函数y =f (x +1)-x 2-3x +4有意义,则-x 2-3x +4>0,∴-4<x <1,∴函数y =f (x +1)-x 2-3x +4的定义域为(-1,1).答案:(-1,1)9.若函数f (x )在闭区间[-1,2]上的图象如图所示,则此函数的解析式为________.解析:由题图可知,当-1≤x <0时,f (x )=x +1;当0≤x ≤2时,f (x )=-12x ,所以f (x )=⎩⎪⎨⎪⎧ x +1,-1≤x <0,-12x ,0≤x ≤2.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤210.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)11.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求f (x )的解析式; (2)画出f (x )的图象.解:(1)由⎩⎪⎨⎪⎧f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)f (x )的图象如图:12.设函数f (x )=⎩⎪⎨⎪⎧(x +1)2,x ≤-1,2x +2,-1<x <1,1x -1,x ≥1,已知f (a )>1,求a 的取值范围. 解:法一:(数形结合)画出f (x )的图象,如图所示,作出直线y =1,由图可见,符合f (a )>1的a 的取值范围为(-∞,-2)∪⎝⎛⎭⎫-12,1. 法二:(分类讨论)①当a ≤-1时,由(a +1)2>1,得a +1>1或a +1<-1,得a >0或a <-2, 又a ≤-1,∴a <-2;②当-1<a <1时,由2a +2>1,得a >-12,又∵-1<a <1,∴-12<a <1;③当a ≥1时,由1a -1>1,得0<a <12,又∵a ≥1,∴此时a 不存在.综上可知,a 的取值范围为(-∞,-2)∪⎝⎛⎭⎫-12,1.。