2019年全国各地中考数学试题分类汇编(第三期)专题40动态问题(含解析)
- 格式:pdf
- 大小:610.62 KB
- 文档页数:16
数学精品复习资料分式与分式方程一、选择题1. (2014•四川巴中,第4题3分)要使式子有意义,则m 的取值范围是( ) A .m >﹣1B . m ≥﹣1C . m >﹣1且m ≠1D . m ≥﹣1且m ≠1考点:二次根式及分式的意义.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围. 解答:根据题意得:,解得:m ≥﹣1且m ≠1.故选D .点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 2. (2014•山东潍坊,第5题3分)若代数式2)3(1-+x x 有意义,则实数x 的取值范围是( ) A.x ≥一1 B .x ≥一1且x ≠3 C .x >-l D .x >-1且x ≠3 考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.解答:根据题意得:⎩⎨⎧≠-≥+0301x x 解得x ≥-1且x ≠3.故选B .点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 3.(2014山东济南,第7题,3分)化简211mm m m -÷- 的结果是 A .m B .m 1 C .1-m D .11-m 【解析】m m m m m m m m m =-⨯-=-÷-111122,故选 A .4. (2014•浙江杭州,第7题,3分)若(+)•w=1,则w=( )W==0÷(﹣÷•,==C==由题意得,=.分)分式)))【分析】二、填空题1. (2014•上海,第8题4分)函数y=的定义域是x≠1.2. (2014•四川巴中,第12题3分)若分式方程﹣=2有增根,则这个增根是.考点:分式方程的增根.分析:分式方程变形后,去分母转化为整式方程,根据分式方程有增根,得到x﹣1=0,求出x的值,代入整式方程即可求出m的值.解答:根据分式方程有增根,得到x﹣1=0,即x=1,则方程的增根为x=1.故答案为:x=1 点评:此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.3. (2014•山东烟台,第14题3分)在函数中,自变量x的取值范围是.考点:二次根式及分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4.(2014•湖南怀化,第12题,3分)分式方程=的解为x=1.5. (2014山东济南,第19题,3分)若代数式21-x 和123+x 的值相等,则=x . 【解析】解方程12321+=-x x ,的7=x ,应填7. 6.(2014•遵义13.(4分))计算:+的结果是 ﹣1 .==.7. (2014•年山东东营,第15题4分)如果实数x ,y 满足方程组,那么代数式(+2)÷的值为 1 .考点: 分式的化简求值;解二元一次方程组. 专题: 计算题.分析: 原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程组的解得到x 与y 的值,代入计算即可求出值. 解答: 解:原式=•(x+y )=xy+2x+2y ,方程组,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1. 故答案为:1点评: 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.8. (2014•江苏盐城,第13题3分)化简:﹣= 1 .9.(2014•四川宜宾,第10题,3分)分式方程﹣=1的解是x=﹣1.5 .10.(2014•四川南充,第11题,3分)分式方程=0的解是.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:x+1+2=0,解得:x=﹣3经检验x=﹣3是分式方程的解.故答案为:x=﹣3点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.(2014•四川凉山州,第25题,5分)关于x的方程=﹣1的解是正数,则a的取值范围是a>﹣1 .解:=12.(2014•四川内江,第22题,6分)已知+=3,则代数式的值为﹣.=3+13.(2014•甘肃白银、临夏,第12题4分)化简:=.+﹣14.(2014•广州,第13题3分)代数式有意义时,应满足的条件为______.【考点】分式成立的意义,绝对值的考察【分析】由题意知分母不能为0,即,则【答案】三、解答题1. (2014•上海,第20题10分)解方程:﹣=.2. (2014•四川巴中,第23题5分)先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.考点:分式的化简,一元二次的解法,分式的意义.分析:通分相加,因式分解后将除法转化为乘法,再将方程的解代入化简后的分式解答.解答:原式=÷=÷=•=﹣,解方程x2﹣4x+3=0得,(x﹣1)(x﹣3)=0,x1=1,x2=3.当x=1时,原式无意义;当x=3时,原式=﹣=﹣.点评:本题综合考查了分式的混合运算及因式分解同时考查了一元二次方程的解法.在代入求值时,要使分式的值有意义.3. (2014•山东威海,第21题9分)端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子由题意得,+=260则买甲粽子为:个,乙粽子为:4. (2014•山东枣庄,第19题4分)(2)化简:(﹣)÷.•(. 5. (2014•山东烟台,第19题6分)先化简,再求值:÷(x ﹣),其中x 为数据0,﹣1,﹣3,1,2的极差.考点:分式的化简,极差.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出数据的极差确定出x ,代入计算即可求出值. 解答:原式=÷=•=,当x =2﹣(﹣3)=5时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.6. (2014•山东烟台,第23题8分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A 型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A 型车每辆售价多少元?(用列方程的方法解答)(2)该车计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多? A ,B考点:分式方程的应用,一次函数的应用.分析: (1)设今年A 型车每辆售价x 元,则去年售价每辆为(x +400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A 行车a 辆,则B 型车(60﹣x )辆,获利y 元,由条件表示出y 与a 之间的关系式,由a 的取值范围就可以求出y 的最大值. 解答:(1)设今年A 型车每辆售价x 元,则去年售价每辆为(x +400)元,由题意,得,解得:x =1600.经检验,x =1600是元方程的根.答:今年A 型车每辆售价1600元;(2)设今年新进A行车a辆,则B型车(60﹣x)辆,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.点评:本题考查了列分式方程解实际问题的运,分式方程的解法的运用,一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.7.(2014•湖南张家界,第18题,6分)先化简,再求值:(1﹣)+,其中a=.÷•,时,原式.8.(2014•湖南张家界,第22题,8分)国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?×,9. (2014•江西抚州,第16题,5分)先化简:34211x xxx x---÷--(),再任选一个你喜欢的数x代入求值.解析:原式=x x x xx x x⎛⎫----⎪---⎝⎭2341112=x x xx x-+-⋅--244112=()xx--222=x-2取x=10代入,原式=8(注:x不能取1和2)10.(2014•山东聊城,第18题,7分)解分式方程:+=﹣1.11. (2014年贵州黔东南18.(8分))先化简,再求值:÷﹣,其中x=﹣4.考点:分式的化简求值.专题:计算题.分析:原式第一项利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•﹣=﹣=,当x=﹣4时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.12.(2014•十堰17.(6分))化简:(x2﹣2x)÷.•完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?+=114.(2014•娄底21.(8分))先化简÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.=÷=•=15.(2014•娄底24.(8分))娄底到长沙的距离约为180km ,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答) (2)当小刘出发时,求小张离长沙还有多远? ﹣=116. (2014年湖北咸宁17.(8分))(1)计算:(﹣2)2+4×2﹣1﹣|﹣8|; (2)化简:﹣.考点: 实数的运算;分式的加减法;负整数指数幂.分析: (1)本题涉及负整指数幂、乘方、绝对值化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据分式的性质,可化成同分母的分式,根据分式的加减,可得答案. 解答: 解:(1)原式=4+2﹣8=﹣2;(2)原式=.点评: 本题考查了实数的运算,本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.17. ( ( 2014年河南) 16.8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中x -1解:原式=()()()2x 1x 12x x 1x x 1x+-++÷-…………………4分 =()2x 1xx x 1++ =1x 1+…………………………………………………………………6分当x -1时,原式=2……………………………8分18.(2014•江苏苏州,第21题5分)先化简,再求值:,其中.统一为乘法运算,注意化简后,将解:÷()÷×,=19.(2014•江苏苏州,第22题6分)解分式方程:+=3.20. (2014•山东淄博,第18题5分)计算:•.考点:分式的乘除法.专题:计算题.分析:原式约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.21. (2014•江苏徐州,第24题8分)几个小伙伴打算去音乐厅观看演出,他们准备用360元购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.考点:分式方程的应用.分析:设票价为x元,根据图中所给的信息可得小伙伴的人数为:,根据小伙伴的人数不变,列方程求解.解答:解:设票价为x元,由题意得,=+2,解得:x=60,则小伙伴的人数为:=8.答:小伙伴们的人数为8人.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.22. (2014•江苏盐城,第19题4分)(2)解方程:=.23. (2014•年山东东营,第23题8分)为顺利通过“国家文明城市”验收,东营市政府拟对称取部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.考点:一次函数的应用;分式方程的应用.分析:(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.解答:解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)方案一:由甲工程队单独完成需要4.5×15=67.5万元;方案二:由乙工程队单独完成需要2.5×30=75万元;方案三:由甲乙两队合作完成4.5×10+2.5×10=70万元.所以选择甲工程队,既能按时完工,又能使工程费用最少.点评:本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24. (2014•江苏徐州,第19题5分)(2)计算:(a+)÷(1+).考点:分式的混合运算.专题:计算题.分析:(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(2)原式=÷=•=a﹣1.点评:此题考查了分式的混合运算,熟练掌握运算法则解本题的关键.25.(2014•四川遂宁,第18题,7分)先化简,再求值:(+)÷,其中x=﹣1.•=•,﹣.26.(2014•四川宜宾,第17题,10分)(1)计算:|﹣2|﹣(﹣)0+()﹣1(2)化简:(﹣)•.•••27.(2014•四川凉山州,第19题,6分)先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.÷•= 28.(2014•四川泸州,第18题,6分)计算(﹣)÷.﹣•﹣)•,.普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?30、(2014•广州,第22题12分)从广州某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【考点】行程问题的应用【分析】路程=速度×时间,分式方程的实际应用考察【解析】(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米)(2)设普通列车的平均速度为千米/时,则高铁平均速度为千米/时.依题意有:可得:答:高铁平均速度为2.5×120=300千米/时.31.(2014•广东梅州,第20题8分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?﹣×0.25≤8。
2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积一、选择题1.(2019年山东省青岛市)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【考点】切线的性质、等腰直角三角形的判定和性质、弧长的计算【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.2.(2019年山东省枣庄市)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A .8﹣πB .16﹣2πC .8﹣2πD .8﹣π【考点】正方形的性质、扇形的面积【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π, 故选:C .3. (2019年云南省)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A.48πB.45πC.36πD.32π【考点】圆锥的全面积【解答】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴ ππ82=r ,∴4=r ,圆锥的全面积等于πππππ4832162=+=+=+r rl S S 底侧, 故选A4. (2019年浙江省温州市)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A .πB .2πC .3πD .6π【考点】弧长公式计算.【解答】解:该扇形的弧长==3π. 故选:C .5. (2019年湖北省荆州市)如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在上的点D 处,且l :l =1:3(l 表示的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【考点】圆锥的侧面积【解答】解:连接OD 交OC 于M .由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.6. (2019年西藏)如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm【考点】圆锥的侧面积【解答】解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=45cm,∴弧CD的长==30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故选:A.二、填空题1.(2019年重庆市)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)【考点】扇形面积公式、菱形的性质【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.2. (2019年山东省滨州市)若正六边形的内切圆半径为2,则其外接圆半径为.【考点】正多边形和圆、等边三角形的判定与性质、三角函数【解答】解:如图,连接OA、OB,作OG⊥AB于G;则OG=2,∵六边形ABCDEF正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OA===,∴正六边形的内切圆半径为2,则其外接圆半径为.故答案为:.3. (2019年山东省青岛市)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.【考点】正多边形和圆、圆周角定理【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.4. (2019年广西贵港市)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.【考点】圆锥面积公式【解答】解:连接AB ,过O 作OM ⊥AB 于M ,∵∠AOB=120°,OA=OB ,∴∠BAO=30°,AM=, ∴OA=2,∵=2πr , ∴r=故答案是:5. (2019年广西贺州市)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.【考点】圆锥面积公式【解答】解:设圆锥的母线为a ,根据勾股定理得,a =4,设圆锥的侧面展开图的圆心角度数为n °,根据题意得2π•1=,解得n =90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.6. (2019年江苏省泰州市)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为 cm .【考点】扇形弧长公式【解答】∵l=180R n π=1806120⨯π=4π, ∴4π×3=12π. 故答案为:12π.7.(2019年江苏省无锡市)已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm .【考点】圆锥侧面积【解答】圆锥底面圆的半径r=15π÷5π=3.8. (2019年江苏省扬州市)如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=__15_。
函数与一次函数一.选择题1.(2019•浙江绍兴•4分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1 B.0 C.3 D.4【分析】利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a,10)代入解析式即可;【解答】解:设经过(1,4),(2,7)两点的直线解析式为y=kx+b,∴∴,∴y=3x+1,将点(a,10)代入解析式,则a=3;故选:C.【点评】本题考查一次函数上点的特点;熟练待定系数法求函数解析式是解题的关键.2. (2019•湖南邵阳•3分)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y2【分析】根据两函数图象平行k相同,以及向下平移减即可判断.【解答】解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.3. (2019•湖南岳阳•3分)函数y=中,自变量x的取值范围是()A.x≠0 B.x>﹣2 C.x>0 D.x≥﹣2且x≠0 【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:,解得:x≥﹣2且x≠0.故选:D.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(2019•浙江衢州•3分)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E 出发,沿E→A→D→C移动至终点C,设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A B C D【答案】C【考点】动点问题的函数图象【解析】【解答】解:①当点P在AE上时,∵正方形边长为4,E为AB中点,∴AE=2,∵P点经过的路径长为x,∴PE=x,∴y=S△CPE= ·PE·BC= ×x×4=2x,②当点P在AD上时,∵正方形边长为4,E为AB中点,∴AE=2,∵P点经过的路径长为x,∴AP=x-2,DP=6-x,∴y=S△CPE=S正方形ABCD-S△BEC-S△APE-S△PDC,=4×4- ×2×4- ×2×(x-2)- ×4×(6-x),=16-4-x+2-12+2x,=x+2,③当点P在DC上时,∵正方形边长为4,E为AB中点,∴AE=2,∵P点经过的路径长为x,∴PD=x-6,PC=10-x,∴y=S△CPE= ·PC·BC= ×(10-x)×4=-2x+20,综上所述:y与x的函数表达式为:y= .故答案为:C.【分析】结合题意分情况讨论:①当点P在AE上时,②当点P在AD上时,③当点P在DC上时,根据三角形面积公式即可得出每段的y与x的函数表达式.5. (2019•山东省聊城市•3分)某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来搅收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A.9:15 B.9:20 C.9:25 D.9:30【考点】一次函数的应用【分析】分别求出甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数关系式,求出两条直线的交点坐标即可.【解答】解:设甲仓库的快件数量y(件)与时间x(分)之间的函数关系式为:y1=k1x+40,根据题意得60k1+40=400,解得k1=6,∴y1=6x+40;设乙仓库的快件数量y(件)与时间x(分)之间的函数关系式为:y2=k2x+240,根据题意得60k2+240=0,解得k2=﹣4,∴y2=﹣4x+240,联立,解得,∴此刻的时间为9:20.故选:B.【点评】本题考查了一次函数的应用,解题的关键:(1)熟练运用待定系数法就解析式;(2)解决该类问题应结合图形,理解图形中点的坐标代表的意义.6. (2019•江苏苏州•3分)若一次函数y kx b=+(k bk≠)的图像经过点、为常数,且0()11,,()B,,则不等式101A-+>的解为()kx bA.0x>x< D.1 x<B.0x>C.1【分析】考察一次函数的图像与不等式的关系,中等偏易题型【解答】如下图图像,易得1x>kx b+>时,1故选Dx7. (2019•湖北武汉•3分)“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t 表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示y 与x 的对应关系的是( )A .B .C .D .【分析】根据题意,可知y 随的增大而减小,符合一次函数图象,从而可以解答本题.【解答】解:∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,t 表示漏水时间,y 表示壶底到水面的高度,∴y 随t 的增大而减小,符合一次函数图象,故选:A .【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.8.(2019,山东枣庄,3分)如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过点P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是( )A.y=﹣x+4 B.y=x+4 C.y=x+8 D.y=﹣x+8【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据围成的矩形的周长为8,可得到x、y之间的关系式.【解答】解:如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D.C,设P点坐标为(x,y),∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为8,∴2(x+y)=8,∴x+y=4,即该直线的函数表达式是y=﹣x+4,故选:A.【点评】本题主要考查矩形的性质及一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.根据坐标的意义得出x、y之间的关系是解题的关键.9 (2019•湖北孝感•3分)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是()A.B.C.D.【分析】根据实际问题结合四个选项确定正确的答案即可.【解答】解:∵从某时刻开始4min内只进水不出水,容器内存水8L;∴此时容器内的水量随时间的增加而增加,∵随后的8min内既进水又出水,容器内存水12L,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选:A.【点评】本题考查了函数的图象的知识,解题的关键是能够将实际问题与函数的图象有机的结合起来,难度不大.10 (2019•湖南衡阳•3分)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1 B.﹣1<x<0C.x<﹣1或0<x<2 D.﹣1<x<0或x>2【分析】根据一次函数图象在反比例函数图象上方的x的取值范围便是不等式kx+b>的解集.【解答】解:由函数图象可知,当一次函数y1=kx+b(k≠0)的图象在反比例函数y2=(m为常数且m≠0)的图象上方时,x的取值范围是:x<﹣1或0<x<2,∴不等式kx+b>的解集是x<﹣1或0<x<2故选:C.【点评】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集.利用数形结合是解题的关键.11.(2019▪广西河池▪3分)函数y=x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据k>0确定一次函数经过第一三象限,根据b<0确定与y轴负半轴相交,从而判断得解.【解答】解:一次函数y=x﹣2,∵k=1>0,∴函数图象经过第一三象限,∵b=﹣2<0,∴函数图象与y轴负半轴相交,∴函数图象经过第一三四象限,不经过第二象限.故选:B.【点评】本题考查了一次函数的性质,对于一次函数y=kx+b,k>0,函数经过第一、三象限,k<0,函数经过第二、四象限.12.(2019▪广西河池▪3分)如图,△ABC为等边三角形,点P从A出发,沿A→B→C→A作匀速运动,则线段AP的长度y与运动时间x之间的函数关系大致是()A.B.C.D.【分析】根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B符合题意,选项A不合题意.【解答】解:根据题意得,点P从点A运动到点B时以及从点C运动到点A时是一条线段,故选项C与选项D不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,∴选项B符合题意,选项A不合题意.故选:B.【点评】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.13.(2109▪贵州毕节▪3分)已知一次函数y=kx+b(k,b为常数,k≠0)的图象经过一、三、四象限,则下列结论正确的是()A.kb>0 B.kb<0 C.k+b>0 D.k+b<0【分析】根据一次函数经过一、三、四象限,可知k>0,b<0,即可求得答案;【解答】解:=kx+b的图象经过一、三、四象限,∴k>0,b<0,∴kb<0;故选:B.【点评】本题考查一次函数的图象及性质;熟练掌握函数图象及性质是解题的关键.14. (2019•甘肃武威•3分)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP 的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A.3 B.4 C.5 D.6【分析】当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP 面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.【解答】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.【点评】本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.15 (2019•山东省聊城市•3分)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)【考点】直线的解析式【分析】根据已知条件得到AB=OB=4,∠AOB=45°,求得BC=3,OD=BD=2,得到D(0,2),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),求得直线EC的解析式为y=x+2,解方程组即可得到结论.【解答】解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(0,2),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),故选:C.【点评】本题考查了轴对称﹣最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.二.填空题1(2019▪贵州黔东▪3分)如图所示,一次函数y=ax+b(A.b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为x<4.【分析】由于一次函数y=ax+b(A.b为常数,且a>0)的图象经过点A(4,1),再根据图象得出函数的增减性,即可求出不等式ax+b<1的解集.【解答】解:函数y=ax+b的图象如图所示,图象经过点A(4,1),且函数值y随x的增大而增大,故不等式ax+b<1的解集是x<4.故答案为:x<4.【点评】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.2.(2019▪黑龙江哈尔滨▪3分)在函数y=中,自变量x的取值范围是x≠.【分析】函数中分母不为零是函数y=有意义的条件,因此2x﹣3≠0即可;【解答】解:函数y=中分母2x﹣3≠0,∴x≠;故答案为x≠;【点评】本题考查函数自变量的取值范围;熟练掌握函数中自变量的取值范围的求法是解题的关键.3(2019▪广西河池▪3分)如图,在平面直角坐标系中,A(2,0),B(0,1),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是y=2x﹣4.【分析】过点C作CD⊥x轴于点D,易知△ACD≌△BAO(AAS),已知A(2,0),B (0,1),从而求得点C坐标,设直线AC的解析式为y=kx+b,将点A,点C坐标代入求得k和b,从而得解.【解答】解:∵A(2,0),B(0,1)∴OA=2,OB=1过点C作CD⊥x轴于点D,则易知△ACD≌△BAO(AAS)∴AD=OB=1,CD=OA=2∴C(3,2)设直线AC的解析式为y=kx+b,将点A,点C坐标代入得∴∴直线AC的解析式为y=2x﹣4.故答案为:y=2x﹣4.【点评】本题是几何图形旋转与待定系数法求一次函数解析式的综合题,难度中等.4(2019•浙江金华•4分)元朝朱世杰的《算学启蒙》一书记载:“今有良马目行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之,”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是________ .15.【答案】(32,4800)【考点】一次函数与一元一次方程的综合应用【解析】【解答】解:设良马追及x日,依题可得:150×12+150x=240x,解得:x=20,∴240×20=4800,∴P点横坐标为:20+12=32,∴P(32,4800),故答案为:(32,4800).【分析】设良马追及x日,根据两种马所走的路程相同列出方程150×12+150x=240x,解之得x=20,从而可得路程为4800,根据题意得P点横坐标为:20+12=32,从而可得P点坐标.5. (2019•湖南长沙•3分)如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2MA.其中正确的结论的序号是①③④.(只填序号)【分析】①设点A(m,),M(n,),构建一次函数求出C,D坐标,利用三角形的面积公式计算即可判断.②△OMA不一定是等边三角形,故结论不一定成立.③设M(1,k),由△OAM为等边三角形,推出OA=OM=AM,可得1+k2=m2+,推出m=k,根据OM=AM,构建方程求出k即可判断.④如图,作MK∥OD交OA于K.利用平行线分线段成比例定理解决问题即可.【解答】解:①设点A(m,),M(n,),则直线AC的解析式为y=﹣x++,∴C(m+n,0),D(0,),∴S△ODM=n×=,S△OCA=(m+n)×=,∴△ODM与△OCA的面积相等,故①正确;∵反比例函数与正比例函数关于原点对称,∴O是AB的中点,∵BM⊥AM,∴OM=OA,∴k=mn,∴A(m,n),M(n,m),∴AM=(n﹣m),OM=,∴AM不一定等于OM,∴∠BAM不一定是60°,∴∠MBA不一定是30°.故②错误,∵M点的横坐标为1,∴可以假设M(1,k),∵△OAM为等边三角形,∴OA=OM=AM,1+k2=m2+,∴m=k,∵OM=AM,∴(1﹣m)2+=1+k2,∴k2﹣4k+1=0,∴k=2,∵m>1,∴k=2+,故③正确,如图,作MK∥OD交OA于K.∵OF∥MK,∴==,∴=,∵OA=OB,∴=,∴=,∵KM∥OD,∴==2,∴DM=2AM,故④正确.故答案为①③④.【点评】本题考查反比例函数与一次函数的交点问题,三角形的面积,平行线分线段成比例定理等知识,解题的关键是学会利用参数解决问题,学会构造平行线,利用平行线分线段成比例定理解决问题,属于中考填空题中的压轴题.6..(2019,四川成都,4分)已知一次函数1)3(+-=x k y 的图象经过第一、二、四象限,则k 的取值范围是 .【解析】此题考察的是一次函数的图象,当函数斜率大于0式,函数图像过第一、第四象限,当函数中的常数项为正的时候过第四象限,所以k -3<0,所以k <3.7.(2019,四川巴中,4分)函数y =的自变量x 的取值范围 x ≥1,且x ≠3 .【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x ﹣1≥0;根据分式有意义的条件,x ﹣3≠0,则函数的自变量x 取值范围就可以求出. 【解答】解:根据题意得:解得x ≥1,且x ≠3,即:自变量x 取值范围是x ≥1,且x ≠3.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数8. (2019甘肃省天水市)(4分)函数y=中,自变量x的取值范围是______.答案】x≥2【解析】解:依题意,得x-2≥0,解得:x≥2,故答案为:x≥2.根据二次根式的性质,被开方数大于等于0,就可以求解.本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.9. (2019•湖南衡阳•3分)在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为(﹣1010,10102).【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.【解答】解:∵A点坐标为(1,1),∴直线OA为y=x,A1(﹣1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解得或,∴A2(2,4),∴A3(﹣2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解得或,∴A4(3,9),∴A5(﹣3,9)…,∴A2019(﹣1010,10102),故答案为(﹣1010,10102).【点评】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.10. (2019•山东省滨州市•5分)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为x>3.【考点】一次函数与一元一次不等式的关系【分析】根据直线y=kx+b(k<0)经过点A(3,1),正比例函数y=x也经过点A从而确定不等式的解集.【解答】解:∵正比例函数y=x也经过点A,∴kx+b<x的解集为x>3,故答案为:x>3.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.11. (2019•山东省德州市•4分)在下列函数图象上任取不同两点P1(x1,y1)、P2(x2,y2),一定能使<0成立的是()A.y=3x﹣1(x<0)B.y=﹣x2+2x﹣1(x>0)C.y=﹣(x>0)D.y=x2﹣4x﹣1(x<0)【考点】函数的增减性【分析】根据各函数的增减性依次进行判断即可.【解答】解:A.∵k=3>0∴y随x的增大而增大,即当x1>x2时,必有y1>y2∴当x<0时,>0,故A选项不符合;B.∵对称轴为直线x=1,∴当0<x<1时y随x的增大而增大,当x>1时y随x的增大而减小,∴当0<x<1时:当x1>x2时,必有y1>y2此时>0,故B选项不符合;C.当x>0时,y随x的增大而增大,即当x1>x2时,必有y1>y2此时>0,故C选项不符合;D.∵对称轴为直线x=2,∴当x<0时y随x的增大而减小,即当x1>x2时,必有y1<y2此时<0,故D选项符合;故选:D.【点评】本题主要考查了一次函数、反比例函数和二次函数的图象和性质,需要结合图象去一一分析,有点难度.三.解答题1. (2019甘肃省天水市)(4分)如图,一次函数y=kx+b与反比例函数y=的图象交于A(m,4)、B(2,n)两点,与坐标轴分别交于M、N两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b->0中x的取值范围;(3)求△AOB的面积.【答案】解:(1)∵点A在反比例函数y=上,∴=4,解得m=1,∴点A的坐标为(1,4),又∵点B也在反比例函数y=上,∴=n,解得n=2,∴点B的坐标为(2,2),又∵点A.B在y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=-2x+6.(2)根据图象得:kx+b->0时,x的取值范围为x<0或1<x<2;(3)∵直线y=-2x+6与x轴的交点为N,∴点N的坐标为(3,0),S△AOB=S△AON-S△BON=×3×4-×3×2=3.【解析】(1)将点A.点B的坐标分别代入解析式即可求出m、n的值,从而求出两点坐标;(2)根据题意,结合图象确定出x的范围即可;(3)将△AOB的面积转化为S△AON-S△BON的面积即可.此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.2.(2019•浙江绍兴•8分)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.【分析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y关于x的函数表达式,再把x=180代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【解答】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:千米;(2)设y=kx+b(k≠0),把点(150,35),(200,10)代入,得,∴,∴y=﹣0.5x+110,当x=180时,y=﹣0.5×180+110=20,答:当150≤x≤200时,函数表达式为y=﹣0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【点评】本题考查了一次函数的应用,解题的关键:(1)熟练运用待定系数法就解析式;(2)找出剩余油量相同时行驶的距离.本题属于基础题,难度不大,解决该类问题应结合图形,理解图形中点的坐标代表的意义.3(2019•浙江衢州•10分)定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x= ,y= ,那么称点T是点A,B的融合点。
2019年全国各省市中考数学真题(函解析)2019年福建省中考数学试卷4A . 72 X 10 5B . 7.2X 10 - c -6C. 7.2X10 6D. 0.72X 10(4分)下列图形中,一定既是轴对称图形又是中心对称图形的是(C. 8(4分)如图是某班甲、乙、丙三位同学最近 5次数学成绩及其所在班级相应平均分的折线统方t 图,则下列判断错误的是(」丁宇成般分104-A .甲的数学成绩高于班级平均分,且成绩比较稳定 B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高、选择题(每小题4分共40分)(4分)计算22+ (-1)0的结果是(A. 5C. 3D. 22. (4分)北京故宫的占地面积约为720000m 2将720000用科学记数法表示为( 3. A.等边三角形B.直角三角形C.平行四边形D.正方形4. (4分)如图是由一个长方体和一个球组成的几何体,它的主视图是5. (4分)已知正多边形的一个外角为D.36。
,则该正多边形的边数为(D.6. A .C.70审 丙■班氢用均D.就甲、乙、丙三个人而言,乙的数学成绩最不稳10. (4 分)若二次函数 y= |a|x 2+bx+c 的图象经过 A (m,n )、B (0,y 1)、C (3-m,n )、D(N''2,y 2)、E (2,y 3),则y 1、y 2、y 3的大小关系是( )A . y 1V y 2〈y 3B . y 1V y 3〈y 2C. y 3V y 2〈y 1D. y 2V y 3〈y 1二、填空题(每小题 4分共24分)2 -11. (4分)因式分解:x -9 =.12.(4分)如图,数轴上A 、B 两点所表示的数分别是- 4和2,点C 是线段AB 的中点,则点C 所表示的数是.AC Bt I n副 〉-4213. (4分)某校征集校运会会徽 ,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有2000人,根据所学的统7. (4分)下列运算正确的是( A. a?a 3=a 3 B.(2a) 3= 6a 3 8. C. a 6+a 3=a 2D.(4分)《增删算法统宗》记载:“有个学生资性好 (a 2) 3- (- a3) 2=0,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧前一天的两倍,问他每天各读多少个字?已知,三天读完一部《孟子》,每天阅读的字数是 《孟子》一书共有34685个字,设他第一天读x 个字,则下面所列方程正确的是(A . x+2x+4x= 34685C. x+2x+2x= 34685B. x+2x+3x= 346859.4分)如图,PA 、PB 是。
函数与一次函数一、选择题1. ( 2018•安徽省,第9题4分)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P的位置分两种情况讨论.2. ( 2018•福建泉州,第7题3分)在同一平面直角坐标系中,函数y=mx+m 与y=(m ≠0)的图象可能是( )By=3. (2018•广西贺州,第10题3分)已知二次函数y=ax 2+bx+c (a ,b ,c 是常数,且a ≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是( )A .B .C .D .考点: 二次函数的图象;一次函数的图象;反比例函数的图象.分析: 先根据二次函数的图象得到a >0,b <0,c <0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答: 解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx+的图象过第二、三、四象限,反比例函数y=分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.4. ( 2018•广西贺州,第14题3分)已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1<y2(填“>”或“<”或“=”).考点:一次函数图象上点的坐标特征.分析:直接把P1(1,y1),P2(2,y2)代入正比例函数y=x,求出y1,y2)的值,再比较出其大小即可.解答:解:∵P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,∴y1=,y2=×2=,∵<,∴y1<y2.故答案为:<.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5. ( 2018•广西玉林市、防城港市,第12题3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()B×1×,,高为()×,6.(2019年四川资阳,第5题3分)一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.分析:先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.解答:解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过一、二、四象限,∴图象不经过第三象限.故选C.点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过二、四象限,当b>0时,函数图象与y轴相交于正半轴.7.(2018•温州,第7题4分)一次函数y=2x+4的图象与y轴交点的坐标是()8.(2019年广东汕尾,第8题4分)汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.分析:汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程增加变快.据此即可选择.解:由题意知,前1小时路程随时间增大而增大,1小时后路程增加变快.故选:C.点评:本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.9.(2019年广东汕尾,第10题4分)已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限,进而求解即可.解:∵k+b=﹣5,kb=6,∴k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.故选A.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.10.(2018•毕节地区,第14题3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()≥m=的坐标为(.11.(2018•邵阳,第10题3分)已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()12.(2018•四川自贡,第9题4分)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()B13.(2018•德州,第8题3分)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()=(千米14.(2018•济宁,第4题3分)函数y=中的自变量x的取值范围是()1.(2019年四川资阳,第13题3分)函数y=1+中自变量x的取值范围是.考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x+3≥0,解得x≥﹣3.故答案为:x≥﹣3.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.(2019年云南省,第11题3分)写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式).考点:正比例函数的性质.专题:开放型.分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.解答:解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x.故答案为:y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.3.(2018•舟山,第15题4分)过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).依据与直线,x+4.(2018•武汉,第14题3分)一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为 2200 米.解得:5.(2018•武汉,第18题6分)已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.≥6.(2018•孝感,第13题3分)函数的自变量x的取值范围为x≠1.7.(2018•孝感,第11题3分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()8.(2018•四川自贡,第15题4分)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是2或﹣7 .,解得,,解得,与时间t(分)的函数图象,则小明回家的速度是每分钟步行▲ 米.【答案】80.【解析】10. (2018•益阳,第12题,4分)小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是80 米/分钟.(第1题图)1112222,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于 4 .+12. (2018•泰州,第10题,3分)将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=3x+2 .三.解答题1. ( 2018•安徽省,第20题10分)2019年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2019年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2019年处理的这两种垃圾数量与2019年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2019年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2019年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2019年该企业最少需要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设该企业2019年处理的餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2019年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2019年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得.答:该企业2019年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2019年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,根据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2019年该企业最少需要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;2. ( 2018•福建泉州,第24题9分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2= 40 米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?;时,两遥控车的信号不会产生相互干扰;1≤或时,两遥控车的信号不会产生相互干扰.3. ( 2018•广东,第23题9分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.解答:解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得(x+4)=|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).点评:本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.4. ( 2018•珠海,第16题7分)为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?5. ( 2018•珠海,第19题7分)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边在AD 在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.的图象过点,,,解得.y=,解得6.(2019年四川资阳,第20题8分)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?考点:反比例函数与一次函数的交点问题.分析:(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.解答:解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.7.(2019年天津市,第23题10分)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.5 2 3.5 4 …付款金额/元7.5 10 16 18 …(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.考点:一次函数的应用;一元一次方程的应用.分析:(1)根据单价乘以数量,可得答案;(2)根据单价乘以数量,可得价格,可得相应的函数解析式;(3)根据函数值,可得相应的自变量的值.解答:解:(Ⅰ)10,8;(Ⅱ)根据题意得,当0≤x≤2时,种子的价格为5元/千克,∴y=5x,当x>2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,∴y=5×2+4(x﹣2)=4x+2,y关于x的函数解析式为y=;(Ⅲ)∵30>2,∴一次性购买种子超过2千克,∴4x+2=30.解得x=7,答:他购买种子的数量是7千克.点评:本题考查了一次函数的应用,分类讨论是解题关键.8.(2019年天津市,第25题10分)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.考点:一次函数综合题.分析:(Ⅰ)①利用待定系数法求得直线OF与EA的直线方程,然后联立方程组,求得该方程组的解即为点P的坐标;②由已知可设点F的坐标是(1,t).求得直线OF、EA的解析式分别是y=tx、直线EA的解析式为:y=(2+t)x ﹣2(2+t).则tx=(2+t)x﹣2(2+t),整理后即可得到y关于x的函数关系式y=x2﹣2x;(Ⅱ)同(Ⅰ),易求P(2﹣,2t﹣).则由PQ⊥l于点Q,得点Q(1,2t﹣),则OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,所以1+t2(2﹣)2=(1﹣)2,化简得到:t(t﹣2m)(t2﹣2mt﹣1)=0,通过解该方程可以求得m与t的关系式.解答:解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+dy(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有 y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得 x=2﹣.有 y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得 t(t﹣2m)(t2﹣2mt﹣1)=0.又t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得 m=或m=.则m=或m=即为所求.点评:本题考查了一次函数的综合题型.涉及到了待定系数法求一次函数解析式,一次函数与直线的交点问题.此题难度不大,掌握好两直线间的交点的求法和待定系数法求一次函数解析式就能解答本题.9.(2018•新疆,第22题11分)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B 地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站飞路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距420 千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?,,解得,x=答:客、货两车经过10.(2018•新疆,第23题12分)如图,直线y=﹣x+8与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).(1)写出A,B两点的坐标;(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大?(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.,则﹣x+8=0=)×(×2×(﹣<﹣;OAB==,t=,=,t=的值为,=,(2×)×,的坐标为()秒时,以点的坐标为()11.(2019年云南省,第23题9分)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC 相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.考点:圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.专题:综合题;存在型;分类讨论.分析:(1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值.解答:解:(1)过点P作PH∥OA,交OC于点H,如图1所示.∵PH∥OA,∴△CHP∽△COA.∴==.∵点P是AC中点,∴CP=CA.∴HP=OA,CH=CO.∵A(3,0)、C(0,4),∴OA=3,OC=4.∴HP=,CH=2.∴OH=2.∵PH ∥OA ,∠COA =90°, ∴∠CHP =∠COA =90°. ∴点P 的坐标为(,2). 设直线DP 的解析式为y=kx+b ,∵D (0,﹣5),P (,2)在直线DP 上,∴∴∴直线DP 的解析式为y=x ﹣5.(2)①若△DOM ∽△ABC ,图2(1)所示, ∵△DOM ∽△ABC ,∴=.∵点B 坐标为(3,4),点D 的坐标为(0.﹣5), ∴BC=3,AB=4,OD=5.∴=. ∴OM=.∵点M 在x 轴的正半轴上, ∴点M 的坐标为(,0)②若△DOM ∽△CBA ,如图2(2)所示, ∵△DOM ∽△CBA ,∴=.∵BC=3,AB=4,OD=5,∴=. ∴OM=.∵点M 在x 轴的正半轴上, ∴点M 的坐标为(,0).综上所述:若△DOM 与△CBA 相似,则点M 的坐标为(,0)或(,0).(3)∵OA=3,OC=4,∠AOC=90°,∴AC=5.∴PE=PF=AC=.∵DE、DF都与⊙P相切,∴DE=DF,∠DEP=∠DFP=90°.∴S△PED=S△PFD.∴S四边形DEPF=2S△PED=2×PE•DE=PE•DE=DE.∵∠DEP=90°,∴DE2=DP2﹣PE2.=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE取到最小值,四边形DEPF的面积最小.∵DP⊥AC,∴∠DPC=90°.∴∠AOC=∠DPC.∵∠OCA=∠PCD,∠AOC=∠DPC,∴△AOC∽△DPC.∴=.∵AO=3,AC=5,DC=4﹣(﹣5)=9,∴=.∴DP=.∴DE2=DP2﹣=()2﹣=.∴DE=,∴S四边形DEPF=DE=.∴四边形DEPF面积的最小值为.点评:本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似”与“△DOM∽△ABC“之间的区别.12.(2019年广东汕尾,第18题7分)已知反比例函数y=的图象经过点M(2,1)(1)求该函数的表达式;(2)当2<x<4时,求y的取值范围(直接写出结果).分析:(1)利用待定系数法把(2,1)代入反比例函数y=中可得k的值,进而得到解析式;(2)根据y=可得x=,再根据条件2<x<4可得2<<4,再解不等式即可.解:(1)∵反比例函数y=的图象经过点M(2,1),∴k=2×1=2,∴该函数的表达式为y=;(2)∵y=,∴x=,∵2<x<4,∴2<<4,解得:<y<1.点评:此题主要考查了待定系数法求反比例函数解析式,以及反比例函数的性质,关键是正确确定函数解析式.13.(2018•四川自贡,第22题12分)如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.)代入,,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.15.(2018•浙江湖州,第20题分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.分析:(1)根据待定系数法,可得答案;(2)根据三角形的面积公式,可得答案.解:(1)把A(2,5)分别代入y=和y=x+b,得,解得k=10b=3;(2)作AC⊥x轴与点C,,由(1)得直线AB的解析式为y=x+3,∴点B的坐标为(﹣3,0),OB=3,点A的坐标是(2,5),∴AC=5,∴=5=.点评:本题考查了反比例函数与一次函数的交点问题,利用了待定系数法,三角形的面积公式.16.(2018•浙江湖州,第22题分)已知某市2019年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2019年10月份的水费为620元,求该企业2019年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2019年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2019年收费标准收取水费外,超过80吨部分每吨另加收元,若某企业2019年3月份的水费和污水处理费共600元,求这个企业该月的用水量.分析:(1)设y关于x的函数关系式y=kx+b,代入(50,200)、(60,260)两点求得解析式即可;(2)把y=620代入(1)求得答案即可;(3)利用水费+污水处理费=600元,列出方程解决问题,解答:解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴解得∴y关于x的函数关系式是y=6x﹣100;(2)由图可知,当y=620时,x>50∴6x﹣100=620,解得x=120.答:该企业2019年10月份的用水量为120吨.(3)由题意得6x﹣100+(x﹣80)=600,化简得x2+40x﹣14000=0解得:x1=100,x2=﹣140(不合题意,舍去).答:这个企业2019年3月份的用水量是100吨.点评:此题考查一次函数的运用,一元二次方程和一元一次方程的运用,注意理解题意,结合图象,根据实际选择合理的方法解答.17. (2018•湘潭,第24题)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.x+318. (2018•株洲,第24题,10分)已知抛物线y=x2﹣(k+2)x+和直线y=(k+1)x+(k+1)2.(1)求证:无论k取何实数值,抛物线总与x轴有两个不同的交点;(2)抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,求x1•x2•x3的最大值;(3)如果抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,直线AD交直线CE于点G(如图),且CA•GE=CG•AB,求抛物线的解析式.(第2题图)﹣4×1×=,,﹣4×1×,=),;,,,x+=0到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?(第3题图)考点:一次函数的解析式的运用,一元一次方程的运用分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解答:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.20. (2018•泰州,第24题,10分)某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B 两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?(第4题图)(1000=。
2019年全国各地中考数学解析汇编40 开放探索型问题12. (2018山东日照,12,3分)如图,在斜边长为1的等腰直角三角形OAB 中,作内接正方形A 1B 1C 1D 1;在等腰直角三角形OA 1B 1中,作内接正方形A 2B 2C 2D 2;在等腰直角三角形OA 2B 2中,作内接正方形A 3B 3C 3D 3;……;依次作下去,则第n 个正方形A n B n C n D n 的边长是( )A.131-n B.n31 C.131+n D.231+n 解析:设正方形A 1B 1C 1D 1的边长为x ,则AC 1= C 1D 1= D 1 B =x,故3x=1,x=31;同理,正方形A 2B 2C 2D 2的边长为231,……,故可猜想第n 个正方形A n B n C n D n 的边长是n 31.解答:选B .点评:本题是规律探究性问题,解题时先从较简单的特例入手,从中探究出规律,再用得到的规律解答问题即可.本题考查了等腰直角三角形的性质以及学生分析问题的能力.解题的关键是求正方形A 1B 1C 1D 1的边长.(2018河北省25,10分)25、(本小题满分10分)如图14,A (-5,0),B(-3,0),点C 在y 轴的正半轴上,∠CBO=45°,CD ∥AB ,∠CDA=90°,点P 从点Q (4,0)出发,沿x 轴向左以每秒1个单位的速度运动,运动时间为t 秒 (1)求点C 的坐标;(2)当∠BCP= 15°时,求t 的值;(3)以点P 为圆心,PC 为半径的⊙P 随点P 的运动而变化,当⊙P 与四边形ABCD 的边(或边所在直线)相切时,求t 的值。
【解析】在直角三角形BCO 中,∠CBO=45°OB=3,可得OC=3,因此点C 的坐标为(0,3);(2)∠BCP= 15°,只是提及到了角的大小,没有说明点P 的位置,因此分两种情况考虑:点P 在点B 的左侧和右侧;(3)⊙O A 1B 1C 1 1ABA 2B 2C 2D 2P 与四边形ABCD 的边(或边所在直线)相切,而四边形有四条边,肯定不能与AO 相切,所以要分三种情况考虑。
知识点03 实数的运算(含二次根式 特殊角的三角函数)一、选择题 1.(2019·温州)计算:(-3)×5的结果是 ( )A .-15B .15C .-2D .25.(2019·嘉兴) 如图是一个2×2的方阵,其中每行、每列的两数和相等,则a 可以是( )A .tan60°B .﹣1C .0D .120191.(2019·杭州)计算下列各式,值最小的是( )A .2×0+1-9B .2+0×1-9C .2+0-1×9D .2+0+1-91.(2019·烟台)8-的立方根是( ).A .2B .2-C .2±D .- 8. (2019·威海)3)0-1-⎛ ⎝⎭的结果是( )A .1+B . 1+ D .1+ 3.(2019·盐城)若有意义,则x 的取值范围是( ) A .x≥2 B.x≥-2 C.x>2 D.x>-2 4.(2019·山西)下列二次根式是最简二次根式的是( )2. (2019·广元)函数y 的自变量x 的取值范围是( )A.x>1B.x<1C.x ≤1D.x ≥14.(2019·德州)下列运算正确的是() A .(-2a )2=-4a 2 B .(a +b )2=a 2+b 2C .(a 5)2=a 7D .(-a +2)(-a -2)=a 2-4 2.(2019·滨州)下列计算正确的是( ) A .x 2+x 3=x 5B .x 2·x 3=x 6C .x 3÷x 2=xD .(2x 2)3=6x 62. (2019·遂宁)下列等式成立的是( )B.23246)a b a b =( C.(2a 2 +a)+a=2a D. 5x 2y-2x 2y=3 3. (2019·广元)下列运算正确的是( ) A.5510a a a +=B.76a aa ?C.326a aa ?D.()236aa -=-8.(2019·常德)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…根据其中的规律可二、填空题7.(2019·泰州) 计算:(π-1)0=______.13.(2019·绍兴 )我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m 所表示的数是 .13.(2019·烟台)16245--⨯︒= .9.(2019·青岛) 计算-︒= . 13.(2019·德州)|x ﹣3|=3﹣x ,则x 的取值范围是 .13.(2019·滨州)计算:(-12)-2-=____________.9.(2019·黄冈)2+1的结果是 . 11.(2019·安徽) 计算18÷2的结果是 .1. (2019·滨州)计算:(-12)-2--2|+=____________.2. (2019·重庆B 卷)计算:()⎪⎭⎫ ⎝⎛-+-211013=3. (2019·重庆A 卷)计算:=+1-0213-)()(π . 三、解答题17.(2019浙江省温州市,17,10分)(本题满分10分)计算:(1)06(1(3)---;(1)计算:12)21()2(60sin 42----+︒-π17.(2019·盐城) 计算:|2|+(sin 360-12)tan 45013.(2019江西省,13,6分) (1)计算:0)22019(|2|)1(-+-+--;16.(2019·山西)(1)计算(2013tan 602π-⎛⎫--+ ⎪⎝⎭16.(2019·遂宁)计算()12-230cos 4-14.32-1-02-2019+︒-++π)()(19.(2019·娄底) 计算:)1112sin 602-⎛⎫-+-︒ ⎪⎝⎭。
统计一.选择题1.(2019安徽)某校九年级(1)班全体学生2019年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误..的是 A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分2.(2019广东)3. 一组数据2,6,5,2,4,则这组数据的中位数是 A.2 B.4 C.5 D.6 【答案】B.【解析】由小到大排列,得:2,2,4,5,6,所以,中位数为4,选B 。
3.(孝感)今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为 20 18 17 10 15 10,,,,,.对于这组数据,下列说法错误..的是 A .平均数是15 B .众数是10C .中位数是17D .方差是3444.(湖南常德)某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为2141.7S 甲=,2433.3S 乙=,则产量稳定,适合推广的品种为:A 、甲、乙均可B 、甲C 、乙D 、无法确定 【解答与分析】这是数据统计与分析中的方差意义的理解,平均数相同时,方差越小越稳定: 答案为B5.(衡阳)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( C ). A .50元,30元 B .50元,40元 C .50元,50元 D .55元,50元6. )(2019•益阳)某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动平均数为:=3.8星手机的销售情况四个同学得出的以下四个结论,其中正确的为A . 4月份三星手机销售额为65万元B . 4月份三星手机销售额比3月份有所上升C . 4月份三星手机销售额比3月份有所下降D . 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额8.(野西南州)已知一组数据:-3,6,2,-1,0,4,则这组数据的中位数是A .1B .34C .0D .2 9.二.填空题1.(2019•厦门)已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ).设这组数据的各数之和是s ,中位数是k ,则s = nk(用只含有k 的代数式表示).2.(2019•梅州)在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图.请根据相关信息,解答下列问题:(直接填写结果)各月手机销售总额统计图三星手机销售额占该手机店 当月手机销售总额的百分比统计图(1)这次调查获取的样本数据的众数是 ; (2)这次调查获取的样本数据的中位数是 ;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人.考点:条形统计图;用样本估计总体;中位数;众数.. 分析:(1)众数就是出现次数最多的数,据此即可判断; (2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解. 解答:解:(1)众数是:30元,故答案是:30元; (2)中位数是:50元,故答案是:50元; (3)调查的总人数是:6+12+10+8+4=40(人), 则估计本学期计划购买课外书花费50元的学生有:1000×=250(人).故答案是:250.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3.(汕尾)在“全民读书月活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图。
2019 年全国中考数学真题分类汇编:圆内有关性质一、选择题1.(2019 年ft东省滨州市)如图,AB 为⊙O 的直径,C,D 为⊙O 上两点,若∠BCD=40°,则∠ABD 的大小为()A.60°B.50°C.40°D.20°【考点】圆周角定理、直角三角形的性质【解答】解:连接AD,∵AB 为⊙O 的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.2.(2019 年ft东省德州市)如图,点O 为线段BC 的中点,点A,C,D 到点O 的距离相等,若∠ABC=40°,则∠ADC 的度数是()A. 130 ∘B. 140 ∘C. 150 ∘D. 160 ∘【考点】圆内接四边形的性质【解答】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD 为圆O 的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.3.(2019 年ft东省菏泽市)如图,AB 是⊙O 的直径,C,D 是⊙O 上的两点,且BC 平分∠ABD,AD 分别与BC,OC 相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD【考点】圆周角定理、垂径定理、等腰三角形的性质、平行线的性质、角平分线的性质【解答】解:∵AB 是⊙O 的直径,BC 平分∠ABD,∴∠ADB=90°,∠OBC=∠DBC,∴AD⊥BD,∵OB=OC,∴∠OCB=∠OBC,∴∠DBC=∠OCB,∴OC∥BD,选项A 成立;∴AD⊥OC,选项B 成立;∴AF=FD,选项D 成立;∵△CEF 和△BED 中,没有相等的边,∴△CEF 与△BED 不全等,选项C 不成立;故选:C.4.(2019 年四川省资阳市)如图,直径为2cm 的圆在直线l 上滚动一周,则圆所扫过的图形面积为()A.5πB.6πC.20πD.24π【考点】圆的面积、矩形的面积、圆的周长【解答】解:圆所扫过的图形面积=π+2π×2=5π,故选:A.2 3 ⏜ ⏜5. (2019 年广西贵港市)如图,AD 是⊙O 的直径,AB =CD ,若∠AOB =40°,则圆周角∠BPC 的度数是()A. 40 ∘B. 50 ∘C. 60 ∘D. 70 ∘【考点】圆周角定理【解答】解:∵=,∠AOB=40°,∴∠COD=∠AOB=40°,∵∠AOB+∠BOC+∠COD=180°,∴∠BOC=100°,∴∠BPC= ∠BOC=50°, 故选:B .6. (2019 年湖北省十堰市) 如图,四边形 ABCD 内接于⊙O ,AE ⊥CB 交 CB 的延长线于点 E ,若 BA 平分∠DBE ,AD =5,CE = 13,则AE =( ) A .3B .3C .4D .2【考点】圆内接四边形的性质、勾股定理【解答】解:连接 AC ,如图,∵BA 平分∠DBE ,∴∠1=∠2,∵∠1=∠CDA ,∠2=∠3,∴∠3=∠CDA ,∴AC =AD =5,∵AE ⊥CB ,3∴∠AEC=90°,= 52‒ ( 13)2=2 3.∴AE=故选:D.7.(2019 年陕西省)如图,AB 是⊙O 的直径,EF、EB 是⊙O 的弦,且EF=EB,EF 与AB 交于点C,连接OF.若∠AOF=40°,则∠F 的度数是()A.20°B.35°C.40°D.55°【考点】圆内有关性质【解答】连接FB,得到FOB=140°;∴∠FEB=70°∵EF=EB∴∠EFB=∠EBF∵FO=BO,∴∠OFB=∠OBF,∴∠EFO=∠EBO,∠F=35°8.(2019 年浙江省衢州市)一块圆形宣传标志牌如图所示,点A,B,C 在⊙O 上,CD 垂直平分AB 于点D,现测得AB=8dm,DC=2dm,则圆形标志牌的半径为()A.6dmB. 5dmC. 4dmD. 3dm【考点】垂径定理的应用【解答】解:连结OD,OA,如图,设半径为r,∵AB=8,CD⊥AB,∴AD=4,点O、D、C 三点共线,AC2 ‒C E2∵CD=2,∴OD=r-2,在Rt△ADO 中,∵AO2=AD2+OD2,,即r2=42+(r-2)2,解得:r=5,故答案为:B.9.(2019 年甘肃省天水市)如图,四边形ABCD 是菱形,⊙O 经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC 的度数为()A.20°B.25°C.30°D.35°【考点】菱形的性质,三角形的内角和,圆内接四边形的性质【解答】解:∵四边形ABCD 是菱形,∠D=80°,1 1∴∠ACB=2∠DCB=2(180°﹣∠D)=50°,∵四边形AECD 是圆内接四边形,∴∠AEB=∠D=80°,∴∠EAC=∠AEB﹣∠ACE=30°,故选:C.10.(2019 年甘肃省)如图,AB 是⊙O 的直径,点C、D 是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°【考点】圆周角定理【解答】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°.故选:C.11.(2019 年湖北省襄阳市)如图,AD 是⊙O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OP C.OB⊥AC D.AC 平分OB 【考点】圆内有关性质【解答】解:∵AD 为直径,∴∠ACD=90°,∵四边形OBCD 为平行四边形,∴CD∥OB,CD=OB,在Rt△ACD 中,sin A==,∴∠A=30°,在Rt△AOP 中,AP=OP,所以A 选项的结论错误;∵OP∥CD,CD⊥AC,∴OP⊥AC,所以C 选项的结论正确;∴AP=CP,∴OP 为△ACD 的中位线,∴CD=2OP,所以 B 选项的结论正确;∴OB=2OP,∴AC 平分OB,所以D 选项的结论正确.故选:A.12.(2019 年湖北省宜昌市)如图,点A,B,C 均在⊙O 上,当∠OBC=40°时,∠A 的度数是()A.50°B.55°C.60°D.65°【考点】圆周角定理【解答】解:∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=∠BOC=50°.故选:A.13.(2019 年甘肃省武威市)如图,点A,B,S 在圆上,若弦AB 的长度等于圆半径的倍,则∠ASB 的度数是()A.22.5°B.30°C.45°D.60°【考点】圆周角定理【解答】解:设圆心为O,连接OA、OB,如图,∵弦AB 的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB 为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.14.(2019 年内蒙古包头市)如图,在Rt△ABC 中,∠ACB=90°,AC=BC=2 ,以BC为直径作半圆,交AB 于点D,则阴影部分的面积是()A.π﹣1 B.4﹣πC.D.2【考点】圆周角定理【解答】解:连接CD,∵BC 是半圆的直径,∴CD⊥AB,∵在Rt△ABC 中,∠ACB=90°,AC=BC=2 ,∴△ACB 是等腰直角三角形,∴CD=BD,∴阴影部分的面积=×2 2 =2,故选:D.15.(2019 年内蒙古赤峰市)如图,AB 是⊙O 的弦,OC⊥AB 交⊙O 于点C,点D 是⊙O上一点,∠ADC=30°,则∠BOC 的度数为()A.30°B.40°C.50°D.60°【考点】圆内有关性质【解答】解:如图,∵∠ADC=30°,∴∠AOC=2∠ADC=60°.∵AB 是⊙O 的弦,OC⊥AB 交⊙O 于点C,∴=.∴∠AOC=∠BOC=60°.故选:D.16.(2019 年西藏)如图,在⊙O 中,半径OC 垂直弦AB 于D,点E 在⊙O 上,∠E=22.5°,AB=2,则半径OB 等于()A.1B.C.2 D.2【考点】勾股定理、垂径定理、圆周角定理【解答】解:∵半径OC⊥弦AB 于点D,∴=,∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB 是等腰直角三角形,∵AB=2,∴DB=OD=1,则半径OB 等于:=.故选:B.17.(2019 年海南省)如图,直线l1∥l2,点A 在直线l1 上,以点A 为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C 两点,连结AC、BC.若∠ABC=70°,则∠1 的大小为()A.20°B.35°C.40°D.70°【考点】圆内有关性质【解答】解:∵点A 为圆心,适当长度为半径画弧,分别交直线l1、l2 于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°,故选:C.二、填空题1.(2019 年ft东省德州市)如图,CD 为⊙O 的直径,弦AB⊥CD,垂足为⏜⏜E,= ,CE=1,AB=6,则弦AF 的长度为.【考点】圆周角、弧、弦的关系、垂径定理、勾股定理【解答】解:连接OA、OB,OB 交AF 于G,如图,∵AB⊥CD,1∴AE=BE=2AB=3,设⊙O 的半径为r,则OE=r-1,OA=r,在Rt△OAE 中,32+(r-1)2=r2,解得r=5,∵= ,∴OB⊥AF,AG=FG,在Rt△OAG 中,AG2+OG2=52,①在Rt△ABG 中,AG2+(5-OG)2=62,②24解由①②组成的方程组得到AG= 5 ,48 48∴AF=2AG= 5 .故答案为 5 .⏜2.(2019 年湖北省随州市)如图,点A,B,C 在⊙O 上,点C 在优弧AB上,若∠OBA=50°,则∠C 的度数为.【考点】圆周角定理【解答】解:∵OA=OB,∴∠OAB=∠OBA=50°,∴∠AOB=180°-50°-50°=80°,∴∠C=∠AOB=40°.故答案为40°.3.(2019 年黑龙江省伊春市)如图,在⊙O 中,半径OA 垂直于弦BC,点D 在圆上且∠ADC=30°,则∠AOB 的度数为.【考点】圆周角定理【解答】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.4.(2019 年江苏省泰州市)如图,⊙O 的半径为5,点P 在⊙O 上,点A 在⊙O 内,且AP=3,过点A 作AP 的垂线交于⊙O 点B、C.设PB=x,PC=y,则y 与x 的函数表达式为.【考点】圆周角定理、相似三角形的判定和性质【解答】如图,连接 PO 并延长交⊙O 于点N,连接 BN,∵PN 是直径,∴∠PBN=90°.∵AP⊥BC,∴∠PAC =90°,∴∠PBN=∠PAC,又∵∠PNB=∠PCA,∴△PBN∽△PAC,PB PN∴ PA = PC ,x 10∴ 3 = y30∴y= x .30故答案为:y= x .三、解答题1.(2019 年上海市)已知:如图,AB、AC 是⊙O 的两条弦,且AB=AC,D 是AO 延长线上一点,联结BD 并延长交⊙O 于点E,联结CD 并延长交⊙O 于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC 是菱形.【考点】圆内有关性质、相似三角形、菱形的判定【解答】证明:(1)如图1,连接BC,OB,OD,∵AB、AC 是⊙O 的两条弦,且AB=AC,∴A 在BC 的垂直平分线上,∵OB=OA=OD,∴O 在BC 的垂直平分线上,∴AO 垂直平分BC,C D E F O ∴BD =CD ;(2)如图 2,连接 OB ,∵AB 2=AO •AD ,=∴AOAB , ∵∠BAO =∠DAB ,∴△ABO ∽△ADB ,∴∠OBA =∠ADB ,∵OA =OB ,∴∠OBA =∠OAB ,∴∠OAB =∠BDA ,∴AB =BD ,∵AB =AC ,BD =CD ,∴AB =AC =BD =CD ,∴四边形 ABDC 是菱形.2. (2019 年江苏省苏州市)如图,AE 为 O 的直径,D 是弧 BC 的中点 BC 与 AD ,OD 分别交于点 E ,F .(1) 求证: DO ∥AC ;(2) 求证: DE ⋅ DA = DC 2 ;(3) 若 tan ∠CAD = 1,求sin ∠CDA 的值. 2A B【考点】圆内有关性质、相似三角形、锐角三角函数【解答】(1)证明:∵D 为弧 BC 的中点,OD 为 O 的半径∴ OD ⊥BC又∵AB 为 O 的直径∴ ∠ACB = 90︒∴ AC ∥OD(2) 证明:∵D 为弧 BC 的中点∴ CD = B D ∴ ∠DCB = ∠DAC∴ ∆DCE ∽∆DAC∴ DC = DE DA DC即 DE ⋅ DA = DC 2(3) 解:∵ ∆DCE ∽∆DAC , tan ∠CAD = 12∴ CD = DE = CE = 1 DA DC AC 2设 CD = 2a ,则 DE = a , DA = 4a又∵ AC ∥OD∴ ∆AEC ∽DEF∴ CE = AE = 3 EF DE所以 BC = 8 CE3又 AC = 2CE∴ AB = 10 CE3即sin ∠CDA = sin ∠CBA = CA = 3AB 53. (2019 年河南省)如图,在△ABC 中,BA =BC ,∠ABC =90°,以 AB 为直径的半圆 O 交AC 于点 D ,点 E 是上不与点 B ,D 重合的任意一点,连接 AE 交 BD 于点 F ,连接 BE 并延长交 AC 于点 G .(1) 求证:△ADF ≌△BDG ;(2) 填空: ①若 AB =4,且点 E 是的中点,则 DF 的长为 ; ②取的中点 H ,当∠EAB 的度数为 时,四边形 OBEH 为菱形.2【考点】圆的性质、垂径定理、等腰直角三角形的性质、菱形的性质、解直角三角形、特殊角的三角函数值【解答】解:(1)证明:如图 1,∵BA =BC ,∠ABC =90°,∴∠BAC =45°∵AB 是⊙O 的直径,∴∠ADB =∠AEB =90°,∴∠DAF +∠BGD =∠DBG +∠BGD =90°∴∠DAF =∠DBG∵∠ABD +∠BAC =90°∴∠ABD =∠BAC =45°∴AD =BD∴△ADF ≌△BDG (ASA );(2)①如图 2,过 F 作 FH ⊥AB 于 H ,∵点 E 是的中点,∴∠BAE =∠DAE∵FD ⊥AD ,FH ⊥AB∴FH =FD∵=sin ∠ABD =sin45°= ,∴ ,即 BF = FD ∵AB =4,∴BD =4cos45°=2,即 BF +FD =2 ,( +1)FD =2 ∴FD ==4﹣ 故答案为 .②连接 OE ,EH ,∵点 H 是的中点, ∴OH ⊥AE ,∵∠AEB=90°∴BE⊥AE∴BE∥OH∵四边形OBEH 为菱形,∴BE=OH=OB=AB∴sin∠EAB==∴∠EAB=30°.故答案为:30°4.(2019 年浙江省温州市)如图,在△ABC 中,∠BAC=90°,点E 在BC 边上,且CA=CE,过A,C,E 三点的⊙O 交AB 于另一点F,作直径AD,连结DE 并延长交AB 于点G,连结CD,CF.(1)求证:四边形DCFG 是平行四边形.(2)当BE=4,CD=AB 时,求⊙O 的直径长.【考点】三角形的外接圆与外心、平行四边形的判定和性质、勾股定理、圆周角定理【解答】(1)证明:连接AE,∵∠BAC=90°,∴CF 是⊙O 的直径,∵AC=EC,∴CF⊥AE,∵AD 是⊙O 的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD 是⊙O 的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG 是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF 中,AF=10,AC=6,∴CF==3 ,即⊙O 的直径长为3 .5.(2019 年湖北省宜昌市)已知:在矩形ABCD 中,E,F 分别是边AB,AD 上的点,过点F 作EF 的垂线交DC 于点H,以EF 为直径作半圆O.(1)填空:点A (填“在”或“不在”)⊙O 上;当=时,tan∠AEF 的值是;(2)如图1,在△EFH 中,当FE=FH 时,求证:AD=AE+DH;(3)如图2,当△EFH 的顶点F 是边AD 的中点时,求证:EH=AE+DH;(4)如图3,点M 在线段FH 的延长线上,若FM=FE,连接EM 交DC 于点N,连接FN,当AE=AD 时,FN=4,HN=3,求tan∠AEF 的值.【考点】圆的有关性质、全等三角形的判定和性质、相似三角形的判定和性质、三角函数【解答】解:(1)连接AO,∵∠EAF=90°,O 为EF 中点,∴AO=EF,∴点A 在⊙O 上,当=时,∠AEF=45°,∴tan∠AEF=tan45°=1,故答案为:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD 中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF 交HD 的延长线于点G,∵F 分别是边AD 上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FG,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M 作MQ⊥AD 于点Q.设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM 为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=EQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴,∵DC∥AB∥QM,∴,∴,∵FE=FM,∴,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴,∴.AC=2 ,弦BM 平分∠ABC 交AC 于点D,连接MA,MC.(1)求⊙O 半径的长;(2)求证:AB+BC=BM.【考点】圆内有关性质、全等三角形的判定和性质、等边三角形的判定和性质【解答】解:(1)连接OA、OC,过O 作OH⊥AC 于点H,如图1,∵∠ABC=120°,∴∠AMC=180°﹣∠ABC=60°,∴∠AOC=2∠AMC=120°,∴∠AOH=∠AOC=60°,∵AH=AC=,∴OA=,故⊙O 的半径为2.(2)证明:在BM 上截取BE=BC,连接CE,如图2,∵∠MBC=60°,BE=BC,∴△EBC 是等边三角形,∴CE=CB=BE,∠BCE=60°,∴∠BCD+∠DCE=60°,∵∠∠ACM=60°,∴∠ECM+∠DCE=60°,∴∠ECM=∠BCD,∵∠ABC=120°,BM 平分∠ABC,∴∠ABM=∠CBM=60°,∴∠CAM=∠CBM=60°,∠ACM=∠ABM=60°,∴△ACM 是等边三角形,∴AC=CM,∴△ACB≌△MCE,∴AB=ME,∵ME+EB=BM,∴AB+BC=BM.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
综合性问题一、选择题1. ( 2018•安徽省,第8题4分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4 D.5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△ABC中,根据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.2. ( 2018•福建泉州,第7题3分)在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()By=3. (2018•广西贺州,第10题3分)已知二次函数y=ax 2+bx+c (a ,b ,c 是常数,且a ≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是( )A .B .C .D .考点: 二次函数的图象;一次函数的图象;反比例函数的图象.分析: 先根据二次函数的图象得到a >0,b <0,c <0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答: 解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x=﹣>0,∴b <0,∵抛物线与y 轴的交点在x 轴下方, ∴c <0, ∴一次函数y=cx+的图象过第二、三、四象限,反比例函数y=分布在第二、四象限.故选B .点评: 本题考查了二次函数的图象:二次函数y=ax 2+bx+c (a 、b 、c 为常数,a ≠0)的图象为抛物线,当a >0,抛物线开口向上;当a <0,抛物线开口向下.对称轴为直线x=﹣;与y 轴的交点坐标为(0,c ).也考查了一次函数图象和反比例函数的图象.4.(2018•襄阳,第12题3分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()AB①每一条对角线都平分一组对角的平行四边形是菱形.②当m>0时,y=﹣mx+1与y=两个函数都是y随着x的增大而减小.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,,则D点坐标为(1,.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为.其中正确的命题有①(只需填正确命题的序号),,,错误,6.(3分)(2018•德州,第10题3分)下列命题中,真命题是()的图象上,若=4S的图象上,若S=4=9三.解答题1. ( 2018•安徽省,第23题14分)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB 交AF于M,作PN∥CD交DE于N.(1)①∠MPN= 60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.考点:四边形综合题.分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3A.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.2. ( 2018•福建泉州,第22题9分)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?OA B=,则,)﹣++OB=,,<﹣>﹣时,最小值时,>﹣时,时,取得最大值,3. ( 2018•福建泉州,第25题12分)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.(1)已知:DE∥AC,DF∥BC.①判断四边形DECF一定是什么形状?②裁剪当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;(2)折叠请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.AG==12AH=12==h ==6AH=124. ( 2018•珠海,第22题9分)如图,矩形OABC的顶点A(2,0)、C(0,2).将矩形OABC绕点O逆时针旋转30°.得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH.(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为:y=x2﹣x ;(2)如果四边形OHMN为平行四边形,求点D的坐标;(3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E两点之间(不含点R、E)运动,设△PQH的面积为s,当时,确定点Q的横坐标的取值范围.OF系式再代入,求解不等式即可.另要注意求解出结果后要考虑,,=3,=1(﹣,,x xOH=•,(﹣(﹣,,﹣x x,﹣<<①当﹣x+2=•(•(•[﹣﹣(﹣)]•[0﹣(﹣)x+x+2)﹣•(+﹣.,<﹣x,解得﹣<<<<<5. 2018•广西贺州,第26题12分)二次函数图象的顶点在原点O,经过点A(1,14);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.考点:二次函数综合题.专题:综合题.分析:(1)根据题意可设函数的解析式为y=ax2,将点A代入函数解析式,求出a的值,继而可求得二次函数的解析式;(2)过点P作PB⊥y轴于点B,利用勾股定理求出PF,表示出PM,可得PF=PM,∠PFM=∠PMF,结合平行线的性质,可得出结论;(3)首先可得∠FMH=30°,设点P的坐标为(x,14x2),根据PF=PM=FM,可得关于x的方程,求出x的值即可得出答案.解答:(1)解:∵二次函数图象的顶点在原点O,∴设二次函数的解析式为y=ax2,将点A(1,14)代入y=ax2得:a=14,∴二次函数的解析式为y=14x2;(2)证明:∵点P在抛物线y=14x2上,∴可设点P的坐标为(x,14x2),过点P作PB⊥y轴于点B,则BF=14x2﹣1,PB=x,∴Rt△BPF中,PF==14x2+1,∵PM⊥直线y=﹣1,∴PM=14x2+1,∴PF=PM,∴∠PFM=∠PMF,又∵PM∥x轴,∴∠MFH=∠PMF,∴∠PFM=∠MFH,∴FM平分∠OFP;(3)解:当△FPM是等边三角形时,∠PMF=60°,∴∠FMH=30°,在Rt△MFH中,MF=2FH=2×2=4,∵PF=PM=FM,∴14x2+1=4,解得:x=±2,∴14x2=14×12=3,∴满足条件的点P的坐标为(2,3)或(﹣2,3).点评:本题考查了二次函数的综合,涉及了待定系数法求函数解析式、角平分线的性质及直角三角形的性质,解答本题的关键是熟练基本知识,数形结合,将所学知识融会贯通.6. (2018•广西玉林市、防城港市,第26题12分)给定直线l:y=kx,抛物线C:y=ax2+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.①求此抛物线的解析式;②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.=0,所以可以再代回△=﹣x,),∴顶点(﹣,)在=1,∵△=∵△=,∴△=时,△==0时,△==﹣,﹣xOP==x7.(2019年广东汕尾,第25题10分)如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.分析:(1)令y=0,解方程x2﹣x﹣3=0可得到A点和D点坐标;令x=0,求出y=﹣3,可确定C点坐标;(2)根据抛物线的对称性,可知在在x轴下方对称轴右侧也存在这样的一个点;再根据三角形的等面积法,在x轴上方,存在两个点,这两个点分别到x轴的距离等于点C到x轴的距离;(3)根据梯形定义确定点P,如图所示:①若BC∥AP1,确定梯形ABCP1.此时P1与D点重合,即可求得点P1的坐标;②若AB∥CP2,确定梯形ABCP2.先求出直线CP2的解析式,再联立抛物线与直线解析式求出点P2的坐标.解:(1)∵y=x2﹣x﹣3,∴当y=0时,x2﹣x﹣3=0,解得x1=﹣2,x2=4.当x=0,y=﹣3.∴A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);(2)∵y=x2﹣x﹣3,∴对称轴为直线x==1.∵AD在x轴上,点M在抛物线上,∴当△MAD的面积与△CAD的面积相等时,分两种情况:①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,∵C点坐标为(0,﹣3),∴M点坐标为(2,﹣3);②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.当y=4时,x2﹣x﹣3=3,解得x1=1+,x2=1﹣,∴M点坐标为(1+,3)或(1﹣,3).综上所述,所求M点坐标为(2,﹣3)或(1+,3)或(1﹣,3);(3)结论:存在.如图所示,在抛物线上有两个点P满足题意:①若BC∥AP1,此时梯形为ABCP1.由点C关于抛物线对称轴的对称点为B,可知BC∥x轴,则P1与D点重合,∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四边形ABCP1为梯形;②若AB∥CP2,此时梯形为ABCP2.∵A点坐标为(4,0),B点坐标为(2,﹣3),∴直线AB的解析式为y=x﹣6,∴可设直线CP2的解析式为y=x+n,将C点坐标(0,﹣3)代入,得b=﹣3,∴直线CP2的解析式为y=x﹣3.∵点P2在抛物线y=x2﹣x﹣3上,∴x2﹣x﹣3=x﹣3,化简得:x2﹣6x=0,解得x1=0(舍去),x2=6,∴点P2横坐标为6,代入直线CP2解析式求得纵坐标为6,∴P2(6,6).∵AB∥CP2,AB≠CP2,∴四边形ABCP2为梯形.综上所述,在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(﹣2,0)或(6,6).点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线与坐标轴的交点坐标求法,三角形的面积,梯形的判定.综合性较强,有一定难度.运用数形结合、分类讨论及方程思想是解题的关键.8.(2018•毕节地区,第27题16分)如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线Ac的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求P点的坐标,若不存在,请说明理由.联立求出a=(点代入得出:解得:(解得:,解得:x+y=联立得:,解得:9.(2018•武汉,第25题12分)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点.(1)直线AB总经过一个定点C,请直接出点C坐标;(2)当k=﹣时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.,﹣解得:.,a a+3a+3aPQ PQPQ(﹣a+3a×(﹣,,m nm tn t=x kx+2k+4=.≤2.210.(2018•襄阳,第26题12分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q 为动点,设运动时间为t秒.(1)填空:点A坐标为(1,4);抛物线的解析式为y=﹣(x﹣1)2+4 .(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C 向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?(CE==5==,==,,解得,1+x=1+﹣)﹣(,FQ FQFQFQ×2(﹣(11.(2018•孝感,第22题10分)已知关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)试说明x1<0,x2<0;(3)若抛物线y=x2﹣(2k﹣3)x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OA•OB ﹣3,求k的值..)∵,经过点A、点B,与x轴交于点E、点F,且其顶点M在CD上.(1)请直接写出下列各点的坐标:A (0,3),B (4,3),C (4,﹣1),D (0,﹣1);(2)若点P是抛物线上一动点(点P不与点A、点B重合),过点P作y轴的平行线l与直线AB交于点G,与直线BD交于点H,如图2.①当线段PH=2GH时,求点P的坐标;②当点P在直线BD下方时,点K在直线BD上,且满足△KPH∽△AEF,求△KPH面积的最大值.②根据相似三角形的性质可得,解得,.∴当的最大值为13.(2018•邵阳,第26题10分)在平面直角坐标系xOy中,抛物线y=x2﹣(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,﹣1),求∠ACB的大小;(3)若m=2,△ABC是等腰三角形,求n的值.﹣(﹣,==,﹣(=,=|n|时,=时,=2;|n|=2n=2,﹣,﹣(1)阅读合作学习内容,请解答其中的问题.(2)小亮进一步研究四边形的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由. 【答案】(1)①()6y x >0x=;②()3,2 ;(2)这两个矩形不能全等,这两个矩形的相似比为56. 【解析】∴6n mm 23n⎧=⎪⎨⎪-=-⎩,解得m 3n 2=⎧⎨=⎩或m 2n 3=⎧⎨=⎩. ∴点F 的坐标为()3,2 .(2)这两个矩形不能全等,理由如下:设点F 的坐标为()m,n ,则AE m 2,AF 3n =-=- ,考点:1. 阅读理解型问题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.正方形的和矩形性质;5.全等、相似多边形的判定和性质;6.反证法的应用.15.(2018•四川自贡,第24题14分)如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.,AC=BC=2﹣GF=2)﹣x=,AD=﹣16.(2018•浙江湖州,第23题分)如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c (c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4)①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.分析:(1)①将抛物线上的点的坐标代入抛物线即可求出b、c的值;②求证AD=BO和AD∥BO即可判定四边形为平行四边形;(2)根据矩形的各角为90°可以求得△ABO∽△OBC即=,再根据勾股定理可得OC=BC,AC=OC,可求得横坐标为±c,纵坐标为C.解:(1)①∵AC∥x轴,A点坐标为(﹣4,4).∴点C的坐标是(0,4)把A、C代入y═﹣x2+bx+c得,得,解得;②四边形AOBD是平行四边形;理由如下:由①得抛物线的解析式为y═﹣x2﹣4x+4,∴顶点D的坐标为(﹣2,8),过D点作DE⊥AB于点E,则DE=OC=4,AE=2,∵AC=4,∴BC=AC=2,∴AE=BC.∵AC∥x轴,∴∠AED=∠BCO=90°,∴△AED≌△BCO,∴AD=BO.∠DAE=∠BCO,∴AD∥BO,∴四边形AOBD是平行四边形.(2)存在,点A的坐标可以是(﹣2,2)或(2,2)要使四边形AOBD是矩形;则需∠AOB=∠BCO=90°,∵∠ABO=∠OBC,∴△ABO∽△OBC,∴=,又∵AB=AC+BC=3BC,∴OB=BC,∴在Rt△OBC中,根据勾股定理可得:OC=BC,AC=OC,∵C点是抛物线与y轴交点,∴OC=c,∴A点坐标为(c,c),∴顶点横坐标=c,b=c,∵将A点代入可得c=﹣+c•c+c,∴横坐标为±c,纵坐标为c即可,令c=2,∴A点坐标可以为(2,2)或者(﹣2,2).点评:本题主要考查了二次函数对称轴顶点坐标的公式,以及函数与坐标轴交点坐标的求解方法.17.(2018•浙江湖州,第24题分)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.分析:(1)连接PM,PN,运用△PMF≌△PNE证明,(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解,(3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t.解答:证明:(1)如图,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN,∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE,在△PMF和△PNE中,,∴△PMF≌△PNE(ASA),∴PE=PF,(2)解:①当t>1时,点E在y轴的负半轴上,如图,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3)如图3,(Ⅰ)当1<t<2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=1﹣t,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,解得,t=,当△OEQ∽△MFP时,∴=,=,解得,t=,(Ⅱ)如图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=t﹣1,由(1)得△PMF≌△PNE ∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,无解,当△OEQ∽△MFP时,∴=,=,解得,t=2±,所以当t=,t=,t=2±时,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.点评:本题主要考查了圆的综合题,解题的关键是把圆的知识与全等三角形与相似三角形相结合找出线段关系.18. (2018•湘潭,第25题)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,(1)求证:△BDF∽△CEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.(第1题图)60°==60°=m﹣)×mm m﹣)×m.m m+2((+3<.(.,.=.=tan60°=x,.=..y=kx+4,(1)求二次函数解析式;(2)若=,求k;(3)若以BC为直径的圆经过原点,求k.(第2题图),且函数过()易得=横坐标的比为∴﹣=====x=,,∴4•,•+4••y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.(第3题图),解得AN=,即正方形的边长为.21.(2018•益阳,第21题,12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.(第4题图)≠且≠,再分两种情况讨论:①当(xx+,x x+)x)=2,AD=CE=2,在=,≠且≠,此时△•(•BH=BN=PB=xxMGN=xx x+,x+)x﹣x+•x x++取得最小值,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形ABC.(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).(第5题图)AB=.AC=AB=,××的面积为==PD=PM=DM=AM==.AM=BM=AB=AC=CM==.23. (2018•株洲,第24题,10分)已知抛物线y=x2﹣(k+2)x+和直线y=(k+1)x+(k+1)2.(1)求证:无论k取何实数值,抛物线总与x轴有两个不同的交点;(2)抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,求x1•x2•x3的最大值;(3)如果抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,直线AD交直线CE于点G(如图),且CA•GE=CG•AB,求抛物线的解析式.(第6题图)﹣4×1×=,,﹣4×1×,=),;,,。