3,分部积分法
- 格式:ppt
- 大小:74.52 KB
- 文档页数:11
积分的计算方法
1、凑微分法:把被积分式凑成某个函数的微分的积分方法。
2、换元法:包括整体换元,部分换元等等。
3、分部积分法:利用两个相加函数的微分公式,将所建议的分数转变为另外较为简
单的函数的分数。
4、有理函数积分法:有理函数是指由两个多项式函数的商所表示的函数,由多项式
的除法可知,假分式总能化为一个多项式与一个真分式之和。
分数公式法
直接利用积分公式求出不定积分。
换元积分法
换元积分法可分为第一类换元法与第二类换元法。
一、第一类换元法(即为兎微分法)
通过凑微分,最后依托于某个积分公式。
进而求得原不定积分。
二、备注:第二类换元法的转换式必须对称,并且在适当区间上就是单调的。
第二类换元法经常用于消去被积函数中的根式。
当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。
常用的换元手段有两种:
1、根式赋值法,
2、三角代换法。
在实际应用领域中,赋值法最常用的就是链式法则,而往往用此替代前面所说的换元。
链式法则就是一种最有效率的微分方法,自然也就是最有效率的分数方法。
分部积分法
分部积分法的实质就是:将所求分数化成两个分数之差,分数难者先分数,实际上就
是两次分数。
有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假
分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和,可见问题转化为
计算真分式的积分。
可以证明,任何真分式总能水解为部分分式之和。
第三节分部积分法问题∫=?dx xex解决思路利用两个函数乘积的求导法则.设函数)(x u u =和)(x v v =具有连续导数,(),v u v u uv ′+′=′(),v u uv v u ′−′=′,dx v u uv dx v u ∫∫′−=′.du v uv udv ∫∫−=分部积分公式)()()((x dv x u dx x v u ⋅=′∫∫分部积分法主要过程如下:∫dxx f )(所求积分∫∫−=)()()()()()(x du x v x v x u x dv x u ∫∫′−=dxx v x u x v x u dx x f )()()()()((3)计算新积分(2)分部积分公式(1)拆分被积表达式中, 如果某部分求导后能得到简化,可考虑选为u ,剩下的部分就是dv 。
范围:一般处理含有多种类型的混合函数。
关键:对被积表达式的适当拆分。
(求导数或微分)∫′⋅dx x v x u )()(旧积分∫′⋅⇒dxx u x v )()(新积分,)()(dx x u x du u ′=⇒)()(x v dx x v dv ⇒′=(求积分或凑微分)u.cos ∫xdx x 求解(1)令,x u =x d xdx dv sin cos ==∫xdx x cos ∫=udv ∫−=vdu uv ∫−=xdx x x sin sin xv dx du sin ,:==则.cos sin C x x x ++=例1解(2)令,cos x u=∫xdx x cos ∫+=xdx x x x sin 2cos 222显然,u,dv 选择不当,积分更难进行.22,sin :xv xdx du =−=则∫xdx x cos ∫−=vdu uv总结若被积函数是幂函数与正(余)弦函数或指数函数的乘积, 可考虑设幂函数为u例2求积分.2∫dx e x x解,2x u =,xxde dx e dv ==∫dx e x x 2∫−=dx xe e x x x 22.)(22C e xe e x xxx+−−=再次使用分部积分法,x u =dxe dv x =),2(xe v xdx du ==),(xe v dx du ==例3求积分.arctan ∫xdx x ∫⋅=xdx x arctan 原式)(arctan 2arctan 222x d xx x ∫−=dx xx x x 222112arctan 2+⋅−=∫dx x x x )111(21arctan 222+−⋅−=∫.)arctan (21arctan 22C x x x x +−−=u dv 2v u ⋅du v ⋅v 熟练以后的写法例4求积分.ln 3∫xdx x 解,ln x u =,443dv xd dx x ==∫xdx x ln 3∫−=x d x x x ln 41ln 4144.161ln 4144C x x x +−=总结若被积函数是幂函数与对数函数或反三角函数的乘积,就考虑设对数函数或反三角函数为.u∫−=dx x x x 3441ln 41例6求积分.sin ∫xdx e x解∫xdx exsin ∫=xxdesin ∫−=)(sin sin x d e x e x x ∫−=xdx e x e xxcos sin ∫−=xxxdex e cos sin ∫−−=)cos cos (sin x d e x e x e xx x ∫−−=xdx e x x e xx sin )cos (sin ∫∴xdx e xsin .)cos (sin 2C x x ex+−=注意循环形式)0,(.)(122>∈+=∫a N n dx a x I nn 求解利用分部积分公式得:时当,1>n ∫−+dx a x n 122)(1例7∫+−++=−dxa x xn a x x n n )()1(2)(222122∫+−+−++=−−dx a x a a x n a x x n n n ])()(1[)1(2)(222122122))(1(2)(211221n n n n I a I n a x x I −−++=∴−−−∫+=dx ax I 2211Q C ax a +=arctan 1])32()([)1(2111222−−−++−=∴n n n I n a x xn a I 的递推公式。
分部积分法
是微积分中的一类积分办法。
对于那些由两个不同函数组成的被积函数,不便于进行
换元的组合分成两部份进行积分,其原理是函数四则运算的求导法则的逆用。
定积分的分部积分法公式是(uv)'=u'v+uv',代入∫u'vdx=uv-∫uv'dx,得u'v=(uv)'-uv',即∫u'vdx=uv-∫uv'dx。
的定分数就是分数的一种,就是函数在区间上分数和的音速。
一个函数,可以存有不
定积分,而不存有的定分数;也可以存有的定分数,而不存有不定积分。
一个连续函数,
一定存有的定分数和不定积分;若只有非常有限个间断点,则的定分数存有;若存有弹跳
间断点,则原函数一定不存有,即为不定积分一定不存有。
分部积分,integral by parts,是适用于三种情况的积分方法: 1、可以逐步降低
幂次的积分例如:∫x?sinxdx = -∫x?dcosx = -x?cosx + 4∫x3cosxdx + c 这样一来,x 的幂次就降低了,以此类推,就积出来了。
2、可以将对数函数转化成代数函数的积分
例如:∫x3lnxdx = (1/4)∫lnxdx? = (1/4)x?lnx - (1/4)∫x3dx + c 这样一来,lnx
就消失了,就轻而易举地可以积出来了。
3、可以将积分过程当成解代数方程一样解的积
分例如∫(e^x)sinxdx∫(e^x)cosxdx∫(e^-2x)sin3xdx、∫(e^-4x)cosxdx。