七年级数学第9章 不等式及不等式组 学案
- 格式:doc
- 大小:150.50 KB
- 文档页数:22
第九章《不等式与不等式组》章节计划教材分析:第一本章主要内容包括:不等式的有关概念,不等式的性质,一元一次不等式(组)的相关概念及其解法,利用一元一次不等式(组)分析与解决实际问题。
其中,以一元一次不等式(组)为工具分析解决实际问题是全章的重点,同时也是难点。
第二本章的编写思路第8章“二元一次方程组有大致相同。
类似于方程是解决具有相等关系的实际问题的数学模型一样,不等式(组)是解决具有不等关系的实际问题的数学模型。
本章也都是从丰富的实际问题出发,在分析解决实际问题的过程中,认识不等式(组)(主要是一元一次不等式(组)),学习解一元一次不等式(组)的方法。
这样的一种编排,就将利用一元一次不等式(组)分析解决实际问题贯穿于全章始终,突出重点,强调不等式(组)是解决实际问题的一种有效的数学模型。
第三本章首先从一个行程问题出发,通过分析问题中的不等关系列出不等式,由此引出不等式的概念,然后通过讨论满足不等式成立的x的取值,给出不等式的解集以及一元一次不等式的概念;接下去采用与等式的性质相类比的方式讨论了不等式的3条性质,这就为求出一元一次不等式的解集提供了依据;为了更好地体现不等式是解决实际问题的有效工具。
第四教课书安排了一节“实际问题与一元一次不等式”,探讨了商场购物、空气质量、知识竞赛等情景中的一些具有不等关系的问题,利用一元一次不等式解决这些实际问题,这里列出的不等式比以前见过的复杂,有需要去括号的,有需要去分母的等,这样就结合实际问题,在分析解决实际问题的过程中进一步学习一元一次不等式(组)的解法,最后类比一元一次方程的解法,归纳出求一元一次不等式解集的基本过程。
这样就将有关一元一次不等式的概念和解法融入到分析解决实际问题的过程中。
二元一次不等式组也是采用了这种方式进行编排。
第五本章内容主要是不等式的概念和一元一次不等式的解法,教学重点是不等式(组)的解法和用一元一次不等式解决实际问题。
通过本章学习,不仅使学生学会解一元一次不等式(组)的方法,更使学生体会不等式是解决实际问题的有效的数学模型不等式与不等式组课程标准(1)结合具体问题,了解不等式的意义,探索不等式的基本性质。
第九章不等式与不等式组单元总体分析一、教学内容:不等式的知识是初中阶段在一元一次方程和二元一次方程组的学习之后,进一步探究现实世界数量关系的重要内容.数量之间除了有相等关系外,还有大小不等的关系.正如方程与方程组是讨论等量关系的有力数学工具一样,不等式与不等式组是讨论不等关系的有力数学工具.应用不等式的基本性质解一元一次不等式,是一项基本技能,也是学生以后学习一元二次方程、函数以及进一步学习不等式知识的基础。
教材注重了一元一次不等式(组)的解法与一元一次不等式(组)在实际问题中的应用的有机结合,让学生经历和体会“从实际问题中抽象出数学模型,并回到实际问题中解释和检验”的过程。
二、教学目标1、知识与技能:①了解一元一次不等式及其相关概念,经历“把实际问题抽象为不等式”的过程,能够“列出不等式或不等式组表示问题中的不等关系”,体会不等式(组)是刻画现实世界中不等关系的一种有效的数学模型.②通过观察、对比和归纳,探索不等式的性质,能利用它们探究一元一次不等式的解法.③了解解一元一次不等式的基本目标(使不等式逐步转化为的形式),熟悉解一元一次不等式的一般步骤,掌握一元一次不等式的解法,并能在数轴上表示出解集,体会解法中蕴涵的化归思想.④了解不等式组及其相关概念,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.2、过程与方法:使学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。
3、情感、态度与价值观:(1)体会数学与现实生活的联系,增强克服勇气和信心;(2)会应用数学知识解决一些简单的实际问题,增强应用意识;(3)使学生进一步形成数学来源于实践,又服务于实践的辩证唯物主义观点。
三、重点难点重点:了解一元一次不等式及其相关概念;掌握一元一次不等式的解法,并能在数轴上表示出解集;了解不等式组及其相关概念,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.难点:列出不等式或不等式组表示问题中的不等关系。
课题:9.1.1不等式及其解集【学习目标】1.了解不等式、一元一次不等式等概念. 2.初步学会在数轴上表示不等式的解集. 【活动方案】活动一 了解不等式、一元一次不等式等概念阅读课本P 121至倒数第二行,画出不等式的概念,并在关键词下做上记号,依照不等式的概念完成下列问题:1.自己举出五个不等式:2.用不等式表示:(1)a 是正数; (2)a 是非负数;(3)a 与4的和不大于2; (4)a 的一半小于4.小组交流:从符号上看,不等式的形式有何特征. 活动二 初步学会在数轴上表示不等式的解集阅读课本P 121-123,画出不等式的解及解集的概念,并完成下列问题: 1.下列哪些数值是不等式x 2<8的解?哪些不是? -1 5 3.9 4.1 -3 4 -22.把不等式x 2<8的解集在数轴上表示出来.小组交流:在(2)中,数轴上表示4的点画空心圈,表示什么意思?【检测反馈】1.下列数值哪些是不等式63>+x 的解?哪些不是? -4 -2.5 0 1 2.5 3 52.用不等式表示:(1)a是负数(2)a与2的差小于-1 (3)a的4倍大于8 (4)a的一半小于33.直接写出下列不等式的解集,并在数轴上表示出来.(1)x+3<5 (2) 2x>8 (3) x-2>0课题:9.1.2不等式的性质⑴【学习目标】1.通过对比等式的基本性质,认识不等式的基本性质; 2.学会初步运用不等式的性质.【活动方案】活动一 回顾等式的基本性质,认识不等式的基本性质阅读课本P 123-124,完成课本中思考的空格,画出不等式的三个基本性质,并在关键词下做上记号.依照不等式的性质完成下列问题: 设m >n 用“>”或“<”填空:(1)5__5m n --; (2)4___4m n ++; (3)6___6m n ; (4)11__33m n --; (5)32___32m n ----.小组交流:先比较性质2与性质3有什么不同,再比较等式的性质与不等式的性质,它们有什么联系?活动二 会用不等式的基本性质解简单的不等式阅读课本P 125-126,完成例题1中,第(2),(4)题的空格.依照例题1的解题方法和格式完成下题:用不等式的性质解下列不等式,并在数轴上表示解集.(1) x +5>-1 (2) 4x <3x -5 (3) 2x -4>0 (4)-31x +2>5小组交流:1.不等式的解集如何在数轴上表示?2.解不等式时,每一步要注意什么?【检测反馈】1.利用不等式的性质,填”>”,<”.(1)若a >b ,则a -1 b -1; (2)若a >b ,则2a +1 2b +1;(3)若a>b,则-2a+8 -2b+8;(4)若-1.25y<10,则y-8;2.用不等式的性质解下列不等式,并在数轴上表示解集.(1) x+2<6 (2) -2x>-6课题:9.1.2不等式的性质⑵【学习目标】1.复习不等式的基本性质.2.会用“移项”,“未知数系数化为1”解简单的不等式. 【活动方案】活动一 复习不等式的基本性质 用不等号填空:若a b >,则1.2___2a b ++;2.___a b --;3.2___2a b -+-+;4.___0a b -. 小组交流:运用了哪些不等式的性质?活动二 会用“移项”,“未知数系数化为1”解简单的不等式再看课本P 125例1中(2)(4)小题的解题,画出含有“移项”,“ 未知数系数化1”方法的语句,并在关键字下做上记号.再利用此方法解下列不等式,并把解集在数轴上表示出来: 1.726x ->; 2.321x x <+; 3.2503x >; 4.43x ->.小组交流:1.在黑板上展示答案2.“移项”,“ 未知数系数化为1”的依据分别是什么?注意点分别是什么?【检测反馈】解下列不等式,并在数轴上表示解集:1.51x +>-; 2.435x x <-;13.-8x>10;4.-x+2>5.3课题:9.1.2不等式的性质⑶【学习目标】1.知道像a ≥b 或a ≤b 或a ≠b 这样的不等式,也常用来表示两个数量的大小关系; 2.会用a ≥b 或a ≤b 这样的不等式表示实际问题中的不等关系; 3.会用不等式的性质变形得出等价的新结论. 【活动方案】活动一 知道像a ≥b 或a ≤b 或a ≠b 这样的不等式,也常用来表示两个数量的大小关系 1.2009年12月18日南通的最低气温是-4℃,最高气温是4℃,若t 表示温度,请你用不等式表示这一天的温度.2.某长方体形状的容器长5cm ,宽3cm ,高10cm ,容器内原有水的高度为3cm ,现准备向它继续注水,用V cm 3表示新注入水的体积,写出V cm 3的取值范围,并且在数轴上表示.小组交流:将不等式的解集在数轴上表示时,空心圆圈与实心圆圈各表示什么意思?活动二 会用不等式的性质变形得出等价的新结论例:三角形中任意两边之差与第三边有怎样的大小关系?小组交流:在三角形ABC 中,边AB 、AC 的长分别是2和5,求边BC 的取值范围?【检测反馈】1.用不等式表示下列语句:(1)x 的3倍大于或等于1 (2)x 与3的和不小于6 (3)y 与1的差不大于0abc(4)y的2倍小于或等于-22.解不等式x+3≤6,并在数轴上表示解集:3.小明就读的学校上午第一节课上课时间是8点开始.小明家距学校有2千米,而他的步行速度为每小时10千米.那么,小明上午几点从家里出发才能保证不迟到?课题:9.2实际问题与一元一次不等式⑴【学习目标】1.能根据具体问题中的数量关系,列一元一次不等式,解决实际问题;2.知道解一元一次不等式的步骤,会解一元一次不等式.【活动方案】活动一会用一元一次不等式描述实际问题中的不等关系甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费。
第9章不等式与不等式组式,这一点与一元一次方程类似。
二、不等式的解和解集思考2:[投影3]判断下列数中哪些能使不等式2/3x > 50成立:76,73,79,80,74. 9,75.1,90,6076, 79,80, 75.1,90能使不等式2/3x > 50成立。
我们把能使不等式成立的未知数的值,叫不等式的解.我们看到不等式的解不是一个,你还能找出这个不等式的其他解吗?它的解到底有多少个?如77、81、101等等,所有大于75的数都是这个不等式的解,它的解有无数个。
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集。
如所有大于75的数组成不等式2/3x > 50的解集,写作x >7 5,这个解集可以用数轴来表示。
求不等式的解集的过程叫做解不等式.巩固新知1、例[投影4]在数轴上表示下列不等式的解集:(1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1解:注意:①实心点表示包括这个点,空心点表示不包括这个点;②步骤:画数轴,定界点,走方向。
、2、下列哪些是不等式x+3 > 6的解?哪些不是?-4,-2. 5,0,1,2.5,3,3.2,4.8,8,123、直接想出不等式的解集,并在数轴上表示出来:(1)x+3 > 6(2)2x < 8(3)x-2 > 0解决问题某开山工程正在进行爆破作业.已知导火索燃烧的速度是每秒0.8厘米,人跑开的速度是每秒4米.为了使放炮的工人在爆炸时能跑到100米以外的安全地带,导火索的长度应超过多少厘米?总结归纳1、不等式与一元一次不等式的概念;2、不等式的解与不等式的解集;3、不等式的解集在数轴上的表示.(1)(2)(4)(3)o 75课题:9.1.2 不等式的性质(1)课题:9.1.2 不等式的性质(2)(3)2/3x ≥ 50根据等式的性质2,得x ≥ 50×3/2∴x ≥7 5(4)-4x≤3根据等式的性质3,得 x≤-3/4。
第九章不等式与不等式组9.1 不等式一、学习目标:1、了解不等式及一元一次不等式的慨念。
2、理解不等式的解、不等式的解集的慨念。
3、能在数轴上正确表示不等式的解集。
二、学习重点:理解不等式的解集,会在数轴上表示解集三.导学过程:1、学前准备:(1)等式:用“=”连接的表示相等关系的式子叫做等式.(2)一元一次方程:含有___个未知数,并且未知数的次数是___的方程叫做一元一次方程.(3)方程的解:使方程左右两边相等的未知数的值叫做方程的解2、新课探究:(一)、不等式、一元一次不等式的概念1. 你能列出下列式子吗?(1)5小于7;(2)x与1的和是正数(3)m的2倍大于或等于-1;(4)y的2倍与1的和不等于3(5)c与4的和的30﹪不大于-2不等式:像上面的这些式子,用符号“”,“”,“”“”或“”表示不等关系的式子叫做不等式。
一元一次不等式:含有且未知数的次数是的不等式,叫做一元一次不等式.巩固练习1:下列式子中哪些是不等式?哪些是一元一次不等式?(1)a+b=b+a (2)-3>-5 (3)x≠l(4)3>2 (4)x<2x+1 (5)x=2x-5 (6)a+b≠c(二)、不等式的解、不等式的解集判断下列哪些数值能使不等式x+3 > 6成立?x . . . -4 -2.50 1 2.5 3 3.2 4.8 8 12 …x+3判断想一想:使不等式x+3 > 6成立的数值还有没有?有多少个?总结1:1、不等式的解:使不等式的的值叫做不等式的解.2、不等式的解有个。
由上题我们可以发现,当x>3时,不等式x+3 > 6总成立;而当x≤3时,不等式x+3 > 6总不成立.这就是说,任何一个大于3的数都是不等式x+3 > 6的解,因此x>3表示了能使不等式x+3 > 6成立的x的取值范围,叫做不等式x+3 > 6的解的集合,简称解集总结2: 1.不等式的解集:一个含有未知数的不等式的组成这个不等式的解集。
导学案2、下列式子哪些是不等式?哪些不是不等式?1、 -2<5 (2)x+3> 2x导学案导学案(1)x 应满足的关系是:≤8(2)根据“不等式性质1”,在不等式的两边减去,得:x +-≤8-,即x ≤ (3)这个不等式的解集在数轴上表示如下:我们在表示的点上画实心圆点,意思是取值范围包括这个数。
1、 例题解下列不等式,并在数轴上表示解集: (1)3x < 2x +1 (2)3-5x ≥ 4-6x 师生共同探讨后得出:上述求解过程相当于由3x<2x+1,得3x-2x < 1;由3-5x ≥4-6x ,得-5x+6x ≥4-3.这类似于解方程中的“移项”.可见,解不等式也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.“数轴表示上的区别。
类比解方程的方法,让学生初步感觉不等式与方程的关系。
51x 51515151547547导学案导学案导学案导学案导学案导学案同大取大;同小取小; 大小小大中间找; 大大小小无法找。
、列不等式(组)解应用题:于、不大于、不小于等词语,选择适当的不等号,只设一个未;b ,;x a x b ,;a b ,.a b3、果x >y ,下列各式中不正确的是[ ] A 、1/2+x >1/2+y B 、-1/2+x >-1/2+y C 、1/2 x >1/2 y D 、 -1/2 x >-1/2 y4、x 时,2-3x 为非正数5、知点M (-5+m,-3)在第三象限,则m 的取值范围是 。
6、x 时,式子3x 5的值大于5x + 3的值。
7、阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x 表示他的速度(单位:米/分),则x 的取值范围为 。
8、知x=3-2a 是不等式1/5(x-3)<x-3/5的解,那么a 的取值范围是 。
9、下列不等式,并在数轴上表示解集。
(1)4x-1<-2x+3; (2) 3(x+1) >2 (3)1/2 x ≥-2/3 x-2 (4) 1/2x-7<1/6(9x-1)10、关于的方程的解是非正数,求的取值范围.-x x a x 34122-=+a。
第9章不等式与不等式组一、复习目标1、能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。
2、会解简单的一元一次不等式,并能在数轴上表示出解集。
会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。
3、能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题。
二、课时安排1课时三、复习重难点重点:能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组难点:能够解决简单的实际问题.四、教学过程(一)知识梳理1、叫一元一次不等式,把两个或两个以上的合起来,组成一个一元一次不等式组。
2、一般的,几个不等式的解集的,叫做由它们所组成的不等式组的解集。
3、不等式性质1 :不等式性质2:不等式性质3 :4、解不等式组,取解集的法则:(二)题型、技巧归纳考点一不等式及不等式组的有关概念例1、x与-3的和的一半是负数,用不等式表示为( )A.例2.下列解集中,不包含0的是( ).A.x<5B.x≥-2C.x≤3D.x<0考点二不等式的基本性质例3、下列说法中,错误的是( ) A.如果a<b ,那么a-c<b-c B.如果a>b ,c>0,那么ac>bc C.如果a<b ,c<0,那么D.如果a>b ,c>0,那么-考点三 解一元一次不等式例4、解不等式并把它的解集在数轴上表示出来 考点四 解一元一次不等式组例5.解不等式组:,并写出不等式组的整数解.考点五 列一元一次不等式组解应用题例6.九(3)班学生到阅览室读书,班长问老师要分成几个小组,老师风趣地说:假如我把43本书分给各个小组,若每组8本,还有剩余;若每组9本,却又不够.你知道该分几个小组吗?(三)典例精讲1、关于x 的方程x m x --=-425的解x 满足2<x<10,求m 的取值范围2、当关于x 、y 的二元一次方程组⎩⎨⎧-=--=+my x m y x 432522的解x 为正数,y 为负数,则求此时m 的取值范围?3、不等式()123x m m ->-的解集为2x >,求m 的值。
第九章不等式与不等式组9.1.1 不等式及其解集七年级班姓名学号学习目标:1、认识不等式的观点,能用不等式表示简单的不等关系。
2、知道什么是不等式的解,什么是解不等式,并能判断一个数是不是一个不等式的解。
3、理解不等式的解集,能用数轴正确表示不等式的解集,对于一个较简单的不等式能直接说出它的解集。
4、认识一元一次不等式的观点。
学习重点与难点重点 : 不等式的解集的表示 .难点 : 不等式解集确实定 .学习过程一、课前预习部分用圈、点、勾、划、记的方法有效预习P121 — 123 ,达成以下问题:1、数目有大小之分,它们之间有相等关系,也有不等关系,请你用适合的式子表示出以下数目关系:(1)a 与 1 的和是正数。
(2)y 的 2 倍与 1 的和大于 3。
(3)x 的一半与 x 的 2 倍的和是非正数。
(4)c 与 4 的和的 30%不大于 -2。
(5)x 除以 2 的商加上 2,至多为 5。
(6)a 与 b 两数的和的平方不行能大于 3.解:( 1) __________ (2)___________ ( 3) _____________ (4)___________(5)_____________ (6)像上边那样,用符号“____或”“____表”示________关系的式子叫做不等式;用“_____”表示不等关系的式子也是不等式。
2、当 x=78 时,不等式 x﹥50 成立,那么 78 就是不等式 x﹥ 50 的解。
与方程近似,我们把使不等式______ 的____________ 叫做不等式的解。
达成 P122 思虑取提出的问题。
3、一个含有未知数的不等式的________ 的解,构成这个不等式的_________ 。
求不等式的 _______ 的过程叫做解不等式。
4、仔细阅读P122 小贴士,说出以下两个数轴所表示解集的不一样之处,并与你的伙伴交流:(1)(2)你能画出数轴并在数轴上表示出以下不等式的解集吗?(1)x﹥3(2)x﹤2(3)y≥-15、近似于一元一次方程,含有___________ ,未知数的次数是 ____ 的不等式,叫做一元一次不等式。
课题:9.1.1不等式及其解集【学习目标】1.了解不等式、一元一次不等式等概念.2.初步学会在数轴上表示不等式的解集.【活动方案】活动一 了解不等式、一元一次不等式等概念阅读课本P 121至倒数第二行,画出不等式的概念,并在关键词下做上记号,依照不等式的概念完成下列问题:1.自己举出五个不等式:2.用不等式表示:(1)a 是正数; (2)a 是非负数;(3)a 与4的和不大于2; (4)a 的一半小于4.小组交流:从符号上看,不等式的形式有何特征.活动二 初步学会在数轴上表示不等式的解集阅读课本P 121-123,画出不等式的解及解集的概念,并完成下列问题:1.下列哪些数值是不等式x 2<8的解?哪些不是?-1 5 3.9 4.1 -3 4 -22.把不等式x 2<8的解集在数轴上表示出来.小组交流:在(2)中,数轴上表示4的点画空心圈,表示什么意思?【检测反馈】1.下列数值哪些是不等式63>+x 的解?哪些不是?-4 -2.5 0 1 2.5 3 52.用不等式表示:(1)a是负数(2)a与2的差小于-1 (3)a的4倍大于8 (4)a的一半小于33.直接写出下列不等式的解集,并在数轴上表示出来.(1)x+3<5 (2) 2x>8 (3) x-2>0课题:9.1.2不等式的性质⑴【学习目标】1.通过对比等式的基本性质,认识不等式的基本性质;2.学会初步运用不等式的性质.【活动方案】活动一 回顾等式的基本性质,认识不等式的基本性质阅读课本P 123-124,完成课本中思考的空格,画出不等式的三个基本性质,并在关键词下做上记号.依照不等式的性质完成下列问题:设m >n 用“>”或“<”填空:(1)5__5m n --; (2)4___4m n ++; (3)6___6m n ; (4)11__33m n --; (5)32___32m n ----.小组交流:先比较性质2与性质3有什么不同,再比较等式的性质与不等式的性质,它们有什么联系?活动二 会用不等式的基本性质解简单的不等式阅读课本P 125-126,完成例题1中,第(2),(4)题的空格.依照例题1的解题方法和格式完成下题:用不等式的性质解下列不等式,并在数轴上表示解集.(1) x +5>-1 (2) 4x <3x -5 (3) 2x -4>0 (4)-31x +2>5小组交流:1.不等式的解集如何在数轴上表示?2.解不等式时,每一步要注意什么?【检测反馈】1.利用不等式的性质,填”>”,<”.(1)若a >b ,则a -1 b -1;(2)若a >b ,则2a +1 2b +1;(3)若a>b,则-2a+8 -2b+8;(4)若-1.25y<10,则y-8;2.用不等式的性质解下列不等式,并在数轴上表示解集.(1) x+2<6 (2) -2x>-6课题:9.1.2不等式的性质⑵【学习目标】1.复习不等式的基本性质.2.会用“移项”,“未知数系数化为1”解简单的不等式.【活动方案】活动一 复习不等式的基本性质用不等号填空:若a b >,则1.2___2a b ++;2.___a b --;3.2___2a b -+-+;4.___0a b -.小组交流:运用了哪些不等式的性质?活动二 会用“移项”,“未知数系数化为1”解简单的不等式再看课本P 125例1中(2)(4)小题的解题,画出含有“移项”,“ 未知数系数化1”方法的语句,并在关键字下做上记号.再利用此方法解下列不等式,并把解集在数轴上表示出来:1.726x ->; 2.321x x <+;3.2503x >; 4.43x ->.小组交流:1.在黑板上展示答案2.“移项”,“ 未知数系数化为1”的依据分别是什么?注意点分别是什么?【检测反馈】解下列不等式,并在数轴上表示解集:1.51x +>-; 2.435x x <-;13.-8x>10;4.-x+2>5.3课题:9.1.2不等式的性质⑶【学习目标】1.知道像a≥b或a≤b或a≠b这样的不等式,也常用来表示两个数量的大小关系;2.会用a≥b或a≤b这样的不等式表示实际问题中的不等关系;3.会用不等式的性质变形得出等价的新结论.【活动方案】活动一知道像a≥b或a≤b或a≠b这样的不等式,也常用来表示两个数量的大小关系1.2009年12月18日南通的最低气温是-4℃,最高气温是4℃,若t表示温度,请你用不等式表示这一天的温度.2.某长方体形状的容器长5cm,宽3cm,高10cm,容器内原有水的高度为3cm,现准备向它继续注水,用V cm3表示新注入水的体积,写出V cm3的取值范围,并且在数轴上表示.小组交流:将不等式的解集在数轴上表示时,空心圆圈与实心圆圈各表示什么意思?活动二会用不等式的性质变形得出等价的新结论例:三角形中任意两边之差与第三边有怎样的大小关系?小组交流:在三角形ABC中,边AB、AC的长分别是2和5,求边BC的取值范围?【检测反馈】1.用不等式表示下列语句:(1)x的3倍大于或等于1(2)x与3的和不小于6(3)y与1的差不大于0(4)y的2倍小于或等于-22.解不等式x+3≤6,并在数轴上表示解集:3.小明就读的学校上午第一节课上课时间是8点开始.小明家距学校有2千米,而他的步行速度为每小时10千米.那么,小明上午几点从家里出发才能保证不迟到?课题:9.2实际问题与一元一次不等式⑴【学习目标】1.能根据具体问题中的数量关系,列一元一次不等式,解决实际问题;2.知道解一元一次不等式的步骤,会解一元一次不等式.【活动方案】活动一会用一元一次不等式描述实际问题中的不等关系甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费。
1.独立完成:(1)甲商店购物款达多少元后可以优惠?乙商店购物款达多少元后可以优惠?小组交流:(1)选择哪家商场合算与什么量有关?可以怎样分类考虑顾客选择商店购物能获得更大优惠?(2)如果累计购买金额x超过100元,此时,用x的代数式可表示在甲商场花费为元,在乙商场花费为元.现假设在甲商场花费小,则这个实际问题可用不等式表示为:(3)如何解这个不等式?试运用解一元一次方程的经验、步骤解决,并考虑每一步的依据.小组交流:问题(2)中,如何根据实际问题列不等式的;问题(3)中,如何解这个不等式的?活动二 会解带括号一元一次不等式解下列不等式,并在数轴上表示解集.1.)5(3)5(2-<+x x 2.)1(2)4(410-≤--x x小组交流:1.先独立完成,后小组交流,把组内错误展示在小黑板上并订正;2.解带括号一元一次不等式需注意什么?【检测反馈】1.活动一中:如果累计购买金额x 超过100元,现假设在乙商场花费小,则累计购买金额x 又在什么范围内?在两家商场购物花费一样呢?2.解下列不等式,并在数轴上表示解集.)34(2)52(3+<+x x课题:9.2 实际问题与一元一次不等式(2)【学习目标】1.能找出实际问题中的不等关系,列不等式;2.能解一元一次不等式,体会解不等式与方程步骤上的内在联系.【活动方案】活动一 能找出实际问题中的不等关系,列不等式1.自主完成下列各题:迎奥运,北京开展了“为绿色奥运添彩 将环保进行到底”的主题活动,空气质量良好的天数明显增多。
2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%。
若2008年这样的比值要超过70%,那么,2008年北京空气质量良好(二级以上)的天数至少可以增加多少天?分析:(1)2002年北京空气质量良好的天数是______________天(列式);(2)设2008年空气质量良好的天数比2002年增加x 天,则2008年质量良好的天数表示为_____________________;(3)2008年是闰年,共有____________天;(4)“若2008年这样的比值要超过70%”中的比值是指___________与__________比,由此可列出不等式: .完整解出此题:小组交流:1. 根据问题的实际意义,x 的取值上应注意什么?2. 解一元一次不等式应用题的一般步骤?3. 一元一次不等式与一元一次方程的解法有何异同?活动二 会解一元一次不等式,体会解不等式与方程步骤上的内在联系1.解不等式 ,并在数轴上表示其解集.2.解不等式1)53(3)1(2+-≤+x x 并在数轴上表示其解集.小组交流:一元一次不等式的解法与一元一次方程的解法类似,确有一步要注意,你知道是哪一步吗?注意什么?【检测反馈】1.求3(x+1)的值不小于5x+10的值的最大整数x.2.某种彩电出厂为每台1800元,各种管理费约为出厂价的12%,商家零售价为每台多少元时,才能保证毛利率不低于15%(精确到10元)?课题:9.2 实际问题与一元一次不等式(3)【学习目标】1. 会根据实际向题中的数量关系列不等式解决问题;2. 熟练解一元一次不等式.【活动方案】活动一 会根据实际向题中的数量关系列不等式解决问题.某次知识竞赛共有20道题,每道题答对加10分,答错或不答均扣5分.小明要想得分超过90分,他至少要答对多少道题?1.小明答对了x 道题,则如何用含有x 的式子表示得分?2.完整的解出这道应用题:小组交流:本题在写出答案时要注意什么?活动二 熟练求解一元一次不等式阅读课本P 133的归纳,在关键词下做上记号,并在空白处写上解一元一次不等式的具体步骤,依照步骤完成:解下列不等式,并在数轴上表示解集.1.)1(3)1(27-≤+-x x 2.231222--≥+x x小组交流:此题的解集在数轴上表示时要注意什么?【检测反馈】1.电脑公司销售一批计算机,第一个月以每台5500元的价格出售60台,第二个月其降价,后以每台5000元的价格将这批计算机全部售出,销售款总量超过55万元。
这批计算机最少有多少台?2.解下列不等式,并在数轴上表示解集.(1))162(2)13(412-≤--x x(2)135253--<+x x课题: 9.3一元一次不等式组(1)【学习目标】1.知道一元一次不等式组及其解集的意义;2.学会解一元一次不等式组;3.会用数轴确定一元一次不等式组解集.【活动方案】活动一 解一元一次不等式组1.解不等式(1)1213+>-x x ; (2)x x 237121-≤-.2.小组交流:解上面不等式的步骤是什么?活动二 会用数轴确定解集1.自学课本P137至P139例2以上的内容,解决P138第一段提出的问题,完成探究内容.(小组交流)2.利用 可以直观形象地确定不等式组的解集.3.归纳例1解一元一次不等式组的步骤.4.解不等式组 (1)⎩⎨⎧<-<-xx x 332312 ; (2)⎪⎩⎪⎨⎧->-+-<--)3(4)4(316125x x x x⎪⎩⎪⎨⎧<->+xx x 987121⎩⎨⎧+>++<-145123x x x x ⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(325⎩⎨⎧<>-621113x x 活动三 归纳一元一次不等式组的解集的确定方法小组交流学习体会和收获【检测反馈】1.解下列不等式组(1)(2)(3)(4)课题:9.3一元一次不等式组(2)【学习目标】1.进一步熟练一元一次不等式组的解法;2.会用一元一次不等式组解决有关的实际问题。