用频率估计概率(1)教学设计
- 格式:ppt
- 大小:307.00 KB
- 文档页数:16
“用频率估计概率(第1课时)”教学设计一、内容和内容解析内容:人教版《义务教育教科书·数学》九年级上册“25.3 用频率估计概率”第一课时。
内容解析:不确定现象大量存在于自然界和人类社会中,概率正是对这种现象的一种数学描述,它能帮助我们更好地认识不确定事件,并对生活中的一些不确定情况做出决策。
从《数学课程标准》(2011版)看,《概率初步》这章属于“统计与概率”领域。
对于该领域的内容,一方面概率与统计相对独立,另一方面概率又以统计为依托。
本章自成体系与初中数学的前后联系不多,但有关概率教学的三个部分:随机事件与概率、用列举法求概率、利用频率估计概率,他们相互依托,关联性强。
“用频率估计概率”是“概率初步”这一章的第三节,是在学生初步了解概率的意义及会用概率的古典定义求一些简单等可能事件的概率之后对概率的进一步研究。
概率的古典定义相对简单,所涉事件的概率有确定的结果,学生易于接受,而概率的统计定义其内涵更为深刻。
相对于概率的古典定义,用频率估计概率的方法不受列举法求概率的两个条件的限制,更具一般性与普遍性,适用范围更广。
大量重复试验的频率趋近于理论概率这一规律,将为以后利用试验估计一些复杂的随机事件的概率起到承上启下的作用。
概率内容比较抽象,试验的不确定性、概率结果的唯一性,常常使学生感到困惑。
从随机现象中寻找规律,这对学生来说也是一种全新的观念,如果缺乏对随机现象的丰富体验,学生很难建立起这一观念。
因此,教材设计了“抛掷硬币”这样一个实验活动,意在丰富学生逐步对随机现象规律性的体验的同时,通过抛硬币的实验表明:随机事件的发生既有随机性,又存在统计规律性,且其统计规律体现在:随机事件的频率----此事件发生的次数与实验总次数的比值具有稳定性,即总在某个常数附近摆动,这个常数就叫做这个随机事件的概率。
从而对概率的认识和理解从感性认识向理性认识过渡;从而在这个充满探索和自主体验的过程中,学生将逐步学会数学的思想方法和如何用数学解决问题,获得了成功的体验。
教学设计用频率估计概率一、学生知识状况分析学生通过以前的学习,已经会用列表法或树状图求简单的随机事件的概率。
对用试验方法估计随机事件发生的概率有了初步的认识,知道了“当试验次数较大,试验频率稳定于理论概率,并可据此估计某一事件发生的概率”.二、教学任务分析本节课的重点是掌握试验的方法估计复杂的随机事件发生的概率。
难点是试验估计随机事件发生的概率。
为此,本节课的教学目标是:1、感受随机事件发生的频率的稳定性,理解事件发生的频率与概率的关系。
2、能用试验频率估计一些随机事件发生的概率,进一步体会概率的意义。
三、教学过程分析第一环节:课前3分钟(对相关知识进行回顾学习)1、事件的分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧随机事件不可能事件必然事件确定性事件事件2、什么是频率?在相同情况下,进行了n 次试验,在这n 次试验中,事件A 发生了m 次,则事件A 发生的频率P=nm . 3、练习:(1)下列事件,是确定事件的是( )A.投掷一枚图钉,针尖朝上、朝下的概率一样.B.从一幅扑克中任意抽出一张牌,花色是红桃.C.任意选择电视的某一频道,正在播放动画片.D.在同一年出生的367名学生中,至少有两人的生日是同一天.(2)明天下雨的概率为95%,那么下列说法错误的是( )A.明天下雨的可能性较大B.明天不下雨的可能性较小C.明天有可能是晴天D.明天不可能是晴天第二环节:情境引入内容:下表列出了一些历史上的数学家所做的掷硬币试验的数据:目的:以历史上的抛硬币试验引入本课,激发学生的学习兴趣.结论:当试验次数很大时,一个事件发生频率一般稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.在相同情况下随机的抽取若干个体进行试验,进行试验统计.并计算事件发生的频率nm ,根据频率估计该事件发生的概率.第三环节:实践演练例1、抛掷一只纸杯的重复试验的结果如下表:(1)在表内的空格初填上适当的数(2)任意抛掷一只纸杯,杯口朝上的概率为.练习一:1、对某服装厂的成品西装进行抽查,结果如下表:(1)请完成上表(2)任抽一件是次品的概率是多少?(3)如果销售1 500件西服,那么大约需要准备多少件正品西装供买到次品西装的顾客调换?思考:摸球游戏现在有一个盒子,3个红球,7个白球,每个球除颜色外全部相同。
“25.3.1 用频率估计概率(第1课时)”教学设计湖北省荆州市实验中学李宜红一、内容和内容解析概率是研究和揭示随机现象统计规律的数学工具,是一个事件发生或一种情况出现的可能性大小的数量指标.随着生产的发展和科学技术水平的提高,概率对现实生活和科学预测有着愈加广泛而重要的应用,掌握概率的基本知识和思想方法已成为现代社会公民必备的素养.“用频率估计概率”是九上《概率初步》的第三节,是在学生初步了解概率的意义及会用概率的古典定义求一些简单的等可能事件的概率之后对概率的进一步研究.教材这样编排其主要意图有三:1、遵从概率的产生及发展规律.历史上概率(指客观概率)经历了三个阶段:(1)概率的古典定义;(2)概率的统计定义;(3)概率的公理化定义.2、符合学生的认知规律.古典定义相对简单,且事件概率有确定的结果,学生易于接受.3、相对于概率的古典定义,用频率估计概率的方法更具一般性与普遍性,它不受列举法求概率两个条件的限制,适用范围更广,是求概率最基本的方法.频率是在相同条件下进行重复试验时,事件发生的次数与试验的总次数的比值,其本身是随机的,在试验前不能确定,且随着试验次数的改变而改变.但随着样本量的逐渐增加,在大量的重复试验中频率会呈现出明显的规律性:它将会越来越集中于一个常数附近,这种“频率稳定性”也就是通常所说的“统计规律性”.基于此,我们可用大量重复试验的频率去估计某一件事发生的概率,本课教材先让学生了解大量重复试验的频率可作为事件发生概率的估计值,然后,引出概率的统计定义,并在此基础上进一步揭示概率的内涵,“频率稳定性”是概率的统计定义的核心,用频率估计概率的思想是本节课的核心思想.教学重点:了解当试验次数较大时,试验频率稳定于理论概率;并能通过对事件发生频率的分析,估计事件发生的概率.二、目标和目标解析:目标:能够通过试验探究随机事件的概率,了解大量重复试验的频率稳定值可用来估计概率,并能理解频率与概率的关系.目标解析:1、知识目标:①能够通过试验,获得事件发生的频率,知道大量重复试验时频率可作为事件发生概率的估计值;②理解频率与概率的区别与联系.2、能力目标:①经历用试验的方法获得概率的过程,培养学生试验操作能力及整理、描述、分析数据的能力;②发展学生根据频率的稳定性估计概率的能力.3、情感目标:①培养学生分析真实数据的实事求是的态度;②培养学生勇于探索的精神及交流与协作精神;③在对概率统计定义的领会中渗透辩证的思想.三、教学问题诊断分析1、由于学生初学概率,且在此之前面对求概率的随机事件都是等可能事件,对于一些结果不是等可能的随机事件(如:认为姚明一次罚篮的结果进与不进是等可能的)会依然采取列举法,这类现象产生的原因是对用列举法求概率的两个条件把握不够,对事件发生的可能性大小分析不透彻所致.2、频率在一定程度上可以反映随机事件发生的可能性大小,但频率本身是随机的,在试验前不能确定,无法从根本上刻画事件发生可能性的大小,只有在大量重复试验的条件下,可以近似地作为这个事件的概率.概率是巨大数据统计后得出的结论,是一种大的整体趋势,是频率在理论上的期望值,它是一个确定的常数,是客观存在的,与试验次数无关.频率与概率是从量变到质变,是对立统一的.对于初学者,对两者关系的理解,还需要一个循序渐进的过程.课题组成员:孙延州熊乾张明江王用华李宜红罗士林马经万倪磊史汉斌孙权昌胡承武谢华高攀李学川李和勇魏明顿杰3、容易忽略“大量试验”这个用频率估计概率必要的前提条件(如:5次投篮命中4次,一次命中的概率就是5分之4).这一问题的出现也是对概率思想的内涵把握不够所致.概率是针对大量重复试验而言的,如果试验次数太少,频率会与概率值产生较大的偏差,是不能用来估计概率的.教学难点:大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.四、教学支持条件分析1、借助多媒体播放NBA比赛片段和展示本课相关知识图片,使教学更富有趣味性和直观性,为更好的实践教学目标服务.2、借助试验探究结论,让学生亲历知识的发生、发展过程,有利于学生理解和掌握概念的本质与内涵;也有利于激发学生兴趣,培养学生动手实践、合作交流能力和创新精神.五、教学过程:(一)问题引入:1、播放“NBA”(美国男子篮球职业联赛)08——09赛季火箭队VS奇才队的比赛片段,在姚明罚篮球出手后,画面停滞,屏幕显示:问题:姚明罚进的概率有多大?学生先思考、讨论、发言后出示甲、乙、丙的说法:甲:100% 姚明是世界明星嘛!乙:50% 因为只有进和不进两种结果,所以概率为50%.丙:80% 姚明很准的,大概估计有80%的可能性.师:同学们,你们同意谁的观点?学生回答时,老师对不同说法进行适当的评价,并借机复习用列举法求概率的条件,引导学生分析进与不进的可能性不相等,不能用列举法来求概率.屏幕上闪烁显示08——09赛季姚明罚篮命中率86.6%,继续发问:他的命中率从何而来?(统计结果)师:怎么统计的?(罚中个数与罚球总数的比值)师:这个比值叫什么?这实际上就是频率,这种方法实际上就是用频率估计概率.(板书课题)设计意图:从学生熟悉、感兴趣的事物和最喜欢的球星引入,激发学习兴趣的同时,得出姚明罚篮命中的可能性不相等,由此引发认知冲突,导入新课.(二)试验探究1、抛掷一枚硬币正面(有数字的一面)向上的概率是二分之一,这个概率能否利用刚才计算命中率方法——通过统计很多掷硬币的结果来得到呢?设计意图:已知概率的情况下引入试验,基于以下原因:(1)抛掷硬币试验所需条件容易实现,可操作性强;(2)硬币试验历史上积累了大量数据,更有利于问题的说明;(3)用频率估计概率可以和前两节学习的概率的古典定义统一,两种不同的方法求得的是同一个概率,且概率的统计定义比古典定义更具一般性.2、掷硬币试验:全班共分8个小组,每小组5人,共抛50次,推荐组长一名,抛掷时请将书本文具收入课桌内.(1)组员职责:①两人一组合,一人抛一人画“正”记数,抛掷一次划记一次,“正面向上”一次划记一次;②抛的高度要达到自己坐姿的头顶高度,若硬币掉在地上,本次不作记录.(2)组长职责:①检查组员抛掷是否符合要求;②收集本组数据,把数据录入教师机中的抛掷情况表,与本组同学填写硬币抛掷统计表(表3),将第1组数据填在第一列,第1、2组的数据之和填在第二列,……8个组的数据之和填在第8列.设计意图:①“在相同条件下”使数据更真实有效;②合理分组,可以减少劳动强度,加快试验速度,同时在培养动手能力与探索精神中,培养团队协作精神.表1(个人抛掷情况统计表)表2(小组抛掷情况统计表)表3(硬币抛掷统计表)正面向上的频率图1设计意图:这几个图表的给出可以正确有效地引导学生在有限的课堂时间内高效率地得到相关的试验数据及整理描述数据,为分析数据作准备.同时,试验整个操作过程均由学生参与完成,教师只是作为组织者参与其中,关注学生的投入程度——能否积极、主动地从事各项活动,向同伴解释自己的想法,听取别人的建议与意见;关注学生在活动中表现出的实践能力、思维水平、团队意识.3、分析数据组长收集本组数据后,录入教师机中的小组抛掷统计表(表2),每位同学均参与填写硬币抛掷统计表(表3)和折线图(图1),教师根据学生计算结果在教师机上填写表3,并请一同学在黑板上绘制折线图(图1),完成后教师提问:①随着抛掷次数的增加,“正面向上”的频率在哪个数字的左右摆动?②随着抛掷次数的增加,“正面向上”的频率在0.5的左右摆动幅度有何规律?(学生从折线图1中难以发现)师:接下来,我们增加试验次数,看看有什么新的发现,历史上有许多数学家为了弄清其中的规律,曾坚持不懈的做了成千上万次的掷硬币试验.)引导学生关注数学家的严谨,师:还有一位数学家,还做了八万多次的试验.观察频率在0.5附近摆动幅度有何规律?观察折线图2:图2③请大家分析,两个折线图反映的规律有何区别?什么原因造成了不同?学生得出:图一,试验次数少一些,“正面向上”的频率在0.5左右摆动的幅度大一些.④你们认为出现的规律与试验次数有何关系?(试验次数越多频率越接近0.5,即频率稳定于概率.)⑤数学家为什么要做那么多试验?⑥当“正面向上”的频率逐渐稳定到0.5时,“反面向上”的频率呈现什么规律?概率与频率稳定值的关系是什么呢?师生共同小结:至此,我们就验证了可以用计算罚篮命中率的方法来得到硬币“正面向上”的概率.设计意图:这六个问题的设置,循序渐进,促使学生更深入的分析数据,学生发现大量重复试验时频率稳定于概率,在头脑中再现了知识的形成过程,避免单纯地记忆,使学习成为一种再创造的过程.(三)揭示新知师:其实,不仅仅是掷硬币这个事件有规律,人们在大量的生产生活中发现:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率也总在一个固定数附近摆动,显示出一定的稳定性.引出瑞士数学家雅各布·伯努利最早阐明频率具有稳定性,介绍其家族前后三代共出12位大数学家和大物理学家,进行数学史的教育.师:由于大量重复试验的频率具有稳定性,由此可根据这个稳定的频率来估计概率.给出概率的统计定义.引导学生解读m、n、P、P(A)的含义,并与课本P129中的m、n、P(A)进行对比,并指出这是从统计的角度给出了概率的定义,后者仅限于试验结果有限个和等可能事件求概率,而用频率估计概率的方法不仅适用于列举法求概率的随机事件,而且对于试验的所有可能结果不是有限个,或各种结果发生的可能性不相等的随机事件,我们也可以用频率来估计概率.师:由定义看:随机事件的概率P(A)有什么范围?思考对一个随机事件A,用频率估计的概率P(A)可能小于0吗?可能大于1吗?设计意图:引入瑞士数学家雅各布·伯努利的故事,增加学生学习数学的兴趣,同时,增加学习自信心,通过比较概率的统计定义与古典定义,引导学生发现用频率估计概率思想方法的重要作用.(四)、巩固练习①计算表中相应的“射击9环以上”的频率(精确到0.01);②这些频率具有什么样的稳定性?③根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1).师:为什么题目用“估计”,而不是计算得到?设计意图:巩固新知,知能升级.2、请你抢答(1)天气预报说下星期一降水概率为90%,下星期三降水概率为10%,于是有位同学说:下星期一肯定下雨,下星三肯定不下雨,你认为他说的对吗?(概率大的事件在一次试验中有可能不发生,概率小的事件在一次试验中,也有可能发生,随机事件不但具有规律性,还有随机性.)(2)抛掷硬币100次,一定有50次正面向上吗?抛掷2n次一定有n次正面向上吗?(概率是针对大量重复试验而言的,大量重复试验反映的规律并非意味着每一次试验中一定存在.只能说随着试验次数的增加,正面向上的次数越来越接近总数的一半.)(3)小明投篮5次,命中4次,他说一次投中的概率为5分之4对吗?(试验次数太少,不能估计概率)(4)小明的爸爸这几天迷上了体育彩票,该体育彩票每注是一个7位的数码,如能与开奖结果一致,则获特等奖;如果有相连的6位数码正确,则获一等奖;……;依次类推,小明的爸爸昨天一次买了10注这种彩票,结果中了一注一等奖,他高兴地说:“这种彩票好,中奖率高,中一等奖的概率是10%!小明爸爸的说法正确吗?”(只有当购买的注数足够多时,中奖频率才接近中奖概率.)设计意图:通过生活中的实例进一步揭示概率的内涵——概率是针对大量重复试验而言,大量重复试验反映的规律并非在一次试验中反映出来.反过来,试验次数太少时,得到的频率不能做为概率的估计值.3、议一议频率与概率有什么区别与联系?学生思考、讨论后全班交流.(1)频率是一个变化的值,随着试验次数改变而改变的.(2)概率是一个确定的数,是某个随机事件固有的属性.(3)大量重复试验的频率具有稳定性,可以用来估计概率.设计意图:明晰频率与概率的联系与区别,渗透辩证思想,深化新知的同时,突破难点.(五)、总结反思1、了解了一种关系——频率与概率的关系2、学习了一种方法——用大量重复试验的频率去估计概率3、体会了一种思想——用频率估计概率用样本估计总体设计意图:通过小结与反思,使学生对本节课的内容有一个整体的认识和理解,对核心思想方法有了更深的体会.同时,培养学生归纳概括能力和语言表达能力.(六)、课后试验从一定高度落下的图钉,落地后可以图钉尖着地,也可以图钉尖不着地,估计一下哪种事件的概率更大.全班分成8个小组完成,发给学生同一型号的图钉,统一从20cm高度处抛掷,每组试验100次,由组长和数学科代表协作完成.完全数据统计之后,每位同学填好下列表格,完成结果的估计.“图顶尖着地”的频率从表中可以发现,“图钉尖着地”的频率在左右摆动,并且随着统计数据的增加,这种规律愈加明显,所以估计从一定高度落下的图钉,图钉尖着地的概率是.设计意图:设计这个课后试验主要是为了让学生进一进掌握通过大量重复试验用频率估计概率的思想,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构.六、目标检测设计1、下列说法正确的是()A、“明天降雨的概率是80%”表示明天有80%的时间降雨B、“抛一枚硬币下面朝上的概率是0.5”表示每抛硬币两次就有一次正面朝上C、“彩票中奖的概率是1%”表示买100张彩票一定会中奖D、“抛一枚正方体骰子正面朝上的数为奇数的概率是0.5”表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现正面朝上的数为奇数2、根据概率的含义,指出下列说法不正确的是()A、不同的人做同一试验,得出某事件发生的频率不相同,因此该事件的概率不是确定的值B、试验的次数越多,某事件发生的频率就和该事件的概率越接近C、某事件的概率为5分之1,则可以说大量的试验中,该事件平均每5次会出现1次D、生活中常用“万一”这个词,从概率的含义来说,该事件的概率为“万分之一”3、在一场足球比赛前,甲队教练预言说:“根据我掌握的情况,这场比赛我们队有60%的概率获胜.”与“有60%的概率获胜”意思最接近的是()A、他这个队赢的可能性较大B、若这两个队打100场比赛,他这个队恰好会赢60场C、若这两个队打10场比赛,他这个队会赢6场左右D、若这两个队打100场比赛,他这个队会赢60场左右4、甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这样结果的试验可能是()A、掷一枚正面六面体的骰子,出现1点的概率B、从一个装有2个白球和1个红球的袋子中任取一球,取得红球的概率C、抛一枚硬币,出现正面的概率D、任意写一个整数,它能被2整除的概率5、某商场设立了一个可以自由转动的转盘(如图所示),并规定:顾客购物10元以上就能获得次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1)计算并完成表格:落在“铅笔”区域的频率(2)请估计,当n很大时,落在“铅笔”区域的频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少(精确到1°)?。
利用频率估计概率教学设计标题:频率估计概率的教学设计引言:概率是数学中的一门重要课程,也是让学生们感到困惑的主题之一、在概率教学中,频率估计概率是一个关键概念,通过这一概念的引入,学生们可以更好地理解概率的概念和应用。
本篇文章将介绍一个以频率估计概率为主题的教学设计,旨在帮助学生们理解并应用频率估计概率的方法。
一、目标设定:1.学生能够理解频率估计概率的概念和原理。
2.学生能够应用频率估计概率的方法解决简单问题。
3.学生能够分析和评价频率估计概率的可靠性和局限性。
二、教学步骤:步骤一:引入频率估计概率的概念(10分钟)教师可以以一个简单实例开始引入频率估计概率的概念,例如:一个学校有1000名学生,教师关心学生们是否喜欢橙汁。
教师可以提出一个问题:“你认为这个学校有多少人喜欢橙汁?”请学生们发表各自的观点,然后引导学生们讨论如何根据这些观点得到一个较为准确的估计。
步骤二:频率估计概率的原理(15分钟)在学生们熟悉喜欢橙汁人数的估计后,教师可以介绍频率估计概率的原理。
教师可以解释概率的定义(即事件发生的可能性),然后引导学生们思考如何使用频率估计概率的方法来估计概率。
步骤三:频率估计概率的应用(30分钟)为了帮助学生们更好地理解频率估计概率的应用,在课堂上,教师可以设计一些实践活动。
例如,教师可以给学生一个玻璃瓶,里面装有红、蓝、绿三种颜色的球,让学生们随机摸出一个球,观察其颜色并估计抽到红球的概率。
然后每个学生重复这个实验,并记录下估计的概率。
最后,教师可以统计学生们的估计结果,并跟学生们一起讨论结果的准确性。
步骤四:频率估计概率的分析和评价(20分钟)在学生们进行实践活动后,教师可以引导学生们分析和评价频率估计概率的可靠性和局限性。
教师可以提出一些问题,例如:“学生们的估计结果是否相近?”、“为什么会有差异?”、“我们可以如何改进估计的准确性?”等等,通过讨论,学生们可以更深入地理解频率估计概率的可靠性和应用限制。
《用频率估计概率》教案第一章:引言1.1 教学目标让学生理解概率的基本概念。
让学生了解频率与概率之间的关系。
1.2 教学内容概率的定义与例子。
频率与概率的关系。
1.3 教学方法通过具体的例子引导学生理解概率的概念。
使用实际实验或模拟实验让学生观察频率与概率之间的关系。
1.4 教学活动引入概率的概念,举例说明。
让学生进行简单的实验或观察,记录频率。
引导学生思考频率与概率之间的关系。
第二章:单次实验的频率估计2.1 教学目标让学生能够通过单次实验来估计概率。
2.2 教学内容单次实验的概率估计方法。
随机事件的概率估计。
2.3 教学方法使用实际实验或模拟实验让学生进行单次实验。
引导学生通过实验结果来估计概率。
2.4 教学活动让学生进行单次实验,如抛硬币、掷骰子等。
引导学生观察实验结果,计算频率。
让学生通过频率来估计事件的概率。
第三章:多次实验的频率估计3.1 教学目标让学生能够通过多次实验来估计概率。
3.2 教学内容多次实验的概率估计方法。
随机事件的概率估计。
3.3 教学方法使用实际实验或模拟实验让学生进行多次实验。
引导学生通过实验结果来估计概率。
3.4 教学活动让学生进行多次实验,如抛硬币、掷骰子等。
引导学生观察实验结果,计算频率。
让学生通过频率来估计事件的概率。
第四章:频率与概率的关系4.1 教学目标让学生理解频率与概率之间的关系。
4.2 教学内容频率与概率的关系。
概率的性质与定理。
4.3 教学方法通过具体的例子引导学生理解频率与概率之间的关系。
使用实际实验或模拟实验让学生观察频率与概率之间的关系。
4.4 教学活动引导学生思考频率与概率之间的关系。
让学生进行实验或观察,记录频率。
引导学生通过实验结果来理解频率与概率之间的关系。
第五章:总结与拓展5.1 教学目标让学生总结本节课所学的知识。
让学生了解概率估计在实际中的应用。
5.2 教学内容总结频率估计概率的方法。
概率估计在实际中的应用。
5.3 教学方法通过问题引导学生总结本节课所学的知识。
《用频率估计概率》教案一、教学目标1. 让学生理解概率的定义,掌握用频率来估计概率的方法。
2. 培养学生运用概率知识解决实际问题的能力。
3. 培养学生合作交流的能力,提高学生的数学思维水平。
二、教学内容1. 频率与概率的关系2. 用频率估计概率的方法3. 实际问题中的应用三、教学重点与难点1. 教学重点:频率与概率的关系,用频率估计概率的方法。
2. 教学难点:如何运用概率知识解决实际问题。
四、教学方法2. 利用信息技术手段,如多媒体演示、网络资源等,辅助教学。
3. 采用小组合作学习的方式,培养学生的合作交流能力。
五、教学过程1. 导入新课:通过一个简单的问题引出频率与概率的概念,激发学生的兴趣。
2. 探究频率与概率的关系:引导学生通过实验探究频率与概率的关系,让学生亲身感受概率的内涵。
4. 应用练习:让学生通过解决实际问题,运用所学的概率知识。
6. 作业布置:布置一些有关用频率估计概率的练习题,让学生进一步巩固所学知识。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组合作表现,评价学生的学习态度和合作能力。
2. 练习题评价:对学生在练习题中的解答情况进行评价,了解学生对频率估计概率方法的掌握程度。
3. 实际问题解决评价:评价学生在解决实际问题时,能否灵活运用概率知识,提出合理的解决方案。
七、教学拓展1. 引导学生进一步学习其他估计概率的方法,如最大似然估计等。
2. 结合实际问题,让学生深入了解概率在日常生活和学科领域中的应用。
3. 鼓励学生参加数学竞赛和相关活动,提高学生的数学素养。
八、教学反思1. 教师在课后要对自己的教学进行反思,分析教学过程中的优点和不足,不断调整和改进教学方法。
2. 关注学生的学习反馈,及时了解学生在学习中遇到的问题,针对性地进行辅导。
3. 结合教学实际情况,灵活调整教学计划,确保教学目标的实现。
九、教学资源1. 多媒体课件:制作课件,生动展示频率与概率的关系,以及用频率估计概率的方法。
人教版数学九年级上册25.3《利用频率估计概率》教学设计一. 教材分析人教版数学九年级上册25.3《利用频率估计概率》是学生在学习了概率的基本概念和计算方法后,进一步学习利用频率来估计概率的一节内容。
通过本节课的学习,学生能够理解频率与概率之间的关系,学会如何利用频率来估计概率,并能够运用这一方法解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和数学基础,对于概率的基本概念和计算方法已经有了一定的了解。
但是,学生在利用频率估计概率方面可能还存在一些困难,如对频率与概率之间的关系理解不深,以及对实际问题解决方法的掌握不够熟练。
三. 教学目标1.让学生理解频率与概率之间的关系,能够利用频率来估计概率。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生对数学的兴趣和自信心。
四. 教学重难点1.频率与概率之间的关系。
2.利用频率估计概率的方法。
3.实际问题中如何运用频率估计概率。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探究问题来理解频率与概率之间的关系。
2.利用多媒体演示和实例分析,帮助学生直观地理解频率估计概率的方法。
3.学生进行小组讨论和合作交流,培养学生的团队协作能力和解决问题的能力。
4.结合课后练习和实际问题,巩固学生对频率估计概率的理解和应用。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.练习题和实际问题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些与概率相关的日常生活实例,引导学生回顾概率的基本概念和计算方法,为新课的学习做好铺垫。
2.呈现(10分钟)展示教材中关于利用频率估计概率的内容,引导学生理解频率与概率之间的关系。
通过实例分析,让学生直观地感受利用频率估计概率的方法。
3.操练(10分钟)学生进行小组讨论,探讨如何利用频率来估计概率。
然后,让学生进行课堂练习,巩固对频率估计概率的理解。
4.巩固(10分钟)针对学生在练习中遇到的问题,进行讲解和解答。
用频率估计概率教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《利用频率估计概率》教案1第一课时★新课标要求知识与技能:1.当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率.2.通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念.过程与方法:通过试验及分析试验结果、收集数据、处理数据、得出结论的试验过程,体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力.情感态度与价值观:1.通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯.2.在活动中进一步发展合作交流的意识和能力.教学重点:理解当试验次数较大时,试验频率稳定于理论概率.教学难点:对概率的理解.设计教学程序:一、问题情境:教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大.在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、合作游戏:1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来.2.教师巡视学生分组试验情况.注意:(1)观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2)要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上要求填好下表.并根据所整理的数据,在统计图上标注出对应的点,完成统计图.想一想1(投影出示).观察统计表与统计图,你发现“正面向上”的频率有什么规律注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.想一想2(投影出示).随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5.这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律.鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(如下表).通过以上学生亲自动手实践,电脑辅助演示,历史材料展示,让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题1.通过以上大量试验,你对频率有什么新的认识有没有发现频率还有其他作用学生探究交流,发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率nm 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ),记作P(A )=p .注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论):问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系,可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础.当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.第二课时知识与技能:了解模拟试验在求一个实际问题中的作用,进一步提高用数学知识解决实际问题的能力.过程与方法:初步学会对一个简单的问题提出一种可行的模拟试验.情感态度与价值观:1.提高学生动手能力,加强集体合作意识,丰富知识面,激发学习兴趣.2.渗透数形结合思想和分类思想.教学重点:理解用模拟试验解决实际问题的合理性.教学难点:会对简单问题提出模拟试验策略.设计教学程序:一、问题情境:妈妈有一张马戏团门票,小明、小华和小红都想去看演出,怎么办呢?妈妈想用掷骰子的办法决定,你觉得这样公平吗说说你的理由但由于一时找不到骰子,妈妈决定用一个小长方体(涂有三种颜色,对面的颜色相同)来代替,你觉得这样公平吗选哪种颜色获得门票的概率更大说说你的理由!二、合作游戏:1.试验:二人一组,一人抛掷小长方体,一人负责记录,合作完成30次试验,并完成下面表格一的填写和有关结论的得出.表格一:(1)你认为哪种情况的概率最大?(2)当试验次数较小时,比较三种情况的频率,你能得出什么结论?2.累计收集数据:二人一组,任选自己喜欢的颜色分别汇总其中前两组(60次)、前三组(90次)、前四组(120次)、前五组(150次).....的试验数据,完成表格二的填写,并绘制出相应的折线统计图并得出有关结论.表格二:问题:当试验次数较大时,比较数字色的频率与其相应的概率,你能得到什么结论?3.得出试验结论.例题小明参加夏令营,一天夜里熄灯了,伸手不见五指,想到明天去八达岭长城天不亮就出发,想把袜子准备好,而现在又不能开灯.袋子里有尺码相同的3双黑袜子和1双白袜子,混放在一起,只能摸黑去拿出2只.同学们能否求出摸出的2只恰好是一双的可能性?问:同学们能否通过试验估计它们恰好是一双的可能性如果手边没有袜子应该怎么办问:在摸袜子的试验中,如果用6个红色玻璃珠,另外还找了两张扑克牌,可以混在一起做试验吗?答:不可以,用不同的替代物混在一起,大大地改变了试验条件,所以结果是不准确的.注意:试验必须在相同的条件下进行,才能得到预期的结果;替代物的选择必须是合理、简单的.问:假设用小球模拟问题的试验过程中,用6个黑球代替3双黑袜子,用2个白球代替1双白袜子:(1)有一次摸出了2个白球,但之后一直忘了把它们放回去,这会影响试验结果吗?答:有影响,如果不放回,就不是3双黑袜子和1双白袜子的试验,而是中途变成了3双黑袜子试验,这两种试验结果是不一样的.问:(2)如果不小心把颜色弄错了,用了2个黑球和6个白球进行试验,结果会怎样?答:小球的颜色不影响恰好是一双的可能性大小.三、随堂练习.书本“柑橘的损坏率”填写表25—6.四、拓展提升:解决问题2.1.柑橘的损坏率是多少?2.到达目的地后完好的柑橘还有多少千克?3.把损坏的柑橘也算在内,到达目的地后柑橘的成本约是多少元?4.设每千克定价为x元,则可以得到的方程是.。