复数运算法则(1)[下学期]--北师大版
- 格式:pdf
- 大小:918.50 KB
- 文档页数:7
第五章复数1复数的概念及其几何意义........................................................................................ - 1 - 2复数的四则运算...................................................................................................... - 14 - 3复数的三角表示...................................................................................................... - 29 -1复数的概念及其几何意义1.1复数的概念学习任务核心素养1.了解引进虚数单位i的必要性,了解数集的扩充过程.(重点)2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念.(重点、难点) 3.掌握复数代数形式的表示方法,理解复数相等的充要条件.(重点)1.通过对复数的相关概念的学习,培养学生数学抽象素养.2.借助复数的分类、复数的相等的相关运算,培养学生数学运算素养.五百年前意大利的卡尔丹遇到这样一个问题,将10分成两个部分,使它们的乘积等于40,则x(10-x)=40即(x-5)2=-15,该方程无实数解,那么他遇到了什么问题呢?他想:负数为什么不能开方?他是怎样解决的呢?形如a+b i(其中a,b∈R)的数叫作复数,通常用字母z表示,即z=a+b i(a,b∈R).其中a称为复数z的实部,记作Re z, b称为复数z的虚部,记作Im z.知识点2复数的分类根据复数中a,b的取值不同,复数可以有以下的分类:复数a +b i(a ,b ∈R )⎩⎨⎧实数(b =0);虚数(b ≠0)⎩⎨⎧纯虚数(a =0),非纯虚数(a ≠0).1.在2+7,27i, 8+5i ,(1-3)i, 0.68这几个数中,纯虚数的个数为( ) A .0 B .1 C .2 D .3C [27i, (1-3)i 是纯虚数,故选C.]知识点3 复数集全体复数构成的集合称为复数集,记作C .显然RC .知识点4 复数相等两个复数a +b i 与c +d i(a ,b ,c ,d ∈R )相等定义为:它们的实部相等且虚部相等,即a +b i =c +d i 当且仅当a =c 且b =d . 1.两个复数一定能比较大小吗?提示:当两个复数为实数时,能够比较大小;否则不能比较大小.2.若复数a +2i =3+b i(a ,b ∈R ),则a +b 的值是什么?提示:因为a +2i =3+b i ,所以a =3,b =2,所以a +b =5.2.思考辨析(正确的画“√”,错误的画“×”)(1)若a ,b 为实数,则z =a +b i 为虚数.( ) (2)复数z =b i 是纯虚数. ( ) (3)若两个复数的实部的差和虚部的差都等于0,那么这两个复数相等.( )[提示] (1)错误.若b =0,则复数z =a +b i 是实数.(2)错误.若b =0,则复数z =b i =0是实数.(3)正确.若两个复数的实部的差和虚部的差都等于0,则这两个复数的实部和虚部分别相等,所以两个复数相等.[答案] (1)× (2)× (3)√类型1 复数的概念【例1】 (1)给出下列三个命题:①若z ∈C ,则z 2≥0;②2i -1的虚部是2i ;③2i 的实部是0.其中真命题的个数为( )A .0B .1C .2D .3(2)已知复数z =a 2-(2-b )i 的实部和虚部分别是2和3,则实数a ,b 的值分别是________.(1)B (2)±2 5 [(1)对于①,当z ∈R 时,z 2≥0成立,否则不成立,如z =i ,z 2=-1<0,所以①为假命题;对于②,2i -1=-1+2i ,其虚部是2,不是2i ,②为假命题;对于③,2i =0+2i ,其实部是0,③为真命题.故选B.(2)由题意知⎩⎨⎧a 2=2,b -2=3,∴a =±2,b =5.](1)复数的代数形式:若z =a +b i ,只有当a ,b ∈R 时,a 才是z 的实部,b 才是z 的虚部,且注意虚部不是b i ,而是b .(2)不要将复数与虚数的概念混淆,实数也是复数,实数和虚数是复数的两大构成部分.(3)举反例:判断一个命题为假命题,只要举一个反例即可,所以解答这类题时,可按照“先特殊,后一般,先否定,后肯定”的方法进行解答.[跟进训练]1.下列命题:①若a ∈R ,则(a +1)i 是纯虚数;②若(x 2-4)+(x 2+3x +2)i 是纯虚数,则实数x =±2;③实数集是复数集的真子集.其中正确说法的个数是( )A .0B .1C .2D .3B [对于复数a +b i(a ,b ∈R ),当a =0且b ≠0时,为纯虚数.对于①,若a =-1,则(a +1)i 不是纯虚数,故①错误.对于②,若x =-2,则x 2-4=0,x 2+3x +2=0,此时(x 2-4)+(x 2+3x +2)i =0,不是纯虚数,故②错误.显然,③正确.故选B.]类型2 复数相等【例2】 (1)(教材北师版P 165例2改编)已知x 2-y 2+2xy i =2i ,求实数x ,y 的值;(2)关于x 的方程3x 2-a 2x -1=(10-x -2x 2)i 有实根,求实数a 的值.[解] (1)∵x 2-y 2+2xy i =2i ,∴⎩⎨⎧x 2-y 2=0,2xy =2, 解得⎩⎨⎧x =1,y =1或⎩⎨⎧x =-1,y =-1. (2)设方程的实数根为x =m ,则3m 2-a 2m -1=(10-m -2m 2)i ,∴⎩⎪⎨⎪⎧3m 2-a 2m -1=0,10-m -2m 2=0,解得a =11或a =-715.复数相等问题的解题技巧(1)必须是复数的代数形式才可以根据实部与实部相等,虚部与虚部相等列方程组求解.(2)根据复数相等的条件,将复数问题转化为实数问题,为应用方程思想提供了条件,同时这也是复数问题实数化思想的体现.(3)如果两个复数都是实数,可以比较大小,否则是不能比较大小的.[跟进训练]2.复数z 1=(2m +7)+(m 2-2)i ,z 2=(m 2-8)+(4m +3)i ,m ∈R ,若z 1=z 2,则m =________.5 [因为m ∈R ,z 1=z 2,所以(2m +7)+(m 2-2)i =(m 2-8)+(4m +3)i.由复数相等的充要条件得⎩⎨⎧2m +7=m 2-8,m 2-2=4m +3,解得m =5.] 类型3 复数的分类【例3】 当m 为何实数时,复数z =m 2-m -6m +3+(m 2-2m -15)i. (1)是虚数;(2)是纯虚数.1. 复数z =a +b i (a ,b ∈R )何时为虚数?[提示] b ≠0.2.复数z =a +b i (a ,b ∈R )何时为纯虚数?[提示] a =0,b ≠0. 3.(1)复数z 是虚数→令虚部不等于0→解方程组可得m 的值(2)复数z 是纯虚数→令虚部不等于0且实部等于0→解方程组可得m 的值[解] (1)当⎩⎨⎧m +3≠0,m 2-2m -15≠0,即m ≠5且m ≠-3时,z 是虚数. (2)当⎩⎨⎧m 2-m -6m +3=0,m 2-2m -15≠0,即m =3或m =-2时,z 是纯虚数.1.例3的条件不变,当m 为何值时,z 为实数?[解] 当⎩⎨⎧m +3≠0,m 2-2m -15=0,即m =5时,z 是实数. 2.例3的条件不变,当m 为何值时,z >0.[解] 因为z >0,所以z 为实数,需满足⎩⎨⎧m 2-m -6m +3>0,m 2-2m -15=0,解得m =5. 3.已知z =log 2(1+m )+ilog 12(3-m )(m ∈R ),若z 是虚数,求m 的取值范围. [解] ∵z 是虚数,∴log 12(3-m )≠0,且1+m >0, 即⎩⎨⎧3-m >0,3-m ≠1,1+m >0,∴-1<m <2或2<m <3.∴m 的取值范围为(-1,2)∪(2,3).复数分类的关键(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R )时应先转化形式.(2)注意分清复数分类中的条件,设复数z =a +b i(a ,b ∈R ),则①z 为实数⇔b =0,②z 为虚数⇔b ≠0,③z 为纯虚数⇔a =0,b ≠0.④z =0⇔a =0且b =0.当堂达标1.若x i -i 2=y +2i ,x ,y ∈R ,则复数x +y i 等于( )A .-2+iB .2+iC .1-2iD .1+2iB [由i 2=-1,得x i -i 2=1+x i ,则由题意得1+x i =y +2i ,根据复数相等的充要条件得x =2,y =1,故x +y i =2+i.]2.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( )A .3-3iB .3+iC .-2+2iD .2+2iA [3i -2的虚部为3,3i 2+2i =-3+2i 的实部为-3,故选A.]3.已知复数z 1=a +2i ,z 2=3+(a 2-7)i ,a ∈R ,若z 1=z 2,则a =( )A .2B .3C .-3D .9 B [因为z 1=a +2i ,z 2=3+(a 2-7)i ,且z 1=z 2,所以有⎩⎨⎧a =3,a 2-7=2,解得a =3.故选B.]4.已知复数z =m 2-1+(m 2-m -2)i 为实数,则实数m 的值为________. -1或2 [因为复数z =m 2-1+(m 2-m -2)i 为实数,所以m 2-m -2=0,解得m =-1或m =2.]5.设m ∈R ,复数z =-1-m +(2m -3)i.(1)若z 为实数,则m =________;(2)若z 为纯虚数,则m =________.(1)32(2)-1[(1)若复数z=-1-m+(2m-3)i为实数,则2m-3=0,所以m=32;(2)若z为纯虚数,则-1-m=0,所以m=-1.]回顾本节内容,自我完成以下问题:1.如何正确理解复数的概念?[提示](1)对于复数z=a+b i(a,b∈R),可以限制a,b的值得到复数z的不同情况.(2)当两个复数不全是实数时,不能比较大小,只可判断相等或不相等,但两个复数都是实数时,可以比较大小.2.如何解决复数相等问题?[提示]两个复数相等,要先确定两个复数的实、虚部,再利用两个复数相等的充要条件进行判断.1.2复数的几何意义学习任务核心素养1.理解用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.(难点)2.掌握实轴、虚轴、模、共轭复数等概念.(重点、难点)3.掌握用向量的模来表示复数的模的方法.(重点)1.通过学习复数的几何意义,培养学生直观想象素养.2.借助于复数的模和共轭复数的计算,培养学生数学运算素养.18世纪,瑞士人阿甘达注意到负数是正数的一个扩充,它是将方向和大小结合得出来的,他给出了负数的一些几何解释.而在使人们接受复数方面,高斯的工作更为有效,他不仅将复数z=a+b i表示为复平面的一点Z(a,b),而且阐述了复数的几何加法和乘法,这也和向量运算是一致的,使人们对复数不再有种神秘的印象.阅读教材,结合上述情境回答下列问题.问题1:上述材料中,复平面是如何定义的?问题2:复数与复平面内的点及向量的关系如何?问题3:复数的模是实数还是虚数?问题4:复数z=a+b i的共轭复数是什么?知识点1复平面通过建立平面直角坐标系来表示复数的平面称为复平面,x轴称为实轴,y轴称为虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.1.虚轴上的点都对应着唯一的纯虚数吗?提示:不是.除了原点外,虚轴上的点都表示纯虚数.知识点2复数的几何意义2.象限内的点与复数有何对应关系?提示:第一象限的复数特点:实部为正,且虚部为正;第二象限的复数特点:实部为负,且虚部为正;第三象限的复数特点:实部为负,且虚部为负;第四象限的复数特点:实部为正,且虚部为负.1.在复平面内,复数z=i+2i2对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限B [∵z =i +2i 2=-2+i ,∴实部小于0,虚部大于0,故复数z 对应的点位于第二象限.]知识点3 复数的模向量OZ →的模称为复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|. 由向量模的定义可知,|z |=|a +b i|=a 2+b 2.如果b =0,那么z =a +b i 是一个实数a ,它的模等于|z |=a 2+b 2=a 2=|a |(a 的绝对值).2.已知复数z 的实部为-1,虚部为2,则|z |=________.5 [|z |=(-1)2+22= 5.]知识点4 共轭复数(1)定义:若两个复数的实部相等,而虚部互为相反数,则称这两个复数互为共轭复数,复数z 的共轭复数用z 表示.当z =a +b i(a ,b ∈R )时,z =a -b i .(2)几何意义:在复平面内,表示两个共轭复数的点关于实轴对称,并且它们的模相等.另外,当复数z =a +b i 的虚部b =0时,有z =z .也就是说,任意一个实数的共轭复数仍是它本身,反之亦然.3.复数z =-1+i 的共轭复数对应的点位于第________象限.三 [z =-1+i 的共轭复数为z =-1-i ,位于第三象限.]类型1 复数与平面内的点的关系【例1】 (教材北师版P 167练习第2题改编)实数x 分别取什么值时,复数z =(x 2+x -6)+(x 2-2x -15)i 对应的点Z 在:(1)第三象限;(2)直线x -y -3=0上.[解] 因为x 是实数,所以x 2+x -6,x 2-2x -15也是实数.(1)当实数x 满足⎩⎨⎧x 2+x -6<0,x 2-2x -15<0,即当-3<x <2时,点Z 在第三象限. (2)z =x 2+x -6+(x 2-2x -15)i 对应点Z (x 2+x -6,x 2-2x -15),当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即当x =-2时,点Z 在直线x -y -3=0上.按照复数和复平面内所有点组成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值. [跟进训练]1.在复平面内,若复数z =(m 2-m -2)+(m 2-3m +2)i(m ∈R )的对应点在虚轴上和实轴负半轴上,分别求复数z .[解] 若复数z 的对应点在虚轴上,则m 2-m -2=0,所以m =-1或m =2,所以z =6i 或z =0.若复数z 的对应点在实轴负半轴上,则⎩⎨⎧m 2-m -2<0,m 2-3m +2=0,所以m =1,所以z =-2.类型2 复数的模的几何意义【例2】 (教材北师版P 166例3改编)设z ∈C ,在复平面内对应点Z ,试说明满足下列条件的点Z 的集合是什么图形.(1)|z |=3; (2)1≤|z |≤2.[解] (1)|z |=3说明向量OZ →的长度等于3,即复数z 在复平面内对应的点Z 到原点的距离为3,这样的点Z 的集合是以原点O 为圆心,3为半径的圆.(2)不等式1≤|z |≤2可以转化为不等式组⎩⎨⎧|z |≤2|z |≥1.不等式|z |≤2的解集是圆|z |=2及该圆内部所有点的集合.不等式|z |≥1的解集是圆|z |=1及该圆外部所有点的集合.这两个集合的交集,就是满足条件1≤|z |≤2的点的集合.如图中的阴影部分,所求点的集合是以O 为圆心,以1和2为半径的两圆所夹的圆环,并且包括圆环的边界.解决复数的模的几何意义问题解决复数的模的几何意义的问题,应把握两个关键点:一是|z |表示点Z 到原点的距离,可依据|z |满足的条件判断点Z 的集合表示的图形;二是利用复数的模的概念,把模的问题转化为几何问题来解决. [跟进训练] 2.若复数z 满足|z |≤2,则z 在复平面所对应的图形的面积为________. 2π [满足|z |≤2的点Z 的集合是以原点O 为圆心,以2为半径的圆及其内部所有的点构成的集合,∴所求图形的面积为S =2π.故填2π.]类型3 复数、共轭复数与复平面内的向量的关系【例3】 (1)向量OZ 1对应的复数是5-4i ,向量OZ →2对应的复数是-5+4i ,则OZ →1+OZ →2对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i(2)设O 是原点,向量OA →,OB →对应的复数分别为2-3i ,-3+2i ,那么向量BA→对应的复数是( )A .-5+5iB .-5-5iC .5+5iD .5-5i1.复数z =a +b i (a ,b ∈R )在复平面内对应的向量OZ →和点Z 分别是什么?[提示] 向量OZ →=(a ,b ),点Z 的坐标为(a ,b ).2.设复数z =a +b i (a ,b ∈R )的共轭复数为z ,z 和z 在复平面内对应的点分别为A ,B ,则点A ,B 有什么关系?[提示] 点A ,B 关于x 轴对称.(1)C (2)D [(1)由复数的几何意义,可得OZ →1=(5,-4),OZ →2=(-5,4),所以OZ →1+OZ →2=(5,-4)+(-5,4)=(0,0),所以OZ →1+OZ →2对应的复数为0.(2)由复数的几何意义,得OA →=(2,-3),OB →=(-3,2),BA →=OA →-OB →=(2,-3)-(-3,2)=(5,-5).所以BA →对应的复数是5-5i.] 1.在例3(2)中若BA →对应的复数是z ,求z .[解] 由例3(2)的解析可知BA →对应的复数是5-5i ,即z =5-5i ,所以z =5+5i.2.在例3(2)中,若点A 关于实轴的对称点为点C ,求向量OC →对应的复数.[解] 复数2-3i 表示的点A (2,-3)关于实轴对称的点为C (2,3),∴向量OC→对应的复数为2+3i.(1)根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数.反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.(2)解决复数与平面向量一一对应的问题时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.[跟进训练]3.已知O 为坐标原点,OZ 1对应的复数为-3+4i ,OZ 2对应的复数为2a +i(a ∈R ),若OZ 1与OZ 2共线,求a 的值.[解] ∵OZ 1对应的复数为-3+4i ,OZ 2对应的复数为2a +i ,∴OZ 1=(-3,4),OZ 2=(2a ,1).又∵OZ 1与OZ 2共线,∴(-3)×1-4×2a =0,解之得a =-38.当堂达标1.若OZ →=(0,-3),则OZ →对应的复数为( )A .0B .-3C .-3iD .3C [OZ →对应的复数为-3i.]2.已知复数z 1=m +2i ,z 2=1+i ,若z 1+z 2为纯虚数,则实数m 的值为( )A .-1B .1C .4D .-4A [z 1+z 2=m +1+3i 为纯虚数,故m +1=0,m =-1,故选A.]3.已知z =m -1+(m +2)i 在复平面内对应的点在第二象限,则实数m 的取值范围是( )A .(-1,2)B .(-2,1)C .(1,+∞)D .(-∞,-2)B [∵z =m -1+(m +2)i 在复平面内对应的点在第二象限,∴m -1<0,m +2>0,解得-2<m <1,则实数m 的取值范围是(-2,1).]4.复数z =(a 2-2a )+(a 2-a -2)i 对应的点在虚轴上,则( )A .a ≠2或a ≠1B .a ≠2或a ≠-1C .a =2或a =0D .a =0C [由题知a 2-2a =0解得a =0或a =2,故选C.]5.已知复数z =1+2i ,则|z |=________.5 [∵z =1+2i ,∴|z |= 5.]回顾本节内容,自我完成以下问题:复数的模的几何意义是什么?提示:(1)复数z在复平面内对应的点为Z,复数z0在复平面内对应的点为Z0,r表示一个大于0的常数,则:①满足条件|z|=r的点Z的轨迹为以原点为圆心,r为半径的圆,|z|<r表示圆的内部,|z|>r表示圆的外部;②满足条件|z-z0|=r的点Z的轨迹为以Z0为圆心,r为半径的圆,|z-z0|<r 表示圆的内部,|z-z0|>r表示圆的外部.(2)复数的几何意义有两种:复数和复平面内的点一一对应,复数和复平面内以原点为起点的向量一一对应.如图所示:2复数的四则运算2.1复数的加法与减法学习任务核心素养1.掌握复数代数形式的加法和减法运算.(重点、难点)2.理解复数加法和减法所满足的交换律和结合律.(重点、难点)1.通过学习复数的加法和减法运算,培养学生数学运算素养.2.通过学习复数加法和减法运算所满足的运算律,培养学生数学抽象素养.随着生产发展的需要,我们将数的范围扩展到了复数.运算是“数”的主要功能,复数不同于实数,它是由实部、虚部两部分复合构造而成的整体.阅读教材,回答下列问题问题1:复数如何进行加、减运算呢?问题2:类比多项式的加、减运算,想一想复数又如何进行加、减法运算?问题3:两个复数的和或差得到的结果是什么?问题4:复数的加法法则可以推广吗?知识点1复数的加法与减法(1)复数加法的运算法则两个复数的和仍是一个复数,两个复数的和的实部是它们的实部的和,两个复数的和的虚部是它们的虚部的和,也就是(a+b i)+(c+d i)=(a+c)+(b+d)i.(2)复数减法的运算法则两个复数的差仍是一个复数,两个复数的差的实部是它们的实部的差,两个复数的差的虚部是它们的虚部的差,也就是(a+b i)-(c+d i)=(a-c)+(b-d)i.(3)复数的加法运算的运算律:结合律:(z1+z2)+z3=z1+(z2+z3);交换律:z1+z2=z2+z1.1.两个复数的和是个什么数,它的值唯一确定吗?[提示]是复数,唯一确定.1.已知复数z1=3+4i,z2=3-4i,则z1+z2等于()A.8i B.6 C.6+8i D.6-8iB[z1+z2=3+4i+3-4i=(3+3)+(4-4)i=6.]知识点2复数加法的几何意义如图,z1=a+b i,z2=c+d i(a,b,c,d∈R)分别与向量OZ1=(a,b),OZ2=(c,d)对应,根据平面向量的坐标运算,得OZ1+OZ2=(a+c,b+d),这说明两个向量OZ1,OZ2的和就是与复数(a+c)+(b+d)i对应的向量.因此,复数的加法可以按照向量的加法来进行,这是复数加法的几何意义.2.若复数z 1,z 2满足z 1-z 2>0,能否认为z 1>z 2?提示:不能,例如可取z 1=3+2i ,z 2=2i.2.计算(3+i)-(2+i)的结果为________.1 [(3+i)-(2+i)=3+i -2-i =1.]类型1 复数的加法和减法【例1】 (教材北师版P 169例1改编)(1)计算:⎝ ⎛⎭⎪⎫13+12i +(2-i)-⎝ ⎛⎭⎪⎫43-32i . (2)已知复数z 满足z +1-3i =5-2i ,求z .(3)已知复数z 满足|z |+z =1+3i ,求z .[解] (1)⎝ ⎛⎭⎪⎫13+12i +(2-i)-⎝ ⎛⎭⎪⎫43-32i =⎝ ⎛⎭⎪⎫13+2-43+⎝ ⎛⎭⎪⎫12-1+32i =1+i. (2)法一:设z =x +y i(x ,y ∈R ),因为z +1-3i =5-2i ,所以x +y i +(1-3i)=5-2i ,即x +1=5且y -3=-2, 解得x =4,y =1,所以z =4+i.法二:因为z +1-3i =5-2i ,所以z =(5-2i)-(1-3i)=4+i.(3)设z =x +y i(x ,y ∈R ),|z |=x 2+y 2,∴|z |+z =(x 2+y 2+x )+y i =1+3i ,∴⎩⎨⎧x 2+y 2+x =1,y =3,解得⎩⎨⎧x =-4,y =3,∴z =-4+3i.复数代数形式的加、减法运算技巧(1)复数代数形式的加、减法运算实质就是将实部与实部相加减,虚部与虚部相加减之后分别作为结果的实部与虚部,因此要准确地提取复数的实部与虚部.(2)算式中若出现字母,首先确定其是否为实数,再确定复数的实部与虚部,最后把实部与实部、虚部与虚部分别相加减.(3)复数的运算可以类比多项式的运算:若有括号,括号优先;若无括号,可以从左到右依次进行计算. [跟进训练] 1.(1)若复数z 满足z +i -3=3-i ,则z =________.(2)(a +b i)-(2a -3b i)-3i =________(a ,b ∈R ).(1)6-2i (2)-a +(4b -3)i [(1)∵z +i -3=3-i ,∴z =6-2i.(2)(a +b i)-(2a -3b i)-3i =(a -2a )+(b +3b -3)i =-a +(4b -3)i.]类型2 复数加、减法的几何意义【例2】 (教材北师版P 170例4改编)如图所示,平行四边形OABC 的顶点O ,A ,C 分别表示0, 3+2i ,-2+4i.求:(1)AO →表示的复数;(2)对角线CA →表示的复数;(3)对角线OB →表示的复数.确定向量对应的复数→进行向量的运算→确定向量对应的复数[解] (1)因为AO →=-OA →,所以AO →表示的复数为-3-2i.(2)因为CA →=OA →-OC →,所以对角线CA →表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为对角线OB →=OA →+OC →,所以对角线OB →表示的复数为(3+2i)+(-2+4i)=1+6i.例2的条件不变,求向量AB →表示的复数.[解] 因为AB →=AO →+OB →,由例2的解析可知,AO →表示的复数为-3-2i ,OB→表示的复数为1+6i ,所以向量AB →表示的复数为(-3-2i)+(1+6i)=-2+4i.复数与向量的对应关系的两个关注点(1)复数z =a +b i(a ,b ∈R )是与以原点为起点,Z (a ,b )为终点的向量一一对应的.(2)一个向量可以平移,其对应的复数不变,但是其起点与终点所对应的复数可能改变.[跟进训练]2.△ABC 的三个顶点所对应的复数分别为z 1,z 2,z 3,复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点是△ABC 的( )A .外心B .内心C .重心D .垂心A [由复数模及复数减法运算的几何意义,结合条件可知复数z 的对应点P 到△ABC 的顶点A ,B ,C 距离相等,∴P 为△ABC 的外心.]当堂达标1.复数(1-i)-(2+i)+3i 等于( )A .-1+iB .1-iC .iD .-iA [原式=1-i -2-i +3i =-1+i.]2.若复数z 满足z +(3-4i)=1,则z 的虚部是( )A .-2B .4C .3D .-4B [z =1-(3-4i)=-2+4i ,故选B.]3.在复平面内,复数1+i 与1+3i 分别对应向量OA →和OB →,其中O 为坐标原点,则|AB →|等于( )A . 2B .2C .10D .4B [向量AB →对应的复数为(1+3i)-(1+i)=2i ,所以AB →=(0,2),故|AB →|=2.]4.(5-i)-(3-i)-5i =________.2-5i [(5-i)-(3-i)-5i =2-5i.]5.设z 1=x +2i ,z 2=3-y i(x ,y ∈R ),且z 1+z 2=5-6i ,则z 1-z 2=________. -1+10i [∵z 1=x +2i ,z 2=3-y i ,∴z 1+z 2=x +3+(2-y )i =5-6i , ∴⎩⎨⎧x +3=5,2-y =-6,解得⎩⎨⎧x =2,y =8,∴z 1=2+2i ,z 2=3-8i , ∴z 1-z 2=(2+2i)-(3-8i)=-1+10i.]回顾本节内容,自我完成以下问题:1.复数代数形式的加减运算之间有怎样的关系?[提示] 复数代数形式的加法满足交换律、结合律,复数的减法是加法的逆运算.2.复数加减法的几何意义是什么?[提示] 复数加法的几何意义就是向量加法的平行四边形法则.复数减法的几何意义就是向量减法的三角形法则.2.2 复数的乘法与除法*2.3 复数乘法几何意义初探学习任务核心素养1.掌握复数代数形式的乘法和除法运算.(重点、难点)2.理解复数乘法的交换律、结合律和乘法对加法的分配律.(难点)3.了解复数乘法的几何意义.1.通过学习复数的乘法和除法,培养学生数学运算素养.2.通过学习复数乘法运算所满足的运算律,培养学生数学抽象素养.在研究复数的加、减法运算时,我们注意到复数的形式就像一个二项式,类比二项式乘二项式的法则,我们可以得到复数乘法的法则,让第一项与第二项的各项分别相乘,再合并“同类项”,即得到乘法的结果.阅读教材,回答下列问题.问题1:复数的乘法和除法运算法则各是什么?问题2:复数乘法的运算律有哪些?问题3:如何在复数范围内求方程的解?(1)复数的乘法法则设z1=a+b i,z2=c+d i是任意两个复数,那么它们的积(a+b i)(c+d i)=(ac-bd)+(ad+bc)i.(2)复数乘法的运算律对于任意z1,z2,z3∈C,有交换律z1·z2=z2·z1结合律(z1·z2)·z3=z1·_(z2·z3)乘法对加法的分配律z1·(z2+z3)=z1·z2+z1·z3(3)对复数z,z1,z2和正整数m,n,有z m·z n=z m+n,(z m)n=z mn,(z1·z2)n=z n1·z n2.(4)虚数单位i乘方的周期性对于任意自然数n,有i4n+1=i,i4n+2=-1,i4n+3=-i,i4n+4=1.(5)共轭复数的性质:互为共轭复数的两个复数的乘积是实数,等于这个复数(或其共轭复数)模的平方.即若z =a +b i(a ,b ∈R ),则z ·z =|z |2=|z |2=a 2+b 2.(6)复数乘法的几何意义设复数z 1=a +b i(a ,b ∈R )所对应的向量为OZ 1.①z 2=(a +b i)·c (c >0)所对应的向量为OZ 2,则OZ 2是OZ 1与c 的数乘,即OZ 2是将OZ 1沿原方向拉伸或压缩c 倍得到的.②z 3=(a +b i)·i 所对应的向量为OZ 3,则OZ 3是由OZ 1逆时针旋转π2得到的.1.复数乘法的多项式运算与实数的多项式运算法则是否相似? [提示] 相似,但是运算的结果要把i 2写成-1.1.复数(1+i)(1-i)=________. 2 [(1+i)(1-i)=1-i 2=2.] 知识点2 复数的除法 (1)复数的除法:对任意的复数z 1=a +b i(a ,b ∈R )和非零复数z 2=c +d i(c ,d ∈R ),规定复数的除法:z 1z 2=z 1·1z 2.即除以一个复数等于乘这个复数的倒数.因此z 1z 2=a +b i c +d i =(a +b i)⎝ ⎛⎭⎪⎫cc 2+d 2-d c 2+d 2i =ac +bd c 2+d 2-ad -bc c 2+d 2i . (2)复数除法的运算: 在实际计算a +b ic +d i时,通常把分子和分母同乘分母c +d i 的共轭复数c -d i ,化简后就得到上面的结果:a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2-ad -bcc 2+d 2i .由此可见,在进行复数除法运算时,实际上是将分母“实数化”.2.类比根式除法的分母有理化,比如1+33-2=(1+3)(3+2)(3-2)(3+2),你能写出复数的除法法则吗?提示:设z 1=a +b i ,z 2=c +d i(c +d i ≠0),则z 1z 2=a +b i c +d i =ac +bd c 2+d 2+bc -adc 2+d 2i.2.设复数z 满足i z =1,其中i 为虚数单位,则z 等于( ) A .-i B .i C .-1 D .1A [z =1i =-i.]类型1 复数的乘法及其几何意义【例1】 (1)(教材北师版P 171例5改编)计算:①(2+i)(2-i);②(1+2i)2. (2)设O 是坐标原点,在矩形OABC (点O ,A ,B ,C 按逆时针排列)中,OA =3OC ,若A 对应的复数是3+4i ,求点B ,C 所对应的复数.[解] (1)①(2+i)(2-i)=4-i 2=4-(-1)=5; ②(1+2i)2=1+4i +(2i)2=1+4i +4i 2=-3+4i.(2)因为在矩形OABC 中,OA =3OC ,且A 对应的复数是3+4i , 所以点C 对应的复数为(3+4i)·13i =-43+i ,因为OA →=(3,4),OC →=⎝ ⎛⎭⎪⎫-43,1,所以OB →=OA →+OC →=⎝ ⎛⎭⎪⎫53,5,所以点B 对应的复数为53+5i.1.两个复数代数形式乘法的运算步骤 (1)首先按多项式的乘法展开; (2)再将i 2换成-1;(3)然后再进行复数的加、减运算,化简为复数的代数形式. 2.常用公式(1)(a +b i)2=a 2-b 2+2ab i(a ,b ∈R ); (2)(a +b i)(a -b i)=a 2+b 2(a ,b ∈R ); (3)(1±i)2=±2i.[跟进训练]1.(1)计算:(1-i)2-(2-3i)(2+3i)=( ) A .2-13i B .13+2i C .13-13iD .-13-2i(2)复数(1-i)2(2-3i)的值为( )A .6-4iB .-6-4iC .6+4iD .-6+4i(3)设复数2+i 对应的向量为OZ →,把OZ →沿原方向拉伸3倍所得到的向量对应的复数是( )A .-1+2iB .6+3iC .6+iD .-6-3i(1)D (2)B (3)B [(1)(1-i)2-(2-3i)(2+3i)=1-2i +i 2-(4-9i 2)=-13-2i.(2)(1-i)2(2-3i)=(-2i)(2-3i)=-6-4i.(3)把OZ →沿原方向拉伸3倍所得到的向量对应的复数是(2+i)·3=6+3i.] 类型2 复数的除法【例2】 (1)已知i 为虚数单位,图中复平面内的点A 表示复数z ,则表示复数z1+i的点是( )A .MB .NC .PD .Q(2)设复数z =1+2i ,则z 2+3z -1=( )A .2iB .-2iC .2D .-2(3)设复数z 满足1+z1-z=i ,则|z |等于( ) A .1 B . 2 C . 3D .2(1)D (2)C (3)A [(1)由图可知z =3+i ,所以复数z1+i =3+i 1+i=(3+i )(1-i )(1+i )(1-i )=4-2i2=2-i ,表示的点是Q (2,-1).故选D.(2)z 2+3z -1=(1+2i )2+31+2i -1=12+4i +4i 2+32i =4i 2i =2.故选C.(3)由1+z 1-z =i ,得z =-1+i 1+i=(-1+i )(1-i )2=2i2=i ,所以|z |=|i|=1.故选A.]两个复数代数形式的除法运算步骤(1)首先将除式写为分式;(2)再将分子、分母同乘以分母的共轭复数;(3)然后将分子、分母分别进行乘法运算,并将其化为复数的代数形式.[跟进训练] 2.(1)3+i1+i=( ) A .1+2i B .1-2i C .2+iD .2-i(2)已知i 为虚数单位,则1+i3-i =( )A .2-i5 B .2+i 5 C .1-2i5 D .1+2i 5(1)D (2)D [(1)3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i2=2-i. (2)1+i 3-i =(1+i )(3+i )(3-i )(3+i )=1+2i5.] 类型3 复数几何意义的综合应用【例3】 (1)已知i 是虚数单位,设复数z 1=1+i ,z 2=1+2i ,则z 1z 2在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限(2)若复数(1-i)(a +i)在复平面内对应的点在第二象限,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,-1)C .(1,+∞)D .(-1,+∞)1. 复数z =-2+i 在复平面内对应的点在第几象限?[提示] 因为复数z =-2+i 在复平面内对应的点为(-2,1),它在第二象限. 2.若复数z =a +b i (a ,b ∈R )在复平面内对应的点在第四象限,则实数a ,b 应满足什么条件?[提示] a >0,b <0.3.(1)计算z 1z 2→求复数z 1z 2在复平面内对应的点→判断其所在的象限(2)计算(1-i )(a +i )→求复数(1-i )(a +i )在复平面内对应的点→构建方程组并求解(1)D (2)B [(1)由题可得,z 1z 2=1+i1+2i =(1+i )(1-2i )(1+2i )(1-2i )=35-15i ,对应在复平面上的点的坐标为⎝ ⎛⎭⎪⎫35,-15,在第四象限.(2)因为z =(1-i)(a +i)=a +1+(1-a )i ,所以它在复平面内对应的点为(a +1,1-a ),又此点在第二象限,所以⎩⎨⎧a +1<0,1-a >0,解得a <-1.]1.把例3(1)中的复数“z 1z 2”换为“11+i ”,答案是哪个?[解]11+i =1-i (1+i )(1-i )=12-12i ,对应的点为⎝ ⎛⎭⎪⎫12,-12,在第四象限,故选D.2.把例3(2)中的复数“(1-i)(a +i)”换为“1-2ia +i”,其余条件不变, 求实数a 的取值范围.[解] 因为1-2i a +i =(1-2i )(a -i )(a +i )(a -i )=a -2a 2+1-2a +1a 2+1i ,由题意可得⎩⎪⎨⎪⎧a -2a 2+1<0-2a +1a 2+1>0,解得a <-12.(1)复数z =a +b i(a ,b ∈R )Z (a ,b )OZ →=(a ,b ).(2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解法更加直观.[跟进训练]3.已知复数z 满足(1+2i)z =4+3i(i 为虚数单位),求z 及z z .[解] ∵(1+2i)z =4+3i , ∴z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=2-i , ∴z =2+i ,∴zz =2-i 2+i =(2-i )2(2+i )(2-i )=3-4i 5=35-45i. 当堂达标1.复数(1+i)2(2+3i)的值为( ) A .6-4i B .-6-4i C .6+4iD .-6+4iD [(1+i)2(2+3i)=2i(2+3i)=-6+4i.]2.已知i 是虚数单位,若复数z 满足z i =1+i ,则z 2=( ) A .-2iB .2iC .-2D .2A [∵z i =1+i ,∴z =1+i i =1i +1=1-i. ∴z 2=(1-i)2=1+i 2-2i =-2i.] 3. 在复平面内,复数11-i的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限D [11-i =1+i 2=12+12i ,其共轭复数为12-12i ,∴复数11-i的共轭复数对应的点的坐标为⎝ ⎛⎭⎪⎫12,-12,位于第四象限,故选D.]4.计算:(1-i)(1+i)+(-1+i)=________. 1+i [(1-i)(1+i)+(-1+i)=1-i 2-1+i =1+i.] 5.设复数z =1+2i ,则z 2-2z =________.-3 [ ∵z =1+2i ,∴z 2-2z =z (z -2)=(1+2i)(1+2i -2)=(1+2i)(-1+2i)=-3.]回顾本节内容,自我完成以下问题: 1.如何进行复数代数形式的乘除运算?[提示] (1)复数代数形式的乘法类似于多项式乘以多项式,复数的乘法满足交换律、结合律以及乘法对加法的分配律.(2)在进行复数代数形式的除法运算时,通常先将除法写成分式的形式,再把分子、分母都乘以分母的共轭复数,化简后可得,类似于以前学习的分母有理化.2.解决复数问题的基本思想是什么?[提示] 复数问题实数化是解决复数问题的基本思想方法,其桥梁是设复数z =a +b i(a ,b ∈R ),利用复数相等的充要条件转化.利用复数产生分形图以前我们学过的函数,定义域都是实数集的子集.但函数概念还可以推广:定义域是复数集的子集的函数称为复变函数.类似地,我们还可以得到多项式复变函数的概念.例如,f(z)=z2就是一个多项式复变函数,此时f(i)=i2=-1,f(1+i)=(1+i)2=2i.给定多项式复变函数f(z)之后,对任意一个复数z0,通过计算公式z n+1=f(z n),n∈N可以得到一列值z0,z1,z2,…,z n,….如果存在一个正数M,使得|z n|<M对任意n∈N都成立,则称z n为f(z)的收敛点;否则,称z n为f(z)的发散点.f(z)的所有收敛点组成的集合称为f(z)的充满茹利亚集.例如,当f(z)=z2时,如果z n=i,则得到的一列值是i,-1,1,1,…,1,…;如果z n=1+i,则算出的一列值是1+i,2i,-4,…,22n-1,….显然,对于f(z)=z2来说,i为收敛点,1+i为发散点.事实上,利用|z2|=|z|2可以证明,f(z)=z2的充满茹利亚集是一个单位圆盘(即由满足|z|≤1的所有z组成的集合).让人惊讶的是,当f(z)=z2+c时,对于某些复数c来说,f(z)的充满茹利亚集是非常复杂的.如果利用计算机对不同形态的收敛点和发散点进行不同的着色,就可以得到分形图.而且,如果按照一定的规则对c进行分类,并进行着色,可以得到如图所示的芒德布罗分形图.。