高考数学大一轮复习 第二章 第1节 函数及其表示 理 新人教A版
- 格式:ppt
- 大小:2.65 MB
- 文档页数:59
基础知识整合1.函数与映射的概念2.函数的三要素函数由定义域、错误!对应关系和值域三个要素构成,对函数y=f(x),x∈A,其中(1)定义域:错误!自变量x的取值构成的集合;(2)值域:函数值的集合错误!{f(x)|x∈A}.3.函数的表示法表示函数的常用方法有:错误!解析法、错误!列表法、错误!图象法.4.分段函数若函数在定义域的不同子集上,因错误!对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.1.函数问题允许多对一,但不允许一对多.与x轴垂直的直线和一个函数的图象至多有1个交点.2.判断两个函数相等的依据是两个函数的定义域和对应关系完全一致.3.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.1.集合A={x|0≤x≤4},B={y|0≤y≤2},下列不表示从A到B的函数的是()A.f:x→y=错误!x B.f:x→y=错误!xC.f:x→y=错误!x D.f:x→y=错误!答案C解析依据函数的概念,集合A中任一元素在集合B中都有唯一确定的元素与之对应,故选项C不符合.2.(2019·怀柔月考)已知函数f(x)=5|x|,g(x)=ax2—x(a∈R).若f[g(1)]=1,则a =()A.1B.2C.3D.—1答案A解析因为g(x)=ax2—x,所以g(1)=a—1.因为f(x)=5|x|,所以f[g(1)]=f(a—1)=5|a—1|=1,所以|a—1|=0,所以a=1.故选A.3.已知f(x)=错误!则f错误!+f错误!的值等于()A.—2B.4C.2D.—4答案B解析由题意得f错误!=2×错误!=错误!.f错误!=f错误!=f错误!=2×错误!=错误!.所以f错误!+f错误!=4.4.(2018·江苏高考)函数f(x)=错误!的定义域为________.答案[2,+∞)解析由log2x—1≥0得x≥2,所以函数的定义域为[2,+∞).5.(2019·南京模拟)已知函数f(x)=错误!则不等式f(x)≥—1的解集是________.答案{x|—4≤x≤2}解析当x≤0时,由题意得错误!+1≥—1,解得—4≤x≤0.当x>0时,由题意得—(x—1)2≥—1,解得0<x≤2.综上,f(x)≥—1的解集为{x|—4≤x≤2}.6.已知函数y=f(x2—1)的定义域为[—错误!,错误!],则函数y=f(x)的定义域为________.答案[—1,2]解析∵y=f(x2—1)的定义域为[—错误!,错误!],∴x∈[—错误!,错误!],x2—1∈[—1,2],∴y=f(x)的定义域为[—1,2].核心考向突破考向一函数的定义域角度1求具体函数的定义域例1(1)函数f(x)=(x—2)0+错误!的定义域是()A.错误!B.错误!C.(—∞,+∞)D.错误!∪(2,+∞)答案D解析要使函数f(x)有意义,只需错误!所以x>—错误!且x≠2,所以函数f(x)的定义域是错误!∪(2,+∞),故选D.(2)(2019·广东深圳模拟)函数y=错误!的定义域为()A.(—2,1)B.[—2,1] C.(0,1)D.(0,1]答案C解析由题意得错误!解得0<x<1,故选C.触类旁通已知解析式的函数,其定义域是使解析式有意义的自变量的取值集合,求解时只要根据函数解析式列出自变量满足的不等式组,得出不等式组的解集即可.即时训练1.(2019·厦门模拟)函数f(x)=错误!的定义域是()A.错误!B.错误!C.错误!D.错误!答案D解析由题意得错误!解得x>—错误!且x≠1.故选D.2.(2019·郑州调研)函数f(x)=ln 错误!+x错误!的定义域为()A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,1)∪(1,+∞)答案B解析要使函数f(x)有意义,应满足错误!解得x>1,故函数f(x)=ln 错误!+x错误!的定义域为(1,+∞).故选B.角度2求抽象函数的定义域例2(1)(2019·福州模拟)已知函数f(x)的定义域为(—1,1),则函数g(x)=f错误!+f(x—1)的定义域为()A.(—2,0)B.(—2,2)C.(0,2)D.错误!答案C解析由题意得错误!∴错误!∴0<x<2,∴函数g(x)=f错误!+f(x—1)的定义域为(0,2),故选C.(2)若函数y=f(x)的定义域是[1,2019],则函数g(x)=错误!的定义域是________.答案{x|0≤x≤2018,且x≠1}解析因为y=f(x)的定义域为[1,2019],所以要使g(x)有意义,应满足错误!所以0≤x≤2018,且x≠1.因此g(x)的定义域为{x|0≤x≤2018,且x≠1}.触类旁通对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为[a,b],则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b求出.2若已知函数f[g x]的定义域为[a,b],则f x的定义域为g x在x∈[a,b]上的值域.即时训练3.已知函数y=f(x+1)的定义域是[—2,3],则y=f(2x—1)的定义域为()A.[—3,7] B.[—1,4] C.[—5,5] D.错误!答案D解析因为y=f(x+1)的定义域为[—2,3],所以—1≤x+1≤4.由—1≤2x—1≤4,得0≤x≤错误!,即y=f(2x—1)的定义域为错误!.4.(2019·重庆模拟)已知函数f(x)=ln (—x—x2),则函数f(2x+1)的定义域为________.答案错误!解析由题意知,—x—x2>0,∴—1<x<0,即f(x)的定义域为(—1,0).∴—1<2x+1<0,则—1<x<—错误!.角度3已知定义域求参数范围例3(1)(2019·银川模拟)若函数y=错误!的定义域为R,则实数a的取值范围是()A.错误!B.错误!C.错误!D.错误!解析要使函数的定义域为R,则ax2—4ax+2>0恒成立.1当a=0时,不等式为2>0,恒成立;2当a≠0时,要使不等式恒成立,则错误!即错误!解得0<a<错误!.由12得0≤a<错误!.故选D.(2)(2018·石家庄模拟)设函数f(x)=ax2—2x+2,对于满足1<x<4的一切x值都有f(x)>0,则实数a的取值范围为________.答案错误!解析由f(x)>0,即ax2—2x+2>0,x∈(1,4),得a>—错误!+错误!在x∈(1,4)上恒成立.令g(x)=—错误!+错误!=—2错误!2+错误!,错误!∈错误!,所以g(x)max=g(2)=错误!,所以要使f(x)>0在(1,4)上恒成立,只要a>错误!即可.触类旁通已知函数定义域求参数的思想方法已知函数的定义域,逆向求解函数中参数的取值,需运用分类讨论以及转化与化归的思想方法.转化与化归的思想方法是通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.即时训练5.若函数y=错误!x2—2x+4的定义域、值域都是[2,2b](b>1),则()A.b=2B.b≥2C.b∈(1,2)D.b∈(2,+∞)解析∵函数y=错误!x2—2x+4=错误!(x—2)2+2,其图象的对称轴为直线x=2,∴在定义域[2,2b]上,y为增函数.当x=2时,y=2;当x=2b时,y=2B.故2b=错误!×(2b)2—2×2b+4,即b2—3b+2=0,得b1=2,b2=1.又∵b>1,∴b=2.6.若函数f(x)=错误!的定义域为R,则a的取值范围为________.答案[—1,0]解析因为函数f(x)的定义域为R,所以2x2+2ax—a—1≥0对x∈R恒成立,则x2+2ax—a≥0恒成立.因此有Δ=(2a)2+4a≤0,解得—1≤a≤0.考向二求函数的解析式例4(1)已知f(错误!+1)=x+2错误!,则f(x)=________.答案x2—1(x≥1)解析(换元法)令错误!+1=t,则x=(t—1)2(t≥1),代入原式得f(t)=(t—1)2+2(t—1)=t2—1,所以f(x)=x2—1(x≥1).(2)已知f(x)是一次函数,且满足3f(x+1)—2f(x—1)=2x+17,则f(x)=________.答案2x+7解析(待定系数法)设f(x)=ax+b(a≠0),则3f(x+1)—2f(x—1)=ax+5a+b,所以ax+5a+b=2x+17对任意实数x都成立,所以错误!解得错误!所以f(x)=2x+7.(3)已知f错误!=x2+错误!,则f(x)=________.答案x2—2(x≥2或x≤—2)解析(配凑法)f错误!=x2+错误!=错误!—2=错误!2—2,所以f(x)=x2—2(x≥2或x≤—2).(4)已知函数f(x)的定义域为(0,+∞),且f(x)=2f错误!·错误!—1,则f(x)=________.答案错误!错误!+错误!解析(消去法)在f(x)=2f错误!·错误!—1中,将x换成错误!,则错误!换成x,得f错误!=2f(x)·错误!—1,由错误!解得f(x)=错误!错误!+错误!.触类旁通函数解析式的求法(1)待定系数法:已知函数的类型,可用待定系数法.2换元法:已知复合函数f[g x]的解析式,可用换元法,此时要注意新元的取值范围.3消去法:已知关于f x与f错误![或f—x]的关系式,可根据已知条件再构造出另外一个等式,两等式组成方程组,通过解方程组求出f x.4配凑法:由已知条件f[g x]=F x,可将F x改写成关于g x的解析式,然后以x替代g x,便得f x的解析式.即时训练7.已知f(x)+3f(—x)=2x+1,则f(x)=________.答案—x+错误!解析由已知得f(—x)+3f(x)=—2x+1,解方程组错误!得f(x)=—x+错误!.8.已知f错误!=lg x,则f(x)的解析式为________.答案f(x)=lg 错误!(x>1)解析令错误!+1=t,由于x>0,所以t>1且x=错误!,所以f(t)=lg 错误!,即f(x)=lg 错误!(x>1).9.若f(x)为二次函数且f(0)=3,f(x+2)—f(x)=4x+2,则f(x)的解析式为________.答案f(x)=x2—x+3解析设f(x)=ax2+bx+c(a≠0),又f(0)=c=3.所以f(x)=ax2+bx+3,所以f(x+2)—f(x)=a(x+2)2+b(x+2)+3—(ax2+bx+3)=4ax+4a+2b=4x +2.所以错误!所以错误!所以所求函数的解析式为f(x)=x2—x+3.考向三分段函数例5(1)(2017·山东高考)设f(x)=错误!若f(a)=f(a+1),则f错误!=()A.2B.4C.6 D.8答案C解析若0<a<1,由f(a)=f(a+1)得错误!=2(a+1—1),∴a=错误!,∴f错误!=f(4)=2×(4—1)=6.若a≥1,由f(a)=f(a+1)得2(a—1)=2(a+1—1),无解.综上,f错误!=6.故选C.(2)(2018·浙江高考)已知λ∈R,函数f(x)=错误!当λ=2时,不等式f(x)<0的解集是________,若函数f(x)恰有2个零点,则λ的取值范围是________.答案(1,4)(1,3]∪(4,+∞)解析若λ =2,则当x≥2时,令x—4<0,得2≤x<4;当x<2时,令x2—4x+3<0,得1<x<2.综上可知1<x<4,所以不等式f(x)<0的解集为(1,4).令x—4=0,解得x=4;令x2—4x+3=0,解得x=1或x=3.因为函数f(x)恰有2个零点,结合函数的图象(图略)可知1<λ≤3或λ>4.触类旁通分段函数问题的求解策略(1)分段函数的求值问题,应首先确定自变量的值属于哪个区间,然后选定相应的解析式代入求解.2分段函数与方程、不等式的交汇问题,一般要根据分段函数的不同分段区间进行分类讨论,最后应注意检验所求参数值范围是否适合相应的分段区间.即时训练10.(2019·山西省实验中学模拟)设函数f(x)=错误!若f(a)>a,则实数a的取值范围是________.答案(—∞,—1)解析当a≥0时,f(a)=错误!a—1>a,解得a<—2,矛盾;当a<0时,f(a)=错误!>a,解得a<—1.所以a的取值范围为(—∞,—1).11.设函数f(x)=错误!若f[f(a)]=2,则a=________.答案错误!解析若a>0,则f(a)=—a2<0,f[f(a)]=a4—2a2+2=2,得a=错误!.若a≤0,则f(a)=a2+2a+2=(a+1)2+1>0,f[f(a)]=—(a2+2a+2)2=2,此方程无解.(2019·贵州模拟)若函数f(x)满足:在定义域D内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)为“1的饱和函数”.给出下列三个函数:1f(x)=错误!;2f(x)=2x;3f(x)=lg (x2+2).其中是“1的饱和函数”的所有函数的序号为()A.13B.2C.12D.3答案B解析对于1,若存在实数x0,满足f(x0+1)=f(x0)+f(1),则错误!=错误!+1,所以x错误!+x0+1=0(x0≠0,且x0≠—1),显然该方程无实根,因此1不是“1的饱和函数”;对于2,若存在实数x0,满足f(x0+1)=f(x0)+f(1),则2x0+1=2x0+2,解得x0=1,因此2是“1的饱和函数”;对于3,若存在实数x0,满足f(x0+1)=f(x0)+f(1),则lg [(x0+1)2+2]=lg (x错误!+2)+lg (12+2),化简得2x错误!—2x0+3=0,显然该方程无实根,因此3不是“1的饱和函数”.答题启示解决与函数有关的新定义问题的策略(1)根据定义合理联想,即分析有关信息,通过联想和类比、拆分或构造,可以将新函数转化为我们熟知的基本初等函数进行求解.(2)捕捉解题信息,紧扣定义,根据定义与条件一步步进行推理求解.(3)合理、巧妙的赋值,即给x,y等量一些特殊的数值,求得特殊函数值,从而将新定义的函数进行化简和转化,利用已有函数知识进一步求解.对点训练(2019·黄冈模拟)若定义在R上的函数f(x)当且仅当存在有限个非零自变量x,使得f(—x)=f(x),则称f(x)为“类偶函数”,则下列函数中为类偶函数的是()A.f(x)=cosx B.f(x)=sinxC.f(x)=x2—2x D.f(x)=x3—2x答案D解析A中函数为偶函数,则在定义域内均满足f(x)=f(—x),不符合题意;B中,当x=kπ(k∈Z)时,满足f(x)=f(—x),不符合题意;C中,由f(x)=f(—x),得x2—2x=x2+2x,解得x=0,不符合题意;D中,由f(x)=f(—x),得x3—2x=—x3+2x,解得x=0或x=±错误!,满足题意,故选D.。
第二章 第 1 节 函数的概念及其表示[基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫ba,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.] [学生用书 课时冲关四 文P251 理P290][基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.]4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2 C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.[学生用书 课时冲关四 文P251 理P290][基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.]4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1.∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.。