04_留数定理
- 格式:ppt
- 大小:304.50 KB
- 文档页数:14
留数定理编辑讨论3 上传视频本词条由“科普中国”科学百科词条编写与应用工作项目审核。
在复分析中,留数定理是用来计算解析函数沿着闭曲线的路径积分的一个有力的工具,也可以用来计算实函数的积分。
它是柯西积分定理和柯西积分公式的推广。
[1]中文名留数定理外文名Residue theorem别称柯西留数定理应用学科工程学、数学适用领域范围工学相关术语解析函数目录1 定律定义2 推导过程3 相关术语定律定义编辑假设U是复平面上的一个单连通开子集,,是复平面上有限个点,是定义在U\{ }的全纯函数。
如果γ是一条把包围起来的可求长曲线,但不经过任何一个,并且其起点与终点重合,那么:如果γ是若尔当曲线,那么I(γ,ak)=1, 因此:在这里,Res(f, ak)表示f在点ak的留数,I(γ, ak)表示γ关于点ak 的卷绕数[2] 。
卷绕数是一个整数,它描述了曲线γ绕过点ak的次数。
如果γ依逆时针方向绕着ak移动,卷绕数就是一个正数,如果γ根本不绕过ak,卷绕数就是零。
推导过程编辑以下的积分在计算柯西分布的特征函数时会出现,用初等的微积分是不可能把它计算出来的。
我们把这个积分表示成一个路径积分的极限,积分路径为沿着实直线从−a到a,然后再依逆时针方向沿着以0为中心的半圆从a到−a。
取a为大于1,使得虚数单位i包围在曲线里面。
路径积分为:由于eitz是一个整函数(没有任何奇点),这个函数仅当分母z2 + 1为零时才具有奇点。
由于z2 + 1 = (z + i)(z − i),因此这个函数在z = i或z = −i时具有奇点。
这两个点只有一个在路径所包围的区域中。
由于f(z)是f(z)在z = i的留数是:根据留数定理,我们有:路径C可以分为一个“直”的部分和一个曲线弧,使得:因此如果t> 0,那么当半圆的半径趋于无穷大时,沿半圆路径的积分趋于零:因此,如果t> 0,那么:类似地,如果曲线是绕过−i而不是i,那么可以证明如果t< 0,则因此我们有:(如果t= 0,这个积分就可以很快用初等方法算出来,它的值为π。
留数及其应用摘 要 留数理论是复积分和复级数理论相结合的产物,利用留数定理可以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文首先介绍留数定义及留数定理,然后针对具体不同的积分类型有不同的计算方法以及留数理论在定积分中的一些应用.关键词 留数定理;留数计算;应用引 言 对留数理论的学习不仅是前面知识的延伸,更为对原函数不易直接求得的定积分和反常积分的求法提供了一个较为方便的方法.一. 预备知识 孤立奇点1.设()f z 在点a 的某去心邻域内解析,但在点a 不解析,则称a 为f 的孤立奇点.例如sin zz,1z e 以0=z 为孤立奇点.z 以0=z 为奇点,但不是孤立奇点,是支点.11sinz 以0=z 为奇点(又由1sin0=z ,得1(1, 2...,)π==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有1()()(),∞∞-===+-∑∑-nnnnn n f z c z a c z a 称()n=1∞-∑-nnc z a 为()f z 在点a 的主要部分,称()∞=-∑nnn z a c 为()f z 在点a 的正则部分,当主要部分为0时,称a 为()f z 的可去奇点;当主要部分为有限项时,设为(1)11(0)()()------+++≠---m mm m m c c c c z a z a z a称a 为()f z 的m 级极点;当主要部分为无限项时,称a 为本性奇点.二. 留数的概念及留数定理 1. 留数的定义设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R <⋅<内解析,则积分()()1:,02f z dz z a R i ρρπΓΓ⋅=<<⎰为()f z 在点a 的留数,记为:()Re z as f z =.2. 留数定理介绍留数定理之前,我们先来介绍复周线的柯西积分定理:设D 是由复周线012C C C C --=+++…nC -所围成的有界连通区域,函数()f z 在D 内解析,在_D D C =+上连续,则()0Cf z dz =⎰.定理1[]1(留数定理) 设()f z 在周线或复周线C 所范围的区域D 内,除12,,a a …,n a 外解析,在闭域_D D C =+上除12,,a a …,n a 外连续,则( “大范围”积分) ()()12Re k nz a k Cf z dz i s f z π===∑⎰. (1)证明 以k a 为心,充分小的正数k ρ为半径画圆周:k k z a ρΓ⋅=(1,2,k =…,n )使这些圆周及内部均含于D ,并且彼此相互隔离,应用复周线的柯西定理得()()1knk Cf z dz f z dz =Γ=∑⎰⎰,由留数的定义,有()()2Re kkz a f z dz i s f z π=Γ=⎰.特别地,由定义得 ()2Re kkz a f z dz i s π=Γ=⎰,代入(1)式得 ()()12Re knz a k Cf z dz i s f z π===∑⎰.定理2 设a 为()f z 的n 阶极点,()()()nz f z z a ϕ=-,其中()z ϕ在点a 解析,()0a ϕ≠,则()()()()11!n z aa Res f z n ϕ-==-.这里符号()()0a ϕ代表()a ϕ,且有()()()()11lim n n z aa z ϕϕ--→=. 推论3 设a 为()f z 的一阶极点,()()()z z a f z ϕ=-, 则 ()()z aRes f z a ϕ==.推论4 设a 为()f z 的二阶极点,()()()2z z a f z ϕ=-, 则 ()()'z aRes f z a ϕ==.3. 留数的引理引理1 设()f z 沿圆弧:i R S z Re θ= (12θθθ≤≤,R 充分大)上连续,且()lim R zf z λ→+∞=于R S 上一致成立(即与12θθθ≤≤中的θ无关),则()()21limRS R f z dz i θθλ→+∞=-⎰.引理2(若尔当引理) 设函数()g z 沿半圆周:i R z Re θΓ= (0θπ≤≤,R 充分大)上连续,且()lim 0R g z →+∞=在R Γ上一致成立,则()()lim00Rimz R g z e dz m Γ→+∞=>⎰.引理3 (1)设a 为()f z 的n 阶零点,则a 必为函数()()'f z f z 的一阶极点,并且 ()()'z a f z Res n f z =⎡⎤=⎢⎥⎣⎦; (2)设b 为()f z 的m 阶极点,则b 必为函数()()'f z f z 的一阶极点,并且()()'z bf z Res m f z =⎡⎤=-⎢⎥⎣⎦.三. 留数的计算1. 函数在极点的留数法则1:如果0z 为)(z f 的简单极点,则)()(lim ]),([Re 000z f z z z z f s z z -=-法则2:设)()()(z Q z P z f =,其中)(,)(z Q z P 在0z 处解析,如果0)(≠z P ,0z 为)(z Q 的一阶零点,则0z 为)(z f 的一阶极点,且)()(]),([Re 0z Q z P z z f s '=. 法则3:如果0z 为)(z f 的m 阶极点,则)]()[(lim !11]),([Re 01100z f z z dzd m z z f s m m m z z --=---)(. 2. 函数在无穷远点的留数定理 1 如果)(z f 在扩充复平面上只有有限个孤立奇点(包括无穷远点在内)为∞,,,21n z z z ,则)(z f 在各点的留数总和为零.关于在无穷远点的留数计算,我们有以下的规则.法则 4: 211Re [,]Re [(),0]s f z s f z z∞=-⋅(). 例 1 求函数2()1ize f z z=+在奇点处的留数. 解 ()f z 有两个一阶极点z i =±,于是根据(6.5)得2()Re (,)()22i P i e is f i Q i i e===-'2()Re (,)()22i P i e is f i e Q i i ---==='--例 2 求函数3cos ()zf z z=在奇点处的留数. 解 ()f z 有一个三阶极点0z =,故由(6.7)得33001cos 11Re (,0)lim()lim(cos )222z z z s f z z z →→''=⋅=-=-四. 留数定理在定积分中的应用利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分.1. 形如()20cos ,sin f x x dx π⎰型的积分这里()cos ,sin f x x 表示cos ,sin x x 的有理函数,并且在[]0,2π上连续,把握此类积分要注意,第一:积分上下限之差为2π,这样当作定积分时x 从0经历变到2π,对应的复变函数积分正好沿闭曲线绕行一周.第二:被积函数是以正弦和余弦函数为自变量。
第四章 留数定理及其应用 重点难点第一节 留数定理1.留数定义的由来:若函数在单连通区域D 中解析,在D 中作一围线C ,如果在围线C 的内部,)(z f 是解析的,则由柯西定理可知0)(=∫Cdz z f ;如果在围线C 的内部,a z =是)(z f 的奇点,则)(Re 2)(a sf i dz z f Cπ=∫,即留下了一个有限数,因而可把 )(Re a sf 称为留数(留数也可等于零)。
2.留数计算公式:在奇点a 邻域中展成的洛朗级数中1()z a −−项的系数1−c 就是留数Re ()sf a ,这是求留数的一般方法。
但是,在某些情况下,有更简便的方法。
例如,若a 是)(z f 的m 阶极点,则111Re ()[()()](1)!m m z a m d s f a f z z a m dz −=−=−−又如,当a 是函数的可去奇点时,由于此时洛朗级数中不含负幂项,于是留数等于零。
3. 讨论解析函数在无限远点的留数时,要注意:函数在无限远点的留数定义中围线的方向是顺时针转向的。
第二节 留数定理的应用1.应用留数定理计算实变函数的积分是复变函数留数理论的一个重要应用,找到适当的闭合回路或变换是这种方法的关键。
2.若函数在单连(通)区域D 中解析,在D 中作一围线C ,如果在围线C 的内部,)(z f 是解析的,则由柯西定理可知0)(=∫Cdz z f ,如果在围线C 的内部,a z =是)(z f 的奇点,则)(Re 2)(a sf i dz z f Cπ=∫,即留下了一个有限数,因而可把)(Re a sf 称为留数(留数也可等于零)。
通过柯西公式和柯西导数公式可导出一阶极点和m 阶极点的留数计算公式。
3. 应用级数分析留数定理。
在奇点k a 邻域中展成的洛朗级数中1)(−−k a z 项的系数1−c 就是留数)(Re k a sf 。
当k a 是函数的本性奇点时,一般只能用洛朗级数展开方法来求留数;当k a 是函数的极点时,也可用这种方法来求取留数;当k a 是函数的可去奇点时,由于此时洛朗级数中不含负幂项,于是留数等于零。