初中七年级数学不等式
- 格式:doc
- 大小:452.00 KB
- 文档页数:11
七年级数学不等式一、不等式的概念。
1. 定义。
- 用符号“<”(或“≤”)、“>”(或“≥”)表示大小关系的式子,叫做不等式。
例如:x>5,2y + 1<7,a + 3≥b - 2等都是不等式。
2. 不等式中常见的符号及其含义。
- “<”表示小于,如3 < 5。
- “>”表示大于,如7>4。
- “≤”表示小于或等于,例如x≤slant10表示x小于10或者x等于10。
- “≥”表示大于或等于,例如y≥slant - 2表示y大于 - 2或者y等于 - 2。
二、不等式的解与解集。
1. 不等式的解。
- 使不等式成立的未知数的值叫做不等式的解。
例如,对于不等式x + 3>5,当x = 3时,3+3 = 6>5,所以x = 3是这个不等式的一个解。
2. 不等式的解集。
- 一个含有未知数的不等式的所有解,组成这个不等式的解集。
例如,不等式x - 1>0的解集是x>1,它包含了所有大于1的数。
- 不等式的解集可以在数轴上表示:- 对于x> a(a为常数),在数轴上表示为在a这个点处画一个空心圆圈(因为不包含a本身),然后向数轴正方向画一条线,表示所有大于a的数。
- 对于x≥slant a,在数轴上表示为在a这个点处画一个实心圆圈(因为包含a本身),然后向数轴正方向画一条线,表示所有大于或等于a的数。
- 对于x < a和x≤slant a同理,只是方向是向数轴负方向。
三、不等式的性质。
1. 不等式的基本性质1。
- 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
- 例如:如果a>b,那么a + c>b + c;如果a,那么a - c。
2. 不等式的基本性质2。
- 不等式两边乘(或除以)同一个正数,不等号的方向不变。
- 例如:如果a>b,c>0,那么ac>bc,(a)/(c)>(b)/(c)。
七年级数学不等式计算题构成我们做七年级数学不等式练习题最大障碍的是已知的东西,而不是未知的东西。
下面小编给大家分享一些七年级数学不等式计算题,大家快来跟小编一起看看吧。
七年级数学不等式计算题第一部分1、一辆匀速行驶的汽车在11 :20距离A地50千米,要在12 :00之前驶过A地,车速应满足什么条件?设车速是x千米/时从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到2/3小时,即设车速是x千米/时从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即2、不等式定义:用“<”或“>”、“≤”“≥” 表示大小关系的式子,叫做不等式,像a+2≠a-2这样用“ ≠”号表示不等关系的式子也是不等式。
注:“<” 、“>” 、“≠”、“ ≤”、“ ≥”都是不等号。
练习题:下列式子哪些是不等式?哪些不是不等式?为什么?-2<5 x+3>6 4x-2y≤0 a-2b a+b≠c5m+3=8 8+4<73. 不等式的解我们曾经学过“使方程两边相等的未知数的值就是方程的解”,与方程类似 , 能使不等式成立的未知数的值叫不等式的解.代入法是检验某个值是否是不等式的解的简单、实用的方法;练习题:x=78是不等式的解吗?x=75呢?x=72呢?判断下列数中哪些是不等式的解:76 , 73 , 79 , 80, 74.9 , 75, 75.1, 90 , 60你还能找出这个不等式的其他解吗?这个不等式有多少个解?你能说出他的解集吗?4、不等式的解集一般的,一个含有未知数的不等式的所有的解组成这个不等式的解集。
求不等式的解集的过程叫解不等式。
想一想:不等式的解和不等式的解集是一样的吗?不等式的解与解不等式一样吗?练习题:1、下列说法正确的是( )A. x=3是2x+1>5的解B. x=3是2x+1>5的唯一解C. x=3不是2x+1>5的解D. x=3是2x+1>5的解集5. 解集的表示方法:用式子(如x>2),即用最简形式的不等式(如x>a或x<a)来表示.如不等式的解集可以用不等式x >75来表示。
人教版数学七年级下册《不等式的性质1》教学设计2一. 教材分析人教版数学七年级下册《不等式的性质1》是初中数学的重要内容,主要介绍了不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,以及不等式的两边同时乘除同一个负数等。
这些性质为解决实际问题提供了有力的工具。
二. 学情分析学生在七年级上学期已经学习了不等式的基本概念和简单的运算,对于不等式的性质有一定的认知基础。
但学生对于不等式的性质的理解和应用还不够深入,需要通过本节课的学习进一步巩固和提高。
三. 教学目标1.了解不等式的性质,并能运用不等式的性质解决实际问题。
2.培养学生的逻辑思维能力和解决问题的能力。
3.激发学生学习数学的兴趣,提高学生的数学素养。
四. 教学重难点1.教学重点:不等式的性质及应用。
2.教学难点:不等式的性质的理解和运用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生通过自主学习、合作交流,掌握不等式的性质。
六. 教学准备1.准备相关的不等式性质的案例和练习题。
2.准备多媒体教学设备,制作课件。
七. 教学过程1.导入(5分钟)通过一个实际问题引入不等式的性质,例如:“小明比小红高,如果小明再长高5cm,那么他比小红高多少?”引导学生思考不等式的性质。
2.呈现(10分钟)呈现不等式的性质,引导学生观察和总结不等式的性质。
同时,通过多媒体课件展示不等式的性质,加深学生对性质的理解。
3.操练(15分钟)让学生通过小组合作,解决一些关于不等式性质的实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成一些关于不等式性质的练习题,检验学生对不等式性质的掌握程度。
教师选取部分学生的作业进行讲解和分析。
5.拓展(10分钟)引导学生思考不等式性质在实际生活中的应用,例如:“如何在购物时 maximize your savings?”,让学生体会数学与生活的紧密联系。
七年级数学不等式组典型例题七年级数学不等式组典型例题通常涉及一元一次不等式组和二元一次不等式组。
以下是一些常见的例题:1. 某工厂生产甲、乙两种产品,每天总共生产 100 件,其中甲产品利润为每件 30 元,乙产品利润为每件 50 元,共获得 4500 元利润,如果每天生产的甲、乙产品数量比为 3:2,则甲、乙产品每件的成本分别为多少元?解:设甲、乙产品每件的成本分别为 x、y 元。
则 3x+2y=45001x+y=1002由 1 式可得 x=25,代入 2 式可得 y=75。
因此,甲、乙产品每件的成本分别为 25 元和 75 元。
2. 某班级举行课外活动,分成甲乙两个小组,甲组有 6 人,乙组有 4 人,共捐款 117 元,如果甲、乙两组各增加 2 人,则甲组比乙组多捐款 27 元,问甲、乙两组原来各有多少人?解:设甲组原来有 x 人,乙组原来有 y 人。
则 x+y=101x-y=272由 1 式可得 y=10-x,代入 2 式可得 x=8,y=2。
因此,甲组原来有 8 人,乙组原来有 2 人。
3. 不等式组 3x-2>5,4x+3<11 的解为 x<1.5,则不等式组3x+2>5,4x-3<11 的解为 x>0.5,则原不等式组的解为 x<0.5 或x>1.5。
解:由 3x-2>5,4x+3<11 可知 x<1.5 或 x>5.5。
因此,不等式组 3x+2>5,4x-3<11 的解为 x<0.5 或 x>1.5。
以上是一些常见的七年级数学不等式组典型例题,涉及到一元一次不等式组和二元一次不等式组,通过求解不等式组,可以求出不等式组的解,从而得到产品的成本、人数等数据。
初中数学知识点必备:不等式学校数学学问点:不等式1用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式两边乘(或除以)同一个正数,不等号的`方向不变。
不等式两边乘(或除以)同一个负数,不等号的方向转变。
三角形中任意两边之差小于第三边。
三角形中任意两边之和大于第三边。
不等式(组)1、不等式:用不等号(“”、“≤”、“”、“≥”、“≠”)表示不等关系的式子。
2、不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向转变。
3、不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
4、不等式的解集:一个含有未知数的不等式的全部解,组成这个不等式的解集。
提示大家:解不等式指的是求不等式解集的过程叫做解不等式。
学校数学学问点:不等式21.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.留意:一般说二元一次方程有很多个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.留意:一般说二元一次方程组只有解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)留意:推断如何解简洁是关键。
5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能简单一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系。
初中数学不等式知识点大全知识点1:不等式不等式是用不等号(。
≥、<、≤、≠)表示不等关系的式子。
常用的表示不等关系的语言及符号有:1.大于、比……大、超过。
2.小于、比……小、低于。
<;3.不大于、不超过、至多:≥;4.不小于、不低于、至少。
≤;5.正数。
6.负数:<;7.非负数:≥;8.非正数:≤。
例1中是不等式的有-1>2,3x≥-1,3x-4<2y,3x-5=2x+2,a^2+2≥0,a^2+b^2≠c^2.例2中不能用不等式表示的是m+n等于。
练1中是不等式的有5>x,3a+4b>y,2a+3≤7,x^2+1≥8.练2中(1)的含义是x^2大于等于0,(2)的含义是-x小于等于0.知识点2:不等式的基本性质不等式有以下基本性质:1.不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
即如果a>b,那么a+c>b+c,a-c>b-c。
2.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
即如果a>b,c>0,那么ac>bc,a/b>b/b。
3.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
即如果a>b,c<0,那么ac<bc,a/b<b/a。
4.如果a>b,那么b<a。
5.如果a>b,b>c,那么a>c。
例1中由a-3<b+1可得到的结论是a<b+4.例2中如果a>b,那么下列变形错误的是2-2a>2-2b。
例3中正确的判断是若a<b,则a^2<b^2.例4中若a1,a+b<ab。
例1】解下列不等式组,结果正确的是()B.不等式组x7的解集是x 1解析:用数轴法解不等式组,先求出每一个不等式的解集,再找出它们的公共部分。
对于不等式组x7的解集是x 1x 1其解集为x7,x1,即x7.结果正确的是B.练1】嘉年华小区计划新建50个停车位,已知新建1个地上停车位和1个地下停车位需0.7万元,新建3个地上停车位和2个地下停车位需1.6万元。
冀教版数学七年级下册10.1《不等式》说课稿一. 教材分析冀教版数学七年级下册10.1《不等式》是初中数学的重要内容,为学生提供了初步了解和掌握不等式的概念、性质及解法的机会。
这一章节的内容为后续不等式组、不等式的应用等知识的学习奠定了基础。
通过本节课的学习,学生能够掌握不等式的基本概念,了解不等式的性质,并能运用不等式解决一些实际问题。
二. 学情分析学生在七年级上册已经学习了有理数、一元一次方程等知识,对于数学语言和符号有一定的认识,具备了一定的逻辑思维能力。
但他们对不等式的概念和性质可能还比较陌生,需要通过具体的例子和练习来逐步理解和掌握。
三. 说教学目标1.知识与技能:学生能够理解不等式的概念,掌握不等式的性质,能够解简单的不等式。
2.过程与方法:学生通过观察、思考、交流等过程,培养自己的逻辑思维能力和问题解决能力。
3.情感态度与价值观:学生能够体验到数学与生活的紧密联系,增强对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:不等式的概念、性质和简单解法。
2.教学难点:不等式的性质的证明和应用。
五.说教学方法与手段本节课采用问题驱动法、案例教学法和小组合作法进行教学。
利用多媒体课件和实物模型等手段,帮助学生直观地理解不等式的概念和性质。
同时,学生进行小组讨论和练习,提高学生的参与度和合作能力。
六. 说教学过程1.导入:通过一个实际问题引入不等式的概念,激发学生的兴趣和思考。
2.概念讲解:利用多媒体课件和实物模型,直观地展示不等式的概念,引导学生通过观察和思考来理解不等式的含义。
3.性质讲解:通过一系列的例子和练习,引导学生发现和总结不等式的性质,利用小组合作法进行讨论和证明。
4.解法讲解:引导学生运用不等式的性质来解简单的不等式,通过练习来巩固和加深对解法的理解。
5.应用拓展:通过一些实际问题,引导学生运用不等式来解决问题,培养学生的应用能力。
6.总结与反思:学生进行总结,回顾本节课的学习内容,引导学生反思自己的学习过程和方法。
初中数学知识点之不等式初中数学知识点:不等式的定义不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)“≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,,z)≤G(x,y,,z )(其中不等号也可以为<,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
不等式的判定:①常见的不等号有“>”“<”“≤” “≥”及“≠”。
分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;②在不等式“a>b”或“a<b”中,a叫作不等式的左边,b叫作不等式的右边;< p="">③不等号的开口所对的数较大,不等号的尖头所对的数较小;④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。
不等式的定义的教学目标1、了解不等式和不等号的概念,会根据给定条件列不等式,会在数轴上表示不等式。
2、经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。
3、感受生活中存在着大量的不等关系,初步体会不等式是研究量与量之间关系的重要模型之一。
初中数学知识点:不等式的性质1、基本性质:ⅰ不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
即如果a>b,那么a±c>b±c。
ⅱ不等式的两边同乘以(或除以)同一个正数,不等号的方向不变。
即如果a>b,c>0,那么ac>bc(或)。
ⅲ不等式的两边同乘以(或除以)同一个负数,不等号的方向改变。
初中数学不等式证明方法总结通常不等式中的数是实数,字母也代表实数。
初中数学不等式证明方法总结,希望可以帮助到大家,我们来看看。
初中数学不等式证明方法总结1知识要点:不等式两边乘或除以同一个负数,不等号的方向改变。
(÷或×1个负数的时候要变号)。
不等式的证明1、比较法包括比差和比商两种方法。
2、综合法证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,综合法又叫顺推证法或因导果法。
3、分析法证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。
4、放缩法证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。
5、数学归纳法用数学归纳法证明不等式,要注意两步一结论。
在证明第二步时,一般多用到比较法、放缩法和分析法。
6、反证法证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。
知识要领总结:证明不等式要注意不等式两边都乘以或除以一个负数,要改变不等号的方向。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
初中七年级数学知识点总结5篇初一数学知识点1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。
2.不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。
3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5.不等式解集的表示方法:(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6.解不等式可遵循的一些同解原理(1)不等式F(x)< G(x)与不等式 G(x)>F(x)同解。
(2)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x)< G(x)与不等式H(x)+F(x)(3)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)< G(x)与不等式H(x)F(x)0,那么不等式F(x)< G(x)与不等式H(x)F(x)>H(x)G(x)同解。
7.不等式的性质:(1)如果x>y,那么yy;(对称性)(2)如果x>y,y>z;那么x>z;(传递性)(3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z(6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)(7)如果x>y>0,m>n>0,那么xm>yn(8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)初一下册数学知识点1.数据的整理:我们利用划记法整理数据,如下图所示,2.数据的描述:为了更直观地看出上表中的信息,我们还可以用条形统计图和扇形统计图来描述数据。
9.1不等式
1、一辆匀速行驶的汽车在11 :20距离A 地50千米,要在12 :00之前驶过A 地,车速应满足什么条件?
①设车速是x 千米/时
从时间上看,汽车要在12:00之前驶过A 地,则以这个速度行驶50千米所用的时间不到2/3小时,即
②设车速是x 千米/时 从路程上看,汽车要在12:00之前驶过A 地,则以这个速度行驶2/3小时的路程要超过50千米,即
2、不等式定义:用“<”或“>”、“≤”“≥” 表示大小关系的式子,叫做不等式,像a+2≠a-2这样用“ ≠”号表示不等关系的式子也是不等式。
注:“<” 、“>” 、“≠”、“ ≤”、“ ≥”都是不等号。
3
250<x 503
2>x
练习题:
下列式子哪些是不等式?哪些不是不等式?为什么?
-2<5 x+3>6 4x-2y ≤0 a-2b a+b ≠c
5m+3=8 8+4<7
3. 不等式的解 我们曾经学过“使方程两边相等的未知数的值就是方程的
解”,与方程类似 , 能使不等式成立的未知数的值叫不等式
的解.
代入法是检验某个值是否是不等式的解的简单、实用的方
法;
练习题:
x=78是不等式 的解吗?x=75呢?x=72呢?
判断下列数中哪些是不等式 的解:
76 , 73 , 79 , 80, 74.9 , 75, 75.1, 90 , 60 你还能找出这个不等式的其他解吗?这个不等式有多少个解?
你能说出他的解集吗?
5
213<+x 503
2>x 503
2>x
4、不等式的解集
一般的,一个含有未知数的不等式的所有的解组成这个不等
式的解集。
求不等式的解集的过程叫解不等式。
想一想:
不等式的解和不等式的解集是一样的吗?
不等式的解与解不等式一样吗?
练习题:
1、下列说法正确的是( ) A. x=3是2x+1>5的解
B. x=3是2x+1>5的唯一解
C. x=3不是2x+1>5的解
D. x=3是2x+1>5
5.
:用式子(如x>2),即用最简形式的不等式(如x>a 或x<a)
来表示.
x >75 50
3
2 x
如不等式的解集可以用不等式x >75来表示。
练习题:
不等式的解集:
⑴ x+2>6 ⑵ 3x>9 ⑶ x-3>0
:用数轴,标出数轴上某一区间,其中的点对应的数值都是不等式的解.
注意:
1.用数轴表示不等式的解集的步骤:
①画数轴; ②定边界点; ③定方向.
2.用数轴表示不等式的解集,应记住下面的规律:
大于向右画,小于向左画;有等号(≥ ,≤)画实心点, 无等号(>,<)画空心圆.
练习题:
6、一元一次不等式
我们知道2x+1=5叫做一元一次方程,那么你觉得不等
式2x+1>5应该如何命名吗?
定义类似于一元一次方程,含有一个未知数且未知数的
次数是1的不等式叫做一元一次不等式
练习题:
1、下列各式是一元一次不等式的是( )
A. 4x-2y ≤0
B. x ≥-11
C. x2-1≤0
D.
3250 x
判断一个式子是不是一元一次不等式,必须满足四个条件:
①式中只含有一个未知数;
②未知数的次数是1;
③式子用不等号连接
④分母中不含未知数
2、有下列数学表达式:
①-1<0; ②3m-2n>0;③x=4;④x≠7;⑤5x+4=x+5;
⑥x2+xy+y2;⑦x+2>y+3;⑧x2>4;⑨3x-2>4x-3;⑩3+5<7; 其中是不等式的有()
是一元一次不等式的有()(只填序号)
3、下列说法中错误的是()
A.不等式x<5的解有无数个
B.不等式x<5的正整数解有有限个
C.x=-4是不等式-3x>9的一个解
D.x>5是不等式x+3>6的解集
4、用不等式表示:
⑴ a与1的和是正数;
⑵ y的2倍与1的和小于3;
⑶ y的3倍与x的2倍的和是非负数
⑷ x乘以3的积加上2最多为5.
5、用数轴表示下列不等式的解集:
⑴ x>-1; ⑵ x≥-1; ⑶ x< -1; ⑷ x≤-1.
6、根据以下图形,写出不等式的解集:
7、你能求出适合不等式-1≤
x <4的整数解吗?其中的x 的最大整数值是多少呢?
7、等式的性质
等式的基本性质1:在等式两边都加上(或减去)同一个数或整式,结果仍相等.
如果a=b,那么a ±c=b ±c
等式的基本性质2:在等式两边都乘以或除以同一个数(除数不为0),结果仍相等.
如果a=b,那么ac=bc 或 (c ≠0)
8、不等式的性质
不等式是否具有类似的性质呢?
如果 5 > 3 那么 5+2 ____ 3+2 , 5 -2____3-2
-2-10231456
c b c a
如果-1< 3,
那么-1+2____3+2, -1- 3____3 - 3
性质1 :如果 a>b, 那么 a+c>b+c 或 a-c>b-c
即:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.
猜想1:不等式两边都乘以(或除以)同一个不为零的数,不等号的方向是否改变?
如果 6 >2
那么 6×5 ____ 2× 5 ,
6 ×(-5)____2×(-5),
6÷5 ____ 2÷ 5 ,
6 ÷ (-5)____2÷ (-5)
如果-2< 3,
那么-2×6____3×6,
-2×(- 6)____3×( - 6),
-2÷2____3÷2,
-2÷ (- 4)____3÷ ( - 4)
猜想2:不等式两边都乘以(或除以)同一个不为零的数,不等号的方向是否改变?
将不等式 7>4 的两边都乘以同一个数,比较所得结果的大小,用 >、< 、=填空
结论:同乘以一个正数,不等号方向不变,同乘以一个负数不等号方向改变,同乘以0的时候相等.
练习题:
例1:
1、判断下列各题的推导是否正确?为什么
(1)因为7.5>5.7,所以-7.5<-5.7;
(2)因为a+8>4,所以a >-4;
(3)因为4a >4b ,所以a >b ;
(4)因为-1>-2,所以-a-1>-a-2;
(5)因为3>2,所以3a >2a .
2、填空题
(1)∵0 >1,
∴ a a+1; (2)∵(a-1)2 >0,
∴(a-1)2-2 -2
(3)若x+1>0,两边同加上-1,得____________
(4)若2x >-6,两边同除以2,得________,依据_______________.
(5)若-0.5 x ≤1,两边同乘以-2,得________,依据___________
3、已知a<0 ,试比较2a 与a 的大小。
4、
不等式的基本性质(总结)
(1)不等式的两边都加上(或减去)同一个数或同一个式子,不等号的方向不变
(2) 不等式的两边都乘以(或除以)同一个正数,不等号的()()的取值范围求且若a y a x
a y x ,33,->-<
方向不变.
(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.
5、解不等式:
(1)x -7<8 (2)3x<2x-3
6、三个连续正奇数的和小于30,这样的数有几组?把它们分别写出来.
7、若不等式x-a ≤0只有3个正整数解,求正整数a 的取值范围.
8、已知关于x 的方程 3x-m= 34x- 5的解大于0,求m 的取值范围.。