配方法与公式法
- 格式:doc
- 大小:79.50 KB
- 文档页数:4
一元二次方程配方法和公式法例题一元二次方程,这个名字听起来是不是有点儿高深?别怕,今天咱们就来聊聊这个数学小怪兽,配方法和公式法,两种解法,各有千秋,绝对让你听得懂,学得会。
想象一下,站在数学的海洋里,偶尔翻出一条大鱼,心里那个兴奋劲儿,就跟发现新大陆似的。
说到一元二次方程,大家最熟悉的形态就是ax² + bx + c = 0。
这里的 a、b、c 就是数字,没什么神秘的。
这就像做饭,加点儿调料,看看能做出什么好吃的。
先聊聊配方法,这个名字听起来是不是有点儿像在给方程调音?它就是让方程更好看,让我们一眼就能看出答案。
想象一下,你把一个长方形的饼干变成正方形,这样切的时候多方便。
配方法的核心在于把一个看起来复杂的方程,变得简单,化繁为简。
我们先把ax² + bx + c = 0 里的 a 提出来,变成a(x² + (b/a)x) + c = 0。
是不是有点小变化?我们要做的就是让括号里的部分形成一个完全平方的形式。
你知道吗?就像魔术一样,把一个东西变成另一个东西,真是妙不可言。
然后,我们需要找到合适的数字,让它们的平方和看起来特别和谐。
哎呀,这就好比找到了最配的调味料,咕噜咕噜,混合之后就成了美味的菜。
把这个数字加到方程里,可别忘了加和减一起做,保证整体的平衡。
然后,我们就能把这个方程写成a(x + m)²= k 的样子。
这样一来,方程就变得明朗许多,下一步的解法就如同水到渠成,轻松愉快。
再说说公式法,顾名思义,这是一种绝对“高效”的解法,就像是走捷径一样。
我们可以直接使用经典的求根公式:x = (b ± √(b² 4ac)) / (2a)。
一听这个公式,是不是感觉有点复杂?其实只要把相应的数字代进去,照着做就行。
看似繁琐的步骤,实际上就像开车一样,先把钥匙插上,再启动车子,一切都是那么顺理成章。
用公式法的时候,要注意判别式b² 4ac 的值。
【本讲教育信息】一. 教学内容:用配方法和公式法解一元二次方程1. 知道配方法的意义及用配方法解一元二次方程的主要步骤,能够熟练地用配方法解系数较简单的一元二次方程.2. 理解用配方法推导出一元二次方程的求根公式,了解求根公式中的条件b 2-4ac ≥0的意义,知道b 2-4ac 的值的符号与方程根的情况之间的关系.3. 能熟练地运用求根的公式解简单的数字系数的一元二次方程.二. 知识要点:1. 形如x 2=p 或(mx +n )2=p (p ≥0)的方程用开平方法将一元二次方程降次转化为两个一元一次方程.2. 配方的原理及过程原理:完全平方公式a 2±2ab +b 2=(a ±b )2.过程:以方程2x 2-3x -1=0为例.第一步:二次项系数化为1,移项得x 2-32x =12,即x 2-2×x ×34=12; 第二步:方程两边同时加上(34)2,x 2-2×x ×34+(34)2=12+(34)2. 第三步:完成配方,(x -34)2=1716. 通过配方,方程的左边变形为含x 的完全平方形式(mx +n )2=p (p ≥0),可直接开平方,将一个一元二次方程转化为两个一元一次方程.这样解一元二次方程的方法叫做配方法.3. 用配方法解一元二次方程的步骤:(1)把二次项系数化为1;(2)移项,方程的一边为二次项和一次项,另一边为常数项;(3)方程两边同时加上一次项系数一半的平方;(4)用直接开平方法求出方程的根.4. 利用求根公式解一元二次方程的方法叫做公式法.求根公式是:x =-b ±b 2-4ac 2a(b 2-4ac ≥0).5. 利用求根公式解一元二次方程的步骤:(1)把方程化为一般形式,确定a 、b 、c 的值;(2)计算b 2-4ac 的值;(3)若b 2-4ac ≥0,则代入求根公式求解.6. 对于一元二次方程ax 2+bx +c =0(a ≠0),(1)当b 2-4ac >0时,方程有实数根:a2ac 4b b x ,a 2ac 4b b x 2221---=-+-=; (2)当b 2-4ac =0时,方程有实数根:x 1=x 2=-b 2a; (3)当b 2-4ac <0时,方程没有实数根.三. 重点难点:本讲重点是用配方法和公式法解一元二次方程,难点是配方的过程和对求根公式推导过程的理解.【典型例题】例1. 填上适当的数使下列各式成立.(1)x 2-4x +__________=(x -__________)2;(2)x 2-14x +__________=(x -__________)2; (3)x 2+23x +__________=(x +__________)2. 分析:(1)x 2-4x +(-42)2=x 2-4x +4=(x -2)2;(2)x 2-14x +(-14×12)2=x 2-14x +164=(x -18)2;(3)x 2+23x +(23×12)2=x 2+23x +19=(x +13)2. 解:(1)4,2;(2)164,18;(3)19,13. 评析:配方是学习配方法解一元二次方程的基本功,主要方法是二次项系数是1的式子加上“一次项系数一半的平方”,如(2)题中一次项系数为-14,其一半为-14×12=-18,(-18)2=164.例2. 用配方法解方程:(1)x 2+2x -5=0;(2)4x 2-12x -1=0;(3)(x +1)2-6(x +1)2-45=0.分析:方程(1)是一元二次方程的一般形式,且二次项系数为1,所以直接移项、配方、求解即可;方程(2)要先把二次项系数化为1;方程(3)不要急于打开括号,可把(x +1)2看成一个整体合并,可避免重复配方.解:(1)移项,得x 2+2x =5,配方,得x 2+2x +12=5+12,即(x +1)2=6,∴x +1=±6,原方程的解是x 1=-1+6,x 2=-1-6.(2)方程两边都除以4,得x 2-3x -14=0, 移项,得x 2-3x =14. 配方得x 2-3x +(-32)2=14+(-32)2=104, 即(x -32)2=104. ∴x -32=±102. 原方程的解是x 1=32+102,x 2=32-102. (3)将方程整理得(x +1)2-6(x +1)2=45,-5(x +1)2=45,(x +1)2=-9,由于x 取任意实数时(x +1)2≥0,则上式都不成立,所以原方程无实数根.评析:配方法作为一种求解的方法,与其他方法比显得复杂些,为此,除非题目有特别指明用配方法解外,一般不用这种方法,但配方法是一种重要的数学方法,应用很广,应力争掌握好.例3. 用公式法解下列方程:(1)4x 2+4x -1=-10-8x ;(2)t 2-22t +18=0 (3)(x +1)(x -1)=22x .分析:本题中的三个题目都不是一般形式,因此,首先要整理成一般形式后,再确定a 、b 、c 的值,然后代入公式求解.解:(1)将方程化为一般形式,得4x 2+12x +9=0,∵a =4,b =12,c =9,b 2-4ac =122-4×4×9=0,∴x =-12±02×4=-32. ∴原方程的根是x 1=x 2=- 32. (2)将方程去分母后整理成一般形式,得8t 2-42t +1=0.∵a =8,b =-42,c =1,b 2-4ac =(-42)2-4×8×1=0,∴t =42±02×8=24. ∴原方程的根是t 1=t 2=24. (3)将方程化为一般形式得:x 2-22x -1=0.∵a =1,b =-22,c =-1.b 2-4ac =(-22)2-4×1×(-1)=12>0,x =-(-22)±122×1=22±232=2±3, x 1=2+3,x 2=2-3.评析:用公式法解一元二次方程的一般步骤是:①把方程化为一般形式,确定a 、b 、c 的值;②求出b 2-4ac 的值;③若b 2-4ac ≥0,则把a 、b 、c 及b 2-4ac 的值代入一元二次方程的求根公式x =-b ±b 2-4ac 2a,求出x 1、x 2,若b 2-4ac <0,则方程没有实数根.例4. 不解方程判断下列方程根的情况.(1)4x 2-11x =2;(2)4x 2-x +5=0;(3)y 2+14y +49=0;(4)x 2+(m +2)x +m =0.分析:判断一元二次方程的根的情况应先把方程转化成一般形式,再计算b 2-4ac 的值. 解:(1)原方程化为4x 2-11x -2=0,a =4,b =-11,c =-2,b 2-4ac =(-11)2-4×4×(-2)=153>0,所以原方程有两个不相等的实数根.(2)a =4,b =-1,c =5,b2-4ac=(-1)2-4×4×5=-79<0,所以原方程没有实数根.(3)a=1,b=14,c=49,b2-4ac=142-4×1×49=0,原方程有两个相等的实数根.(4)a=1,b=m+2,c=m,b2-4ac=(m+2)2-4×1×m=m2+4m+4-4m=m2+4,无论m取何值,m2+4>0,∴b2-4ac>0,原方程有两个不相等的实数根.评析:(1)b2-4ac是对一元二次方程一般形式而言的,计算前必须把方程化成一般形式;(2)当讨论含有字母系数的方程根的情况时,通常把计算结果化成(通过配方)(m+n)2+p的形式,由平方数的非负性说明它的符号.例5.先用配方法说明:不论x取何值,代数式x2-5x+7的值总大于0.再求出当x取何值时,代数式x2-5x+7的值最小?最小值是多少?分析:准确配方,利用完全平方公式的非负性确定值的非负性及最小值.解:x2-5x+7=(x-2.5)2+0.75>0.当x=2.5时,代数式x2-5x+7的值最小,最小值是0.75.例6.某农场要建一个矩形的养鸭场,养鸭场的一边靠墙,墙长25m,另三边用竹栏围成,竹栏长为40m.(1)养鸭场的面积能达到150m2吗?能达到200m2吗?(2)能达到250m2吗?如果能,请你给出设计方案;如果不能,请说明理由.分析:根据题意列出方程,利用配方法或求根公式解方程,如果方程有解且符合实际意义,则满足要求,否则,不能满足要求.解:设与墙垂直的一边长为x m,则另一边长(40-2x)m.(1)当面积为150m2时,x(40-2x)=150,整理得:x2-20x+75=0,即(x-10)2=25.解得x1=5,x2=15.此时的设计方案为:与墙垂直的一边长为5m,另一边长为30m,或与墙垂直的边长为15m,另一边长为10m.而当面积为200m2时,x(40-2x)=200,解得x1=x2=10.此时的设计方案为:与墙垂直的边长为10m,另一边长为20m.(2)当面积为250m2时,x(40-2x)=250,此方程无解.所以养鸭场的面积不能达到250m2.【方法总结】1. 如果方程是x2=p(p≥0)或类似于(mx+n)2=p(p≥0)的形式,可得x=±p或mx+n=±p,要熟悉完全平方公式a2±2ab+b2=(a±b)2.2. 配方法解一元二次方程的主要步骤:(1)将方程化成ax2+bx=-c的形式;(2)二次项系数化成1,x2+ba x=-ca;(3)配方,两边都加上一次项系数一半的平方,将方程化成x2=p或(x+k)2=p(p ≥0)的形式,从而得x=±p或x+k=±p最终得出方程的根.3. 公式法解一元二次方程的主要步骤:(1)化成一般形式ax 2+bx +c =0(a ≠0)确定各项系数的值;(2)计算b 2-4ac 的值;(3)当b 2-4ac ≥0时,用求根公式求解,x =-b ±b 2-4ac 2a;当b 2-4ac <0时,原方程无实根.b 2-4ac 的值决定方程解的情况.当b 2-4ac >0时,有两个不等实根;当b 2-4ac =0时,有两个相等实根;当b 2-4ac <0时,没有实根.【预习导学案】(用因式分解法解一元二次方程)一. 预习前知1. 想一想,因式分解有几种方法?2. 分解因式:(1)25(7x -3)2-16;(2)5x (2x +7)-3(2x +7);(3)x 2-4x +4;(4)(x -1)2+2x (x -1).二. 预习导学1. 根据“ab =0,则a =0或b =0”解下列方程.(1)(x -1)(2x +3)=0;(2)x (x +1)=0;(3)(x -2)(x +1)=0.2. 用因式分解法解下列方程.(1)x 2+x =0;(2)(3x -1)2-1=0;(3)x 2-2x +1=0.反思:(1)用因式分解法适合解什么样的一元二次方程?(2)用因式分解法解一元二次方程的基本步骤是什么?【模拟试题】(答题时间:60分钟)一. 选择题1. 下列方程不能用开平方法求解的是( )A. x 2-6x +9=0B. (x -5)2=7C. 4x 2=1D. 2y 2+4y +4=02. 用直接开平方法解方程(x -3)2=8,得方程的根为( )A. x =3+2 2B. x =3-2 2C. x 1=3+22,x 2=3-2 2D. x 1=3+23,x 2=3-2 33. 用配方法解方程x 2+3=4x 时,这个方程可化为( )A. (x -2)2=7B. (x +2)2=1C. (x -2)2=1D. (x +2)2=2*4. 方程x 2+x -1=0的根精确到0.1的近似值是( )A. 0.6,1.6B. 0.6,-1.6C. -0.6,1.6D. -0.6,-1.65. 一元二次方程x 2-2x -3=0的根是( )A. x 1=1,x 2=3B. x 1=-1,x 2=3C. x 1=-1,x 2=-3D. x 1=1,x 2=-3*6. 用配方法解方程时,下列配方错误的是( )A. x 2+2x -99=0化为(x +1)2=100B. t 2-7t -4=0化为(t -72)2=654C. x 2+8x +9=0化为(x +4)2=25D. 3x 2-4x -2=0化为(x -23)2=109*7. 下列关于x 的一元二次方程中有两个不相等的实数根的是( )A. x 2+1=0B. x 2+2x +1=0C. x 2+2x +3=0D. x 2+2x -3=0**8. 若x 2-2(k +1)x +k 2+5是一个完全平方式,则k 等于( )A. -1B. 2C. 1D. -2二. 填空题1. 如果(x -2)2=9,则x =__________.2. 方程(2y +1)2-16=0的根是__________.3. 方程(x +m )2=n 有解的条件是__________.4. 填空:(1)x 2+10x +__________=(x +__________)2;(2)m 2-8m +__________=(m -__________)2;(3)x 2+3x +__________=(x +__________)2;(4)x 2+12x +__________=(x +__________)2; (5)x 2-mx +__________=(x -__________)2.*5. 把下列各式化为(x +m )2+n 的形式:(1)x 2-4x +7=__________;(2)x 2+2x -3=__________;(3)x 2+2x +1=__________;6. 方程x 2+5x +3=0中,b 2-4ac =_______,由求根公式可得方程的根是x 1=_______,x 2=_______.7. 如果关于x 的方程x 2+4x +a =0有两个相等的实数根,那么a =__________.三. 解答题1. 用直接开平方法解下列一元二次方程:(1)(x -1)2=4;(2)4m 2-4m =-1;(3)3(4x -1)2=48;(4)y 2-2y -8=0.2. 用配方法解方程:(1)x 2-6x -7=0;(2)x 2-2x -1=0;(3)2x 2+x =0;(4)(x +1)2=x -1.3. 关于x 的二次三项式x 2+2mx +4-m 2是一个完全平方式,求m 的值.4. 如图,一个5m 长的梯子斜靠在墙上,梯子的顶端距离地面3m ,如果顶端下滑1m ,那么,梯子的底端也将滑动1m 吗?请你用所学知识来解释.5. 若关于x 的方程x 2+(2k -1)x +k 2-74=0有两个相等的实数根,求k 的值.6. 方程x 2+kx -6=0的一个根是2,试求另一个根及k 的值.7. 用100m 长的铁丝围成一个长方形,面积是600m 2,长、宽分别是多少?能否再围成一个面积是800m 2的长方形呢?【试题答案】一. 选择题1. D2. C3. C4. B5. B6. C7. D8. B二. 填空题1. 5或-12. y 1=32,y 2=-523. n ≥04. (1)25 5;(2)16 4;(3)94 32;(4)11614;(5)m 24 m 2 5.(1)(x -2)2+3;(2)(x +1)2-4;(3)(x +22)2+12 6. 13,-5+132, -5-1327. 4三. 解答题1. (1)x 1=3,x 2=-1;(2)m 1=m 2=12;(3)x 1=54,x 2=-34;(4)y 1=4,y 2=-2 2. (1)x 1=7,x 2=-1;(2)x 1=1+2,x 2=1-2;(3)x 1=0,x 2=-12;(4)无实数根3. 原式=x 2+2mx +m 2-m 2+4-m 2=(x +m )2+(4-2m 2),因为其为完全平方式,所以4-2m 2=0,即m =±2.4. 梯子的底端不会滑动1m .设梯子底端下滑x 米,22+(x +4)2=52.即x 2+8x -5=0,解得x 1=21-4,x 2=-21-4(舍去).因为21<5,所以21-4<1.5. 根据题意(2k -1)2-4(k 2-74)=0,即-4k +1+7=0.解得k =2. 6. 把x =2代入得22+2k -6=0,即k =1.当k =1时,x 2+x -6=0,解之得x 1=-3,x 2=2.所以方程另一个根是x =-3,k =1.7. 设宽为xm ,则x (50-x )=600,解得x 1=20,x 2=30.所以当面积为600m 2时,长为30m ,宽为20m .不能围成面积为800m 2的长方形,理由:设长为xm ,则x (50-x )=800,由b 2-4ac <0知,方程无解.。
公式法与配方法的关系
公式法和配方法都是解决一元二次方程的常用方法,它们之间存在密切的关系。
首先,公式法是一元二次方程的一般解法,也被称为万能方法。
无论一元二次方程的系数如何,只要该方程有实数解,就可以使用公式法求解。
公式法的公式是 x=(-b±√(b^2-4ac))/(2a),其中 a、b 和 c 是一元二次方程
ax^2+bx+c=0 的系数。
这个公式可以用于直接求解一元二次方程,避免了配方法中的配方过程。
其次,配方法是通过配方将一元二次方程转化为完全平方的形式,然后求解方程。
配方法的优势在于当二次项系数为1,一次项系数是偶数时,使用配方法会比较容易。
配方法的基本步骤包括移项、配方和开方等。
值得注意的是,公式法实际上是基于配方法推导出来的。
通过配方,一元二次方程可以转化为完全平方的形式,然后使用直接开平方法求解方程。
因此,从某种意义上说,公式法和配方法是等价的,它们只是在形式上有所不同。
综上所述,公式法和配方法都是解决一元二次方程的有效方法,而公式法是更一般的方法,可以用于所有的一元二次方程。
配方法在某些特定情况下更
为简便,但需要更多的操作步骤。
在实际应用中,可以根据具体情况选择合适的方法来解决问题。
开平方配方法公式法因式分解标题:探究开平方配方法与公式法在因式分解中的应用1. 引言在代数学中,因式分解是一项重要的技巧和方法,它可以帮助我们简化和解决复杂的代数表达式,从而更好地理解和分析数学问题。
在本文中,我们将探讨开平方配方法和公式法在因式分解中的应用,从简单到复杂地分析这两种方法的适用情况和优势。
2. 开平方配方法的基本原理开平方配方法是一种常见的因式分解方法,它的基本原理是利用完全平方公式将一个二次三项式分解成两个完全平方式的和或差。
以公式$(a+b)^2$或$(a-b)^2$为基础进行展开,从简单的例子开始逐步深入,让我们一起探讨开平方配方法在因式分解中的应用。
3. 公式法的优势与适用情况公式法作为另一种因式分解的常用方法,其优势和适用情况值得我们深入了解。
通过对比开平方配方法,我们可以更清晰地理解两种方法在不同情况下的灵活运用。
在本部分,我们将具体分析公式法的优势和适用情况,并与开平方配方法进行比较。
4. 开平方配方法与公式法的实际应用通过举例分析实际问题,并运用开平方配方法和公式法进行因式分解,我们可以更深入地理解这两种方法在实际问题中的应用。
具体的例子让我们更直观地感受到这两种方法的灵活性和有效性,从而更好地掌握它们的运用技巧。
5. 个人观点与结论在本部分,我将分享我对开平方配方法和公式法的个人观点和理解,从而进一步加深对这两种因式分解方法的认识。
通过总结性的回顾,我们可以更全面地理解并灵活运用这两种方法,为代数学领域的问题解决提供更多的思路和方法。
结论通过本文的探讨,我们深入了解了开平方配方法和公式法在因式分解中的应用。
从简到繁地展开了讨论,并提出了个人观点和总结性的回顾,希望读者能够对这两种方法有更深刻的理解,从而更灵活地应用于代数学的问题解决中。
以上就是文章的大纲,我将按照这个结构进行撰写,体现我对主题的全面评估和深度的挖掘。
希望您对这篇文章满意!因式分解是一项在代数学中非常重要的技巧和方法,它可以帮助我们简化和解决复杂的代数表达式,从而更好地理解和分析数学问题。
初三数学配方法公式法练习题在初三数学学习过程中,配方法和公式法是其中的两个重要的解题方法。
配方法主要适用于一元二次方程的解题,而公式法则广泛适用于各种数学题型。
下面我们来进行一些练习题,通过运用这两种方法解题,加深对它们的理解。
1. 配方法1.1 一元二次方程题问题:求解方程x^2 + 6x + 9 = 0的解。
解答:按照配方法的步骤来解题,我们需要先判断a、b、c的值分别是多少。
在这个方程中,a为1,b为6,c为9。
1. 将b除以2,得到3。
2. 计算3的平方,得到9。
3. 判断是否满足(a-b/2)^2 = c。
在这个例子中,(1-6/2)^2=9。
4. 若满足配方法的条件,可以进行下一步计算。
在这个例子中,满足条件。
5. 计算(x-b/2)^2 = c,即(x-3)^2 = 9。
6. 开方得到x-3=±3,即x=6或x=0。
所以,方程x^2 + 6x + 9 = 0的解为x=6或x=0。
2. 公式法2.1 面积计算题问题:求解一个半径为5cm的圆的面积。
解答:根据圆的面积公式S = πr^2,其中r为半径。
1. 将半径的值代入公式中,得到S = π(5)^2。
2. 进行计算,得到S = 25π。
所以,一个半径为5cm的圆的面积为25πcm²。
2.2 三角函数题问题:求解正弦函数f(x) = sin(x)在区间[0, π/2]上的极大值和极小值。
解答:根据三角函数的极值定理,f(x)在区间[0, π/2]上的极大值和极小值可通过求f'(x) = 0的根来得到。
其中,f'(x)代表f(x)的导数。
1. 对f(x) = sin(x)求导数,得到f'(x) = cos(x)。
2. 解方程f'(x) = 0,即cos(x) = 0。
在区间[0, π/2]上,cos(x) = 0的解为x = π/2。
3. 根据二阶导数的符号来判断极值类型。
在这个例子中,f''(x) = -sin(x)小于0,说明在x = π/2处是极大值。
一元二次方程解法---配方法和公式法【知识要点】1.一般的一元二次方程,可用配方法求解.其步骤是:①化二次项系数为1,并把常数项移项到方程的另一侧,即把方程化为q px x -=+2的形式;②方程两边都加上22⎪⎭⎫ ⎝⎛p ,把方程化为44222q p p x -=⎪⎭⎫ ⎝⎛+;③当042≥-q p 时,利用开平方法求解.2.一元二次方程()002≠=++a c bx ax 的求根公式是:()042422≥--±-=ac b aac b b x .3.解一元二次方程,直接开平方法是一种特殊方法,配方法与求根公式法是一般方法,对于任何一元二次方程都可使用。
解题的关键是要根据方程系数的特点及方程的不同形式,选择适当的方法,使解法简捷.【典型例题】例1. 用配方法解下列方程:(1)0542=--x x (2)01322=-+x x(3)07232=-+x x (4)01842=+--x x类题练习:用配方法解下列方程:(1)01722=++x x (2)04522=--x x例2.用公式法解下列方程:(1)01522=+-x x (2)1842-=--x x(3)02322=--x x (4)()()()0112=-++-y y y y【经典练习】1.把方程0562=+-x x 化成()k m x =+2的形式,则m =_______,k =_________。
2.将方程01232=-+x x 配方成()_______2=+x ,从而求得此方程的根是 。
3.把下列各式配成完全平方式(1)()22_________21-=+-x x x (2)()22___________32+=++x x x (3)()22__________-=+-x x a b x (4)()22____25____-=+-x x x 4.若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对5.用配方法解方程01322=++x x ,正确的解法是( ). A .3223198312±-==⎪⎭⎫ ⎝⎛+x x , B .98312-=⎪⎭⎫ ⎝⎛+x ,原方程无实数根.C .35295322±-==⎪⎭⎫ ⎝⎛+x x , D .95322-=⎪⎭⎫ ⎝⎛+x ,原方程无实数根.6将二次三项式6422+-x x 进行配方,正确的结果是( ).A .()4122--x B .()4122+-x C .()2222--x D .()2222+-x7.通过配方,将下列各方程化成()2x m n +=的形式.(1)2261x x += (2)21815x x -= (3)26100x x -= (4)2322x x -=9.用配方法解下列方程:(1)012=--x x (2)02932=+-x x(3)02222=+-+a b ax x (4) x 2+4x -12=010.用公式法解下列方程:(1)1852-=-x x(3)3x 2+5(2x+1)=0 (4)x x x 22)1)(1(=-+(5)1432+=x x配方法和公式法作业1.用配方法解下列方程:(1)x x 542=-(3)()1126=+x x . (4)030222=--x x(5)x 2+4x -12=0 (6)032=-+x x2.用公式法解下列方程.(1)12=+x x (2)y y 32132=+(3)081222=+-t t (4)1252+=y y(5)7922++x x =0。
第6讲一元二次方程及其求解(配方法、公式法、因式分解法)目标导航课程标准1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;2.掌握直接开平方法解方程,会应用此判定方法解决有关问题;3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.4.了解配方法的概念,会用配方法解一元二次方程;5.掌握运用配方法解一元二次方程的基本步骤;6.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力. 7.理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;8.正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;9.通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.知识精讲知识点01 一元二次方程的有关概念1.一元二次方程的概念通过化简后,只含有未知数(一元),并且未知数的最高次数是(二次)的整式方程,叫做一元二次方程.注意:识别一元二次方程必须抓住三个条件(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;是一次项,是一次项系数;是常数项.注意:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解使一元二次方程左右两边的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.知识点02 一元二次方程的解法(一)直接开方法解一元二次方程1.直接开方法解一元二次方程:利用直接开平方求一元二次方程的解的方法称为直接开平方法.2.直接开平方法的理论依据:平方根的定义.3.能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.注意:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.(二)配方法解一元二次方程:1.配方法解一元二次方程将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.2.配方法解一元二次方程的理论依据是公式:.3.用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 注意:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±. 4.配方法的应用(1)用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.(2)用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.(3)用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. (4)用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 注意:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好. (三)公式法解一元二次方程 1.一元二次方程的求根公式 一元二次方程,当 时,2.一元二次方程根的判别式一元二次方程根的判别式: . ①当时,原方程有两个不等的实数根 ; ②当时,原方程有两个相等的实数根 ; ③当时,原方程 实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值; ④若,则利用公式求出原方程的解;若,则原方程无实根.注意:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=.①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,242b b acx a -±-=.② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a =-.③ 当240b ac ∆=-<时,右端是负数.因此,方程没有实根. (四)因式分解法解一元二次方程 1.用因式分解法解一元二次方程的步骤 (1)将方程右边化为 ;(2)将方程左边分解为两个一次式的 ;(3)令这两个一次式分别为 ,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 注意:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次 因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0; (3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.考法01 关于一元二次方程的判定【典例1】下列方程①x 2﹣5x =2022,②20ax bx c ++=,③2316xx +=,④2(2)(6)1x x x -+=+,一定是关于x 的一元二次方程的有( ) A .1个B .2个C .3个D .4个【即学即练】若()2230aa x x --+= 是关于x 的一元二次方程,则a 的值是( ) A .2-B .2C .1D .2±考法02 一元二次方程的一般形式、各项系数的确定能力拓展【典例2】将方程2x 2=5x -1化为一元二次方程的一般形式,其中二次项系数为2,则一次项系数、常数项分别是( ) A .-5、1B .5、1C .5、-1D .-5、-1【即学即练】将下列一元二次方程化成一般形式后,其中二次项系数是2,一次项系数是4-,常数项是3的方程是( ) A .2234x x +=B .2234x x -=C .2243x x +=D .2243x x -=考法03 一元二次方程的解(根)【典例3】若2x =是关于x 的一元二次方程20ax x b --=的一个根,则282a b +-的值为( ) A .0B .2C .4D .6【即学即练】若一元二次方程()221310k x x k -++-=有一个解为0x =,则k 为( )A .±1B .1C .1-D .0考法04 用直接开平方法解一元二次方程【典例4】方程()219x +=的解为( ) A .2x =,4x =-B .2,4x x =-=C .4,2x x ==D .2,4x x =-=-【即学即练】一元二次方程()2116x +=可转化为两个一元一次方程,其中一个一元一次方程是14x +=,则另一个一元一次方程是( ) A .14x -=-B .14x -=C .14x +=D .14x +=-考法05 用配方法解一元二次方程【典例5】用配方法解一元二次方程 x 2-10x +11=0,此方程可化为( ) A .(x -5)2=14B .(x +5)2=14C .(x -5)2 =36D .(x +5)2 =36【即学即练】慧慧将方程2x 2+4x ﹣7=0通过配方转化为(x +n )2=p 的形式,则p 的值为( ) A .7B .8C .3.5D .4.5考法06 配方法在代数中的应用【典例6】已知三角形的三条边为,,a b c ,且满足221016890a a b b -+-+=,则这个三角形的最大边c 的取值范围是( ) A .c >8B .5<c <8C .8<c <13D .5<c <13【即学即练】已知方程264x x -+=,等号右侧的数字印刷不清楚,若可以将其配方成()27x p -=的形式,则印刷不清楚的数字是( ) A .6B .9C .2D .2-考法07 公式法解一元二次方程【典例7】已知关于x 的一元二次方程ax 2+bx +c =0(a ≠0),下列命题是真命题的有( )①若a +2b +4c =0,则方程ax 2+bx +c =0必有实数根;②若b =3a +2,c =2a +2,则方程ax 2+bx +c =0必有两个不相等的实根; ③若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立; ④若t 是一元二次方程ax 2+bx +c =0的根,则b 2﹣4ac =(2at +b )2. A .①②B .②③C .①④D .③④【即学即练】x = )A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+=考法08 因式分解法解一元二次方程【典例8】一元二次方程2560x x -+=的根是( ) A .12x =,23x =B .12x =-,23x =C .12x =,23x =-D .12x =-,23x =-【即学即练】一个等腰三角形两边的长分别等于一元二次方程216550x x -+=的两个实数根,则这个等腰三角形周长为( ) A .11B .27C .5或11D .21或27题组A 基础过关练1.把一元二次方程(1)(1)3x x x +-=化成一般形式,正确的是( ) A .2310x x --=B .2310x x -+=C .2310x x +-=D .2310x x ++=2.若方程||(2)310m m x mx +++=是关于x 的一元二次方程,则( ) A .2m =±B .m =2C .2m ≠-D .2m ≠±3.用配方法解方程2410x x -+=时,结果正确的是( ) A .()225x -= B .()223x -= C .()225x +=D .()223x +=4.若关于x 的一元二次方程2210kx x +-=有实数根,则实数k 的取值范围是( ) A .k ≥-1B .k >-1C .k ≥-1且k ≠0D .k >-1且k ≠05.方程22240x x --=的根是( ) A .16x =,24x = B .16x =,24x =- C .16x =-,24x =D .16x =-,24x =-6.已知关于x 的一元二次方程(x +1)2+m =0可以用直接开平方法求解,则m 的取值范围是________. 7.若一元二次方程240x x k -+=无实数根,则k 的取值范围是_______.分层提分8.关于x 的一元二次方程220x x k ++=有两个相等的实数根,则这两个相等的根是x 1=x 2=__________________.题组B 能力提升练1.如果关于x 的一元二次方程()223390m x x m -++-=,有一个解是0,那么m 的值是( )A .3B .3-C .3±D .0或3-2.用配方法解方程2210x x --=时,配方结果正确的是( ) A .2(1)2x -=B .2(1)0x -=C .2(1)1x -=D .2(1)2x +=3.有关于x 的两个方程:ax 2+bx +c =0与ax 2-bx +c =0,其中abc >0,下列判断正确的是( ) A .两个方程可能一个有实数根,另一个没有实数根 B .若两个方程都有实数根,则必有一根互为相反数C .若两个方程都有实数根,则必有一根相等D .若两个方程都有实数根,则必有一根互为倒数4.由四个全等的直角三角形和一个小正方形EFGH 组成的大正方形ABCD 如图所示.连结CF ,并延长交AB 于点N .若35AB =,3EF =,则FN 的长为( )A .2B 5C .22D .35.已知实数a 、b 满足()()2222220a b a b +-+-=,则22a b +=________.6.如果关于x 的方程2(1)-=x m 没有实数根,那么实数m 的取值范围是__________. 7.已知方程2x 2+bx +a =0(a ≠0)的一个根是a . (1)求2a +b 的值;(2)若此方程有两个相等的实数解,求出此方程的解. 8.先阅读,后解题.已知2226100m m n n ++-+=,求m 和n 的值.解:将左边分组配方:()()2221690m m n n +++-+=.即()()22130m n ++-=.∵()210m +≥,()230n -≥,且和为0,∴()210m +=且()230n -=,∴1m =-,3n =.利用以上解法,解下列问题:(1)已知:224250x x y y ++-+=,求x 和y 的值.(2)已知a ,b ,c 是ABC 的三边长,满足228625a b a b +=+-且ABC 为直角三角形,求c .题组C 培优拔尖练1.若方程22432mx x x +-=是关于x 的一元二次方程,则m 的取值范围是( ) A .0m >B .0m ≠C .2m ≠D .2m ≠-2.若对于任意实数a ,b ,c ,d ,定义a bc d=ad -bc ,按照定义,若11x x +- 23x x -=0,则x 的值为( ) A .3B .3-C .3D .3±3.对于一元二次方程()200++=≠ax bx c a ,下列说法:①若0a b c ++=,则240b ac -≥;②若方程20ax c +=有两个不相等的实根,则方程20ax bx c ++=必有两个不相等的实根; ③若c 是方程20ax bx c ++=的一个根,则一定有10ac b ++=成立;②若0x 是一元二次方程20ax bx c ++=的根,则()22042b ac ax b -=+其中正确的( ) A .只有①②④B .只有①②③C .①②③④D .只有①②4.如图,在矩形ABCD 中,AB =14,BC =7,M 、N 分别为AB 、CD 的中点,P 、Q 均为CD 边上的动点(点Q 在点P 左侧),点G 为MN 上一点,且PQ =NG =5,则当MP +GQ =13时,满足条件的点P 有( )A .4个B .3个C .2个D .1个5.已知代数式A =3x 2﹣x +1,B =4x 2+3x +7,则A ____B (填>,<或=). 6.若x m =时,代数式223x x --的为0,则代数式243m m --=________. 7.已知:关于x 的方程kx 2﹣(4k ﹣3)x +3k ﹣3=0 (1)求证:无论k 取何值,方程都有实根; (2)若x =﹣1是该方程的一个根,求k 的值;(3)若方程的两个实根均为正整数,求k 的值(k 为整数).8.如果一元二次方程的两根相差1,那么该方程称为“差1方程”.例如x 2+x =0是“差1方程”. (1)判断下列方程是不是“差1方程”,并说明理由; ①x 2﹣5x ﹣6=0; ②x 25+1=0;(2)已知关于x 的方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“差1方程”,求m 的值;(3)若关于x 的方程ax 2+bx +1=0(a ,b 是常数,a >0)是“差1方程”,设t =10a ﹣b 2,求t 的最大值.。
第一篇:一元二次方程公式法、配方法一元二次方程公式法、配方法【主体知识归纳】4.直接开平方法形如x=a(a≥0)的方程,因为x是a的平方根,所以x=±,即x1=a,x2=-a.这种解一元二次方程的方法叫做直接开平方法.2b2b4ac25.配方法将一元二次方程ax+bx+c=0(a≠0)化成(x+)=的形式后,当b-4ac≥0时,用直22a4a22接开平方法求出它的根,这种解一元二次方程的方法叫做配方法.用配方法解已化成一般形式的一元二次方程的一般步骤是:(1)将方程的两边都除以二次项的系数,把方程的二次项系数化成1;(2)将常数项移到方程右边;(3)方程两边都加上一次项系数一半的平方;(4)当右边是非负数时,用直接开平方法求出方程的根.b24ac26.公式法用一元二次方程ax+bx+c=0(a≠0)的求根公式x=(b-4ac≥0),这种解一元二2a2次方程的方法叫做公式法.【例题精讲】2例1:用配方法解方程2x+7x-4=0.剖析:此题考查对配方法的掌握情况.配方法最关键的步骤是:(1)将二次项系数化为1;(2)将常数项与二次项、一次项分开在等式两边;2(3)方程两边都加上一次项系数一半的平方,即可化为(x+a)=k的形式,然后用开平方法求解.解:把方程的各项都除以2,得x+即(x+277772728122x-2=0.移项,得x+x=2.配方,得x+x+()=2+()=,22244167281)=.416817791=±,x+=±.即x1=,x2=-4.164442解这个方程,得x+说明:配方法是一种重要的数学方法,除了用来解一元二次方程外,还在判断数的正、负,代数式变形、恒等式22的证明中有着广泛的应用,例如证明不论x为何实数,代数式2x-4x+3的值恒大于零,可以做如下的变形:2x-224x+3=2x-4x+2+1=2(x-1)+1.例6:用公式法解下列方程:2(1)2x+7x=4;2解:(1)方程可变形为2x+7x-4=0.22∵a=2,b=7,c=-4,b-4ac=7-4×2×(-4)=81>0,77242(4)791∴x=.∴x1=,x2=-4.2 242【同步达纲练习】1.选择题(1)下列方程中是一元二次方程的是()x2x=0B.23(2)下列方程不是一元二次方程的是()24A.2=0xxA.C.x+2xy+1=0D.5x=3x-112x=1B.0.01x2+0.2x-0.1=0C.2 x2-3x=02(3)方程3x-4=-2x的二次项系数、一次项系数、常数项分别为()D.121x-x=(x2+1) 22A.3,-4,-2B.3,2,-4C.3,-2,-4D.2,-2,0(4)一元二次方程2x-(a+1)x=x(x-1)-1的二次项系数为1,一次项系数为-1,则a的值为() A.-1B.1C.-2D.222(5)若方程(m-1)x+x+m=0是关于x的一元二次方程,则m的取值范围是()A.m≠0B.m≠1C.m≠1且m≠-1D.m≠1或m≠-1 (6)方程x(x+1)=0的根为()A.0B.-1C.0,-1D.0,1(7)方程3x-75=0的解是()A.x=5B.x=-5C.x=±5D.无实数根(8)方程(x-5)=6的两个根是() A.x1=x2=5+6B.x1=x2=-5+6 D.x1=5+6,x2=5-6C.x1=-5+6,x2=-5-6(9)若代数式x-6x+5的值等于12,那么x的值为()A.1或5B.7或-1C.-1或-5(10)关于x的方程3x-2(3m-1)x+2m=15有一个根为-2,则m的值等于() A.2B.-D.-7或112C.-2D.1 22.把下列方程化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数及常数项:(1)4x+1=9x;(2)(x+1)(x-3)=2x-3;(3)(x+3)(x-3)=2(x-3);(4)3y-2y=2y-3y+5.223.当m满足什么条件时,方程(m+1)x-4mx+4m-2=0是一元二次方程?当x=0时,求m的值.4.用直接开平方法解下列方程:(1)x=229;4(2)x=1.96;(5)(x-1)=144;(3)3x-48=0;(6)(6x-7)-9=0.(4)4x-1=0;5.用配方法解下列方程:(1)x+12x=0;(4)9x+6x-1=0;(2)x+12x+15=0(3)x-7x+2=0;(5)5x-2=-x;(6)3x-4x=2.6.用公式法解下列方程:(1)x-2x+1=0;(5)4x-1=0;22(2)x(x+8)=16;(3)x-x=2;3(4)0.8x+x=0.3;(6)x=7x;(7)3x+1=23x;(8)12x+7x+1=0.7.(1)当x为何值时,代数式2x+7x-1与4x+1的值相等?22(2)当x为何值时,代数式2x+7x-1与x-19的值互为相反数?8.已知a,b,c均为实数,且a22a1+|b+1|+(c+3)=0,解方程ax+bx+c=0.9.已知a+b+c=0.求证:1是关于x的一元二次方程ax+bx+c=0的根.10.用配方法证明:22(1)3y-6y+11的值恒大于零;(2)-10x-7x-4的值恒小于零.2211.证明:关于x的方程(a-8a+20)x+2ax+1=0,不论a为何实数,该方程都是一元二次方程.参考答案【同步达纲练习】1.(1)B (2)D (3)B (4)B (5)C (6)C(7) C (8)D (9)B (10)D2.(1)9x2-4x-1=0,9,-4,-1;(2)x2-4x=0,1,-4,0;(3)x2-12x+27=0,1,-12,27;(4)(-2)y2+(-2)y-5=0,-2,3-2,-.3.m≠-1,m=4.(1)x1=,x2=-;(2)x1=-1.4,x2=1.4;(3)x1=-4,x2=4;(4)x1=-,x2=;(5)x1=13,x2=-11;(6)x1=,x2=.5.(1)x1=0,x2=-12;(2)x1=-6-21,x2=-6+21;741741,x2=;22121 2(4)x1=,x2=;33141141(5)x1=,x2=;101022(6)x1=,x2=.33323212122353(3)x1=6.(1)x1=x2=1;(2)x1=-4-42,x2=-4+42;597513,x2=;(4)x1=,x2=-;664211(5)x1=,x2=-;(6)x1=0,x2=7;22(7)x1=x2=;311(8)x1=-,x2=-.347.(1)x=-2或x=;25(2)x=-4或x=.(3)x1=8.x1=11,x2=.229把1代入ax2+bx+c中,得ax2+bx+c=a+b+c=0∴1是方程ax2+bx+c=0的一个根.10(1)∵3y2-6y+11=3y2-6y+3+8=3(y-1)2+8又(y-1)2≥0,∴3(y-1)2+8>0.即3y2-6y+11的值恒大于零.(2)∵-10x2-7x-4=-10(x2+72111)+]400207111=-10(x+)2-.20407又-10(x+)2≤0,201117∴-10(x+)2-<0.402074x+) 1010=-10[(x+即-10x2-7x-4的值恒小于零.11∵a2-8a+20=(a-4)2+4>0∴该方程是一元二次方程第二篇:用配方法和公式法解一元二次方程用配方法和公式法解一元二次方程一.教学内容:用配方法和公式法解一元二次方程1.知道配方法的意义及用配方法解一元二次方程的主要步骤,能够熟练地用配方法解系数较简单的一元二次方程.2.理解用配方法推导出一元二次方程的求根公式,了解求根公式中的条件b2-4ac≥0的意义,知道b2-4ac的值的符号与方程根的情况之间的关系.3.能熟练地运用求根的公式解简单的数字系数的一元二次方程.二. 知识要点:1.形如x2=p或(mx+n)2=p(p≥0)的方程用开平方法将一元二次方程降次转化为两个一元一次方程.通过配方,方程的左边变形为含x的完全平方形式(mx+n)=p(p≥0),可直接开平方,将一个一元二次方程转化为两个一元一次方程.这样解一元二次方程的方法叫做配方法.3.用配方法解一元二次方程的步骤:(1)把二次项系数化为1;(2)移项,方程的一边为二次项和一次项,另一边为常数项;(3)方程两边同时加上一次项系数一半的平方;(4)用直接开平方法求出方程的根.2(3)当b-4ac<0时,方程没有实数根.2三. 重点难点:本讲重点是用配方法和公式法解一元二次方程,难点是配方的过程和对求根公式推导过程的理解.例2. 用配方法解方程:(1)x2+2x-5=0;(2)4x2-12x-1=0;(3)(x+1)2-6(x+1)2-45=0.分析:方程(1)是一元二次方程的一般形式,且二次项系数为1,所以直接移项、配方、求解即可;方程(2)要先把二次项系数化为1;方程(3)不要急于打开括号,可把(x+1)2看成一个整体合并,可避免重复配方.(3)将方程整理得(x+1)2-6(x+1)2=45,-5(x+1)2=45,(x+1)2=-9,由于x取任意实数时(x+1)2≥0,则上式都不成立,所以原方程无实数根.评析:配方法作为一种求解的方法,与其他方法比显得复杂些,为此,除非题目有特别指明用配方法解外,一般不用这种方法,但配方法是一种重要的数学方法,应用很广,应力争掌握好.例4. 不解方程判断下列方程根的情况.(1)4x2-11x=2;(2)4x2-x+5=0;(3)y2+14y+49=0;(4)x2+(m+2)x+m=0.分析:判断一元二次方程的根的情况应先把方程转化成一般形式,再计算b2-4ac的值.解:(1)原方程化为4x2-11x-2=0,a=4,b=-11,c=-2,b2-4ac=(-11)2-4×4×(-2)=153>0,所以原方程有两个不相等的实数根.(2)a=4,b=-1,c=5,b2-4ac=(-1)2-4×4×5=-79<0,所以原方程没有实数根.(3)a=1,b=14,c=49,b2-4ac=142-4×1×49=0,原方程有两个相等的实数根.(4)a=1,b=m+2,c=m,b2-4ac=(m+2)2-4×1×m=m2+4m+4-4m=m2+4,无论m取何值,m2+4>0,∴b2-4ac >0,原方程有两个不相等的实数根.评析:(1)b2-4ac是对一元二次方程一般形式而言的,计算前必须把方程化成一般形式;(2)当讨论含有字母系数的方程根的情况时,通常把计算结果化成(通过配方)(m+n)2+p的形式,由平方数的非负性说明它的符号.例5. 先用配方法说明:不论x取何值,代数式x2-5x+7的值总大于0.再求出当x取何值时,代数式x2-5x+7的值最小?最小值是多少?分析:准确配方,利用完全平方公式的非负性确定值的非负性及最小值.解:x2-5x+7=(x-2.5)2+0.75>0.当x=2.5时,代数式x2-5x+7的值最小,最小值是例6. 某农场要建一个矩形的养鸭场,养鸭场的一边靠墙,竹栏长为40m.(1)养鸭场的面积能达到150m2吗?能达到200m2吗?(2)能达到250m2吗?如果能,请你给出设计方案;如果不能,请说明理由.分析:根据题意列出方程,利用配方法或求根公式解方程,义,则满足要求,否则,不能满足要求.解:设与墙垂直的一边长为x m,则另一边长(40(1)当面积为150m2时,x(40-2x)=150,整理得:x2-20x+75=0,即(x-10)2=25.解得x1=5,x2=15.此时的设计方案为:与墙垂直的一边长为5m,另一边长为15m,另一边长为10m.而当面积为200m2时,x(40-2x)=200,解得x1=x2=10.此时的设计方案为:与墙垂直的边长为10m,另一边长为(2)当面积为250m2时,x(40-2x)=250,此方程无解.所以养鸭场的面积不能达到250m2.0.75.墙长25m,另三边用竹栏围成,如果方程有解且符合实际意2x)m.30m,或与墙垂直的边长为20m.-【预习导学】(用因式分解法解一元二次方程)一. 预习前知1. 想一想,因式分解有几种方法?2. 分解因式:(1)25(7x-3)2-16;(2)5x(2x+7)-3(2x+7);(3)x2-4x+4;(4)(x-1)2+2x(x-1).二. 预习导学1. 根据“ab=0,则a=0或b=0”解下列方程.(1)(x-1)(2x+3)=0;(2)x(x+1)=0;(3)(x-2)(x+1)=0.2. 用因式分解法解下列方程.(1)x2+x=0;(2)(3x-1)2-1=0;(3)x2-2x+1=0.反思:(1)用因式分解法适合解什么样的一元二次方程?(2)用因式分解法解一元二次方程的基本步骤是什么?【模拟试题】(答题时间:60分钟)一. 选择题1. 下列方程不能用开平方法求解的是()A. x2-6x+9=0B. (x-5)2=7C. 4x2=1D. 2y2+4y+4=0 3. 用配方法解方程x+3=4x时,这个方程可化为()2A. (x-2)2=7 B. (x+2)2=1 C. (x-2)2=1 D. (x+2)2=2 *4. 方程x2+x-1=0的根精确到0.1的近似值是()A. 0.6,1.6B. 0.6,-1.6C. -0.6,1.6D. -0.6,-1.6 5. 一元二次方程x2-2x-3=0的根是()A. x1=1,x2=3B. x1=-1,x2=3C. x1=-1,x2=-3D. x1=1,x2=-3 *6. 用配方法解方程时,下列配方错误的是()*7. 下列关于x的一元二次方程中有两个不相等的实数根的是()A. x2+1=0B. x2+2x+1=0C. x2+2x+3=0D. x2+2x-3=0 **8. 若x2-2(k+1)x+k2+5是一个完全平方式,则k等于()A. -1B. 2C. 1D. -2 二. 填空题1. 如果(x-2)2=9,则x=__________.2. 方程(2y+1)2-16=0的根是__________.3. 方程(x+m)2=n有解的条件是__________.4. 填空:(1)x2+10x+__________=(x+__________)2;(2)m2-8m+__________=(m-__________)2;(3)x2+3x+__________=(x+__________)2;(4)x2+1/2x+__________=(x+__________)2;(5)x2-mx+__________=(x-__________)2.*5. 把下列各式化为(x+m)2+n的形式:(1)x2-4x+7=__________;(2)x2+2x-3=__________;6. 方程x+5x+3=0中,b-4ac=_______,由求根公式可得方程的根是x1=_______,x2=_______.7. 如果关于x的方程x2+4x+a=0有两个相等的实数根,那么a=__________.三. 解答题1. 用直接开平方法解下列一元二次方程:(1)(x-1)2=4;(2)4m2-4m=-1;(3)3(4x-1)2=48;(4)y2-2y-8=0.2. 用配方法解方程:(1)x2-6x-7=0;(2)x2-2x-1=0;(3)2x2+x=0;(4)(x+1)2=x-1.3. 关于x的二次三项式x2+2mx+4-m2是一个完全平方式,求m的值.4. 如图,一个5m长的梯子斜靠在墙上,梯子的顶端距离地面3m,如果顶端下滑1m,那么,梯子的底端也将滑动1m吗?请你用所学知识来解释.25. 若关于x的方程x+(2k-1)x+k-7/4=0有两个相等的实数根,求k的值.6. 方程x2+kx-6=0的一个根是2,试求另一个根及k的值.7. 用100m长的铁丝围成一个长方形,面积是600m2,长、宽分别是多少?能否再围成一个面积是800m2的长方形呢?22第三篇:初三数学一元二次方程解法练习题配方法公式法分解因式法配方法1、x22x802、x242x3、3y26y2404、4x27x205、12x22x906、2x23x507、2x25x308、用配方法证明:方程x2x10无解9、用配方法证明:方程x2x10的值恒大于零公式法1、32t24t102、x23、x23x1104、2x23x 185、3x212x6、已知x23x40的根为x1,x2,求x1x2,x1x2,1122x,x1x2 1x2配方法1、4x2x32x2、9x26x103、x2 293x124、2x2 24x25、92x3 242x5 24x1207、4x3 254x3608、2x1x13x1x19、x x1x20第四篇:配方法解一元二次方程“配方法解一元二次方程”说课于晓静:北京市十一学校中学高级一、教材的地位和作用配方法是以配方为手段、以平方根定义为依据解一元二次方程的一种基本方法,其中所涉及的完全平方式、求一个非负数的平方根以及解一元一次方程等都是学生已有的知识与技能,为本节课的学习奠定了知识技能方面的基础。
解一元二次方程的方法一元二次方程是初中数学中的重要内容,解一元二次方程是数学学习的基础,也是数学学习的一个重要环节。
在解一元二次方程的过程中,我们可以运用多种方法,比如因式分解法、配方法、公式法等。
接下来,我将详细介绍解一元二次方程的各种方法,希望能对大家有所帮助。
1. 因式分解法。
当一元二次方程可以因式分解时,我们可以利用因式分解法来解方程。
因式分解法的基本思想是将一元二次方程表示成两个一次因式的乘积,然后令每个因式等于零,从而得到方程的解。
例如,对于方程x^2+5x+6=0,我们可以将其因式分解为(x+2)(x+3)=0,然后令x+2=0和x+3=0,解得x=-2和x=-3,即方程的解为x=-2和x=-3。
2. 配方法。
当一元二次方程无法直接因式分解时,我们可以利用配方法来解方程。
配方法的基本思想是通过添加和减去一定的常数,将一元二次方程转化为完全平方的形式,然后利用完全平方公式来求解方程。
例如,对于方程x^2+6x+9=0,我们可以通过添加和减去9,将其转化为(x+3)^2=0,然后利用完全平方公式得到x=-3,即方程的解为x=-3。
3. 公式法。
当一元二次方程无法通过因式分解或配方法来解时,我们可以利用求根公式来解方程。
求根公式是一元二次方程的根的通用公式,即x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}。
其中,a、b、c分别为一元二次方程的系数,通过代入系数,我们可以求得方程的解。
例如,对于方程x^2-4x+3=0,我们可以利用求根公式得到x=1和x=3,即方程的解为x=1和x=3。
综上所述,解一元二次方程的方法有很多种,我们可以根据具体的方程情况来选择合适的方法进行求解。
通过掌握这些方法,我们可以更加灵活地解决数学问题,提高数学解题的效率和准确性。
希望本文对大家有所帮助,谢谢阅读!。
第六课时:配方法与公式法
[知识要点]
1、配方法:①移项②二次项系数化为1 ③方程两边同时加上一次项系数一半的平方(难点)④开方
2、公式法:当b 2-4ac ≥0时,它的根是2,1x =-b ±b 2-4ac 2a
3、由2可以推导:a b x x -=+21 a
c x x =•21
[典型例题] 例1 用配方法解下列方程:
(1)04525212=-+-
x x (2)02632=+-x x
例2 用公式法解下列方程:
(1)02532=+--x x (2)03322=++x x (3)0122=+-x x
例3 设21,x x 是方程03422=-+x x 的两个根,利用根与系数的关系,求下列各式的值:
(1))2)(2(21++x x ; (2)
2
112x x x x +
[经典练习]
1、若x 2+6x+m 2是一个完全平方式,则m 的值是( )
A .3
B .-3
C .±3
D .以上都不对
2、用配方法将二次三项式a 2-4a+5变形,结果是( )
A .(a-2)2+1
B .(a+2)2-1
C .(a+2)2+1
D .(a-2)2-1
3、用配方法解方程x 2+4x=10的根为( )
A .2
B .-2
C .
D .4、用公式法解方程4y 2=12y+3,得到( )
A .y=32-±
B .
C .y=32±
D .y=32
-± 5、已知a 、b 、c 是△ABC 的三边长,且方程a (1+x 2)+2bx-c (1-x 2)=0的两根相等,则△ABC 为( )
A .等腰三角形
B .等边三角形
C .直角三角形
D .任意三角形
6、将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,所以方程的根为_________.
7、不解方程,判断方程:①x 2+3x+7=0;②x 2+4=0;③x 2
+x-1=0中,有实数根的方程有 个 8、当x=_________时,代数式13x +与2214
x x +-的值互为相反数. 9、用适当的方法解下列方程:
(1)3x 2-5x=2. (2)x 2+8x=9
(3)2
20x -+= (4)2x (x -3)=x -3
10、试证:不论k取何实数,关于x的方程(k2 -6k +12)x2 = 3 - (k2 -9)x必是一
元二次方程.
11.用配方法求解下列问题
(1)求2x2-7x+2的最小值;
(2)求-3x2+5x+1的最大值。
12、已知方程(1
5-)x - 4 = 0的一个根是-1,设另一个根为a, 求
5-)x2 + (5
a3 - 2a2 - 4a
的值.
[大展身手]
1、如图,是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,求x的值.。