分部积分方法及例题
- 格式:pdf
- 大小:1.20 MB
- 文档页数:48
第 4 章 不定积分分部积分法 习题解1.求以下不定积分: ⑴xsin xdx ;【解】被积函数为两不一样种类函数的乘积,能够考虑套用分部积分公式,应将乘积中的 sin x 作为先积分部份,得x sin xdxxd( cosx) ---- sin xdx cos x cxcosxcos xdx---- udv uvvduxcosx sin x c ----cosxdx sin x c⑵ arcsin xdx ; 【解】被积函数已经拥有udv 的构造,能够考虑直接套用分部积分公式,得arcsinxdx xarcsin xxd arcsin x----udv uvvdux arcsin x 1 dx---- 整理x1 x 2x arcsin x 11 d (1 x2 ) ---- d (1 x 2) 2xdx21 x 2x arcsin x 1 x 2 c⑶xln( x 1)dx ;【解】被积函数为两不一样种类函数的乘积,能够考虑套用分部积分公式,乘积中有不行独立积分的ln( x 1) ,则应将另一部份 x 作为先积分部份,得x ln( x 1)dxln( x 1)d 1 x 2----xdx 1 x 2 c221 x 2ln( x 1)1x 2d ln( x 1) ----udv uvvdu221 x2 ln( x 1) 1 x 2 1 dx---- 整理22 x 11 x2 ln( x 1) 1 ( x 1 1 )dx ---- 化假分式为多项式 +真分式 2 2 x 1 1x 2 ln( x 1) 1 ( 1 x 2 x ln x 1) c2 2 21 (x2 1)ln( x 1) 1x 2 1 x c 2 4 2⑷xe x dx;【解】被积函数为两不一样种类函数的乘积,能够考虑套用分部积分公式,应将乘积中的 e x作为先积分部份,得xe x dx xd ( e x ) ---- e x dx e x cxe x e x dx ---- udv uv vduxe x e x c ---- e x dx e x c( x 1)e x c⑸ e x cosxdx ;【解】被积函数为两不一样种类函数的乘积,能够考虑套用分部积分公式,【解法一】将乘积中的 e x作为先积分部份,得e x cosxdx cosxd( e x ) ---- e x dx e x ce x cosx e x d cosx ---- udv uv vdue x cosx e x sin xdx ---- d cos x sin xdxe x cosx sin xd( e x ) ---- e x dx e x ce x cosx [ e x sin x e x d sin x] ---- udv uv vdue x (sin x cos x) e x cosxdx ---- d sin x cosxdx即有e x cosex(sin x cos x) excosxdx xdx移项、整理得 2 e x cosxdx e x (sin x cosx) C1整理得积分结果 e x cosxdx 1 e x (sin x cosx) c2【解法二】将乘积中的cos x 作为先积分部份,得e x cosxdx e x d sin x ---- cosxdx sin x ce x sin x sin xde x ---- udv uv vdue x sin x ( e x )sin xdx ---- de x e x dxe x sin x e x d ( cosx)----sin xdxcosx c e x sin x e x ( cosx) ( cosx)de x ----udv uv vdue x (sin x cos x) (cosx)( e x )dx---- dexe x dxe x (sin x cos x)e x cosxdx----整理xcos xx即有exdx e (sin x cos x)ecosxdx将右侧的积分项移到左侧,整理得2 e x cos xdx e x (sin x cos x) 最后得积分结果e x cosxdx1 e x (sin x cosx) c2⑹x 2arctanxdx;【解】被积函数为两不一样种类函数的乘积,能够考虑套用分部积分公式,乘积中有不行独立积分的arctanx ,则应将另一部份 x 2 作为先积分部份,得x 2arctan xdx arctan xd 1x 3----x 2 dx 1 x 3 c33 1x 3arctanx 1x 3 d arctanx----udv uvvdu3 31 x 3 arctanx 1 x 3 1 12 dx---- d arctan x1 12 dx33 xx1x 3 arctanx 1 ( x1 x2 ) dx ---- 化假分式为多项式 +真分式3 3 x1x 3 arctanx 1 ( 1 x 21 x dx)----分别积分3 3 2x 21x 3 arctanx 1 [ 1 x 2 1 1 2 d (1 x 2 )]---- d (1 x 2) 2 xdx3 3 2 2 1 x1x 3arctanx 1 [ 1 x 2 1ln(1 x 2)] c ---- 1du ln uc 3 3 2 2u1x 3arctanx 1 x 2 1ln(1 x 2 ) c----整理3 6 6⑺ x cos xdx ;2【解】被积函数为两不一样种类函数的乘积,能够考虑套用分部积分公式,将乘积中的 cos x作为先积分部份,得2cos x dx 2 cos x dx2sinxx cos xdxxd 2sinx----c2222 22x 2 x----udv uvvdu2x sin sin dx2 2x 2( 2cos xc ----xdxx x2cosx 2x sin) sin 2 sin dc2 222 222x sinx4cosxc---- 整理22⑻ln xdx ;【解】积分式已经拥有udv 的形式,能够直接套用分部积分公式,得ln xdxx ln xxd ln x---- udv uvvdux ln xx 1----d ln x1dxdxxxx ln x dx---- 整理xln x x c----dx x cx(ln x 1) c⑼ xsin x cosxdx ;【解】被积函数为两不一样种类函数的乘积,能够考虑套用分部积分公式,【解法一】将乘积中的cos x 作为先积分部份,得x sin x cosxdxx sin xd sin x----cos xdx sin x cxd 1 sin 2 x---- 仍为两不一样种类函数的乘积-- xuduxd 1 u 2221xsin 2x 1sin 2 xdx----udv uvvdu221xsin 2 x1 1 cos2x dx---- sin 2x1 cos2x2 2 22 1xsin 2x 1( x cos2xdx)---- 分别积分241 xsin2 x 1 ( x 1 cos2xd2x)----d 2x 2dx2 4 21 xsin2 x 1 ( x 1 sin2 x) c ----cosudu sin u c2 4 21xsin 2x 1 x 1sin 2x c ----整理2 4 8【此题解答案与课本后答案能够互化:1x sin 2x 1 x1sin2x c 1 x 1 cos2x 1 x 1sin 2x c1 1 x cos2x 1 1 c11xx sin 2xx cos2xsin 2 x c 】444 848【解法二】为利于积分的进行,先将乘积中的sin x cos x 化简为1sin 2x ,并将其作为先积2分部份,得x sin x cosxdx1 x sin 2xdx---- sin x cos x1sin 2x221 xd ( 1cos2x)----sin 2xdx1cos2 x c2 221 [ 1xcos2x ( 1cos2 x) dx]----udv uvvdu2 221x cos2x 1 cos2xdx ---- 整理4 41x cos2x 1cos2 xd2x ----d2x 2dx4 81x cos2x 1sin 2x c----cosudu sin uc4 8⑽x tan 2xdx ;【解】被积函数为两不一样种类函数的乘积,能够考虑套用分部积分公式,为便于积分,先将乘积中的tan 2 x 化为易于积分的 sec 2 x 1 ,得x tan 2 xdx x(sec 2 x 1)dx---- tan 2 x sec 2x 1( xsec 2 x x)dx---- 整理1 x2 xsec 2 xdx----分别积分21 x2 xd tan x----sec 2 xdx tan x c21 x2 x tan xtan xdx----udv uvvdu21 x2 x tan x sin x dx ---- tan xsin x 2cosxcos x1 x2 x tan x 1 d cos x ---- d cos xsin xdx2cosx1 x2 x tan x ln cosx c----1 du ln u c2uln 3 x ⑾ x 2 dx ;【解】被积函数为两不一样种类函数的乘积,能够考虑套用分部积分公式,乘积中有不行独立积分的ln 3 x ,则应将另一部份1作为先积分部份,得x23 xdxln 3 xd 1 12 dxln 2 ---- 1 c x x x xln 3 x 1d ln 3 x ---- udv uv vdux xln 3 x 1 3ln 2 x dx ---- d ln 3 x 3ln 2 x 1dxx x x xln 3 x 3 ln 2 x dx ---- 整理,并再次应用上边的方法x x2ln 3 x3ln 2 1----1 1cx xdx2 dxx xln 3 x 3ln 2 x 1 d3ln 2 x ---- udv uv vdu x x xln 3 x 3ln 2 x 1 6ln x 1dx ---- d 3ln 2 x 3 2ln x1dxx x x x xln 3 x 3ln 2 x 6ln x---- 整理,并再次应用上边的方法x x x 2 dxln 3 x 3ln 2 x 6ln xd 1 ---- 12 dx 1 cx x x x xln 3 x 3ln 2 x 6ln x 1d 6ln x ---- udv uv vdu x x x xln 3 x 3ln 2 x 6ln x6 1---- d 6ln x6x x x2 dx dx x xln 3 x 3ln 2 x 6ln x 6 c ---- 12 dx 1 cx x x x x x1(ln 3 x 3ln 2 x 6ln x 6) c ---- 整理x⑿(arcsin x)2 dx ;【解】积分式已经拥有udv 的形式,能够直接套用分部积分公式,得(arcsin x) 2 dx x(arcsin x)2 xd(arcsin x)2 ---- udv uv vdu x(arcsin x)2 x 2arcsin x dx---- d (arcsin x) 2 2arcsin x 1 dx1 x2 1 x2x(arcsin x)2 arcsin x 2x dx ---- 整理1 x2x(arcsin x)2 arcsin xd( 2 1 x2 )---- 2x dx 1x2 d (1 x2 ) 2 1 x2 c1 x2 1x(arcsin x)2 [ 2 1 x2 arcsin x ( 2 1 x2 )d arcsin x] ---- udv uv vdux(arcsin x)2 2 1 x2 arcsin x 2 1 x2 1 dx1 x2---- d arcsin x1dx 1 x2x(arcsin x)2 2 1 x2 arcsin x 2 dx ---- 整理x(arcsin x)2 2 1 x2 arcsin x 2 x c⒀x2 e x dx ;【解】被积函数为两不一样种类函数的乘积,能够考虑套用分部积分公式,将乘积中的 e x作为先积分部份,得x2 e x dx x2d ( e x ) ---- e x dx e x cx2e x ( e x )dx2 ---- udv uv vdux2e x e x 2xdx ---- 整理x2e x 2xd( e x ) ---- e x dx e x cx2e x 2xe x ( e x )d 2x ---- udv uv vdux2e x 2xe x 2 e x dx ---- 整理x 2e x 2xe x 2e x c ----e x dx e x ce x ( x 2 2x 2) c----整理3⒁ e x dx ;【解】 被积函数中含根式, 且根指数与根号内多项式的次数不等,可应用第二换元积分法中的直接变换法,去掉根号后,再用分部积分法求解。
高数求解积分技巧例题积分是高等数学中的重要内容,有时我们需要运用一些技巧来解决复杂的积分问题。
本文将介绍几个常见的积分技巧,并通过例题来说明。
1. 分部积分法分部积分法是求解含有两个函数相乘的积分的方法。
其公式为:∫uvdx = ∫udv + ∫vdu其中,u和v是原函数。
例题:求解∫x*sin(x)dx解:选择 u = x, dv = sin(x)dx,则 du = dx,v = -cos(x)根据分部积分法的公式,可以得到:∫x*sin(x)dx = ∫udv + ∫vdu= x*(-cos(x)) - ∫(-cos(x))dx= -x*cos(x) + ∫cos(x)dx= -x*cos(x) + sin(x) + C其中,C为常数。
因此,∫x*sin(x)dx = -x*cos(x) + sin(x) + C2. 换元积分法换元积分法是将积分中的变量进行替换,从而简化积分问题的方法。
其公式为:∫f(g(x))*g'(x)dx = ∫f(u)du其中,u = g(x),du = g'(x)dx。
例题:求解∫x*e^(x^2)dx解:选择 u = x^2,du = 2xdx。
则原积分可以化简为:∫x*e^(x^2)dx = (1/2)∫e^udu= (1/2) ∫e^udu= (1/2) e^u + C= (1/2) e^(x^2) + C其中,C为常数。
因此,∫x*e^(x^2)dx = (1/2) e^(x^2) + C3. 三角函数积分三角函数积分是指对于包含三角函数的积分问题的解决方法。
a. ∫sin^n(x)dx 或∫cos^n(x)dx(n为正整数)当 n 为奇数时,可以利用递推关系进行求解。
即,∫sin^n(x)dx = -1/n*sin^(n-1)(x)*cos(x) + (n-1)/n*∫sin^(n-2)(x)dx当 n 为偶数时,可以利用换元积分法进行求解。
用分部积分法求不定积分
重点:
① ⎰⎰-=vdu uv udv
② 对反幂三指
用分部积分法计算的不定积分:
分部积分法是微积分学中的一类重要的、基本的计算积分的方法。
其它两种计算不定积分的方法是凑微分法和第二类换元法。
通常可适用于变形后为“udv ”的不定积分,根据公式(⎰-=vdu uv udv )很容易求解。
证明:由
或
对上式两边求不定积分,即得分部积分公式,也将其简写为
如果将
和
用微分形式写出,则亦可得出
口诀:
“对反幂三指”,分别对应对数函数、反函数、幂函数、三角函数、指数函数。
越往前则可认定在不定积分中充当着u ,越往后则为v 。
例题及答案:
∫(2x+1)e x dx ∫(x2+x)e x dx
∫(2x+1)cosxdx ∫x∙cos2xdx
(2x+1)e x-2e x+c
(x2-x+1)e x+c (2x+1)sinx+2cosx+c 2
1xsin2x+
4
1cos2x+c。
分部积分方法及例题分部积分法是微积分中的一种重要方法,可以用于求解复杂的积分问题。
它通过将复杂的函数进行分部拆分,再进行逐步求导或求积的过程,最终得到原函数的积分表达式。
在本篇文章中,将介绍分部积分法的基本原理及应用,并给出一些例题进行演示。
一、基本原理分部积分法是基于积分的乘法法则:∫(u*v)dx = ∫u*dv + ∫v*du。
其中,u和v分别是待求函数的两个因子。
通过选择合适的u和dv,可以将原函数的积分改写为更易求解的形式。
具体的步骤如下:1. 选择u:选择一个函数作为u,通常选择原函数中具有较高次幂、三角函数或指数函数等。
2. 求du:对选定的u求导得到du,即du = u' dx。
3. 选择dv:选择原函数中的另一个因子作为dv,即dv = v dx。
4. 求v:对dv进行不定积分得到v。
5. 应用分部积分公式:将待求积分写成∫u dv = ∫v du + ∫v du + C,其中C是常数。
6. 化简并解出原函数:通过代数运算,将得到的方程化简,并解出原函数。
二、应用示例以下是几个分部积分法的应用示例:例题1:计算∫x sin(x) dx。
解:选择u = x,dv = sin(x) dx。
由此,du = dx,v = -cos(x)。
根据分部积分公式,可得∫x sin(x) dx = -x cos(x) - ∫(-cos(x)) dx。
对于∫(-cos(x)) dx,再次应用分部积分法,选择u = -cos(x),dv = dx,可得到 du = sin(x) dx,v = x。
将结果代入方程,得到∫x sin(x) dx = -x cos(x) + ∫x dx = -x cos(x) +(1/2)x^2 + C,其中C是常数。
例题2:计算∫e^x cos(x) dx。
解:选择u = e^x,dv = cos(x) dx。
由此,du = e^x dx,v = sin(x)。
分部积分常见题型
分部积分法是求不定积分和定积分的一个重要的方法,这个方法在求不定积分和定积分中运用的很广,可以说想要掌握不定积分和定积分这个方法是必须要会的。
分部积分法常见的题型包括:
1. 两个函数乘积的积分,其中一个函数求导会变简单,另一个函数积分后难度变化不大。
做法思路:通过分部积分,对求导变简单的函数求导,对另一个函数积分。
使用若干次,直到得到的新积分容易求出结果为止。
此时新积分的结果再加上前面一堆式子的结果,即为所求积分的结果。
2. 形如“∫u(x)v(x)dx”的积分,其中u(x)的导数为v(x),或者u(x)的函数和v(x)的导数之间有乘积关系。
3. 形如“∫u(x)v(x)dx”的积分,其中u(x)的导数和v(x)之间有乘积关系。
4. 形如“∫u(x)v(x)dx”的积分,其中u(x)和v(x)的导数之间有乘积关系。
以上这些题型都可以通过分部积分法来求解。
分部积分法可以化难为易,让我们更好的理解并解决这些问题。