留数定理
- 格式:ppt
- 大小:516.50 KB
- 文档页数:10
留数定理公式总结留数定理是复变函数论中的一个重要定理,在数学分析和工程技术等领域都有着广泛的应用。
咱们先来瞅瞅留数定理的公式到底是啥样的。
留数定理表述为:设函数$f(z)$在区域$D$内除有限个孤立奇点$z_1,z_2,\cdots,z_n$外处处解析,$C$是$D$内包围诸奇点的一条正向简单闭曲线,那$f(z)$沿$C$的积分就等于$2\pi i$乘以$f(z)$在$C$内各奇点的留数之和,即:$\oint_C f(z)dz = 2\pi i \sum_{k = 1}^{n}Res[f,z_k]$这里的$Res[f,z_k]$表示$f(z)$在奇点$z_k$处的留数。
那留数又咋算呢?对于孤立奇点$z_0$,如果它是可去奇点,那留数为$0$;如果是$m$阶极点,就有公式$Res[f,z_0] = \frac{1}{(m -1)!}\lim_{z \to z_0}\frac{d^{m - 1}}{dz^{m - 1}}[(z - z_0)^mf(z)]$。
咱们通过一个具体例子来感受一下留数定理的魅力。
比如说,计算积分$\int_{|z| = 2} \frac{e^z}{z(z - 1)}dz$。
首先得找出被积函数的奇点,很明显,$z = 0$和$z = 1$是奇点。
对于$z = 0$,它是一阶极点,$Res[f,0] = \lim_{z \to 0} z\frac{e^z}{z(z - 1)} = -1$;对于$z = 1$,也是一阶极点,$Res[f,1] = \lim_{z \to 1} (z - 1)\frac{e^z}{z(z - 1)} = e$。
然后根据留数定理,原积分就等于$2\pi i (-1 + e)$。
留数定理在解决一些复杂的积分问题时特别有用。
比如说,计算一些实函数在无穷区间上的积分,通过巧妙地构造复变函数和积分路径,然后利用留数定理就能轻松搞定。
我记得有一次给学生们讲留数定理的应用,有个学生就特别迷糊,怎么都搞不明白。
留数定理编辑讨论3 上传视频本词条由“科普中国”科学百科词条编写与应用工作项目审核。
在复分析中,留数定理是用来计算解析函数沿着闭曲线的路径积分的一个有力的工具,也可以用来计算实函数的积分。
它是柯西积分定理和柯西积分公式的推广。
[1]中文名留数定理外文名Residue theorem别称柯西留数定理应用学科工程学、数学适用领域范围工学相关术语解析函数目录1 定律定义2 推导过程3 相关术语定律定义编辑假设U是复平面上的一个单连通开子集,,是复平面上有限个点,是定义在U\{ }的全纯函数。
如果γ是一条把包围起来的可求长曲线,但不经过任何一个,并且其起点与终点重合,那么:如果γ是若尔当曲线,那么I(γ,ak)=1, 因此:在这里,Res(f, ak)表示f在点ak的留数,I(γ, ak)表示γ关于点ak 的卷绕数[2] 。
卷绕数是一个整数,它描述了曲线γ绕过点ak的次数。
如果γ依逆时针方向绕着ak移动,卷绕数就是一个正数,如果γ根本不绕过ak,卷绕数就是零。
推导过程编辑以下的积分在计算柯西分布的特征函数时会出现,用初等的微积分是不可能把它计算出来的。
我们把这个积分表示成一个路径积分的极限,积分路径为沿着实直线从−a到a,然后再依逆时针方向沿着以0为中心的半圆从a到−a。
取a为大于1,使得虚数单位i包围在曲线里面。
路径积分为:由于eitz是一个整函数(没有任何奇点),这个函数仅当分母z2 + 1为零时才具有奇点。
由于z2 + 1 = (z + i)(z − i),因此这个函数在z = i或z = −i时具有奇点。
这两个点只有一个在路径所包围的区域中。
由于f(z)是f(z)在z = i的留数是:根据留数定理,我们有:路径C可以分为一个“直”的部分和一个曲线弧,使得:因此如果t> 0,那么当半圆的半径趋于无穷大时,沿半圆路径的积分趋于零:因此,如果t> 0,那么:类似地,如果曲线是绕过−i而不是i,那么可以证明如果t< 0,则因此我们有:(如果t= 0,这个积分就可以很快用初等方法算出来,它的值为π。
04_留数定理04_留数定理,又称为四象限定理,是数学中一个重要的结论。
这个定理的本意是说,如果在一个坐标系中有n 个不同的数,那么在这n个数中至少有四个数会具有相同的余数。
04_留数定理的定义:设a1,a2,...,an是不同的正整数,m是正整数,则必有四个数ai,aj,ak,al满足ai mod m=aj mod m= ak mod m= al mod m。
04_留数定理推导:这个定理可以用反证法来证明。
假设有n个正整数a1,a2,...,an,其中有m个不同的余数,即有m种形式:ai mod m=0, ai mod m=1, ai modm=2,..., ai mod m=m-1。
令A={ai|ai mod m=0}, B={ai|ai mod m=1},C={ai|ai mod m=2}, ..., D={ai|ai mod m=m-1},则A,B,C,...,D是n个正整数的一个划分。
由于n>m,所以至少有一个集合包含至少两个数,假设A包含至少两个数,即ai mod m=aj mod m=0,则ai mod m=ak mod m=al mod m,即得证。
04_留数定理的应用:1、留数定理在抽样调查中有着广泛的应用。
例如,当希望从一个总体中进行抽样时,可以使用留数定理来实现随机抽样,从而减少样本选择的随机性。
2、留数定理在有线电视信号中也有应用。
有线电视信号是通过在一个坐标系中将图像的N个像素点的坐标转换成多个余数来表示的,其中N是像素点的数量。
因此,通过使用留数定理,可以减少由于信号传输的原因而导致的图像像素混乱的情况。
3、留数定理还可以用来加速数据处理的速度。
当需要处理大量数据时,可以将这些数据按照其余数分成多个组,这样可以减少处理时间。
第五章 留 数 第一节 一般理论1、留数定理:设函数f (z )在点0z 解析。
作圆r z z C =-|:|0,使f (z )在以它为边界的闭圆盘上解析,那么根据柯西定理,积分⎰C dz z f )(等于零。
设函数f (z )在区域R z z <-<||00内解析。
选取r ,使0<r<R ,并且作圆r z z C =-|:|0,那么如果f (z )在0z 也解析,则上面的积分也等于零;如果0z 是f (z )的孤立奇点,则上述积分就不一定等于零;这时,我们把积分⎰Cdz z f i )(21π 定义为f (z )在孤立奇点0z 的留数,记作),(Res 0z f ,这里积分是沿着C 按反时针方向取的。
注解1、我们定义的留数),(Res 0z f 与圆C 的半径r 无关:事实上,在R z z <-<||00内,f (z )有洛朗展式:∑+∞-∞=-=n n n z z z f )()(0α,而且这一展式在C 上一致收敛。
逐项积分,我们有,2)()(10-+∞-∞==-=∑⎰⎰απαi dz z z dz z f n C n n C因此,10),(Res -=αz f 。
注解2、即f (z )在孤立奇点0z 的留数等于其洛朗级数展式中1z z -的系数。
注解3、如果0z 是f (z )的可去奇点,那么.0),(Res 0=z f定理1.1(留数定理)设D 是在复平面上的一个有界区域,其边界是一条或有限条简单闭曲线C 。
设f (z )在D 内除去有孤立奇点n z z z ,...,,21外,在每一点都解析,并且它在C 上每一点都解析,那么我们有:),,(Res 2)(1k nk C z f i dz z f ∑⎰==π这里沿C 的积分按关于区域D 的正向取的。
证明:以D 内每一个孤立奇点k z 为心,作圆k γ,使以它为边界的闭圆盘上每一点都在D 内,并且使任意两个这样的闭圆盘彼此无公共点。