复数的四则运算
- 格式:ppt
- 大小:547.50 KB
- 文档页数:25
第8讲 复数的四则运算一、考点梳理考点1 复数的加减法、乘法运算设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R )是任意两个复数,复数z 1与z 2的加法运算律:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i .复数z 1与z 2的减法运算律:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i .复数z 1与z 2的乘法运算律:z 1·z 2= (a +bi )(c +di )=(ac -bd )+(bc +ad )i .几个常用结论(1)()i i 212=+,(2)()i i 212-=-,(3)()()22b a bi a bi a +=-+例1.(1)设i 是虚数单位,复数z 1=1+2i ,z 2=1﹣3i ,那么z 1+z 2=( )A .2﹣iB .2+iC .﹣2﹣iD .﹣2+i【分析】利用复数的加法运算即可求解.【解答】解:∵复数z 1=1+2i ,z 2=1﹣3i ,∴z 1+z 2=2﹣i ,故选:A .(2)复数(2+i )2=( )A .4﹣3iB .3﹣4iC .4+3iD .3+4i【分析】直接利用复数代数形式的乘除运算化简即可.【解答】解:因为(2+i )2=3+4i ,故选:D .(3)设z =i 3+1(i 是虚数单位),是z 的共轭复数,则﹣z 2=( )A .3﹣iB .1+3iC .﹣1﹣iD .1﹣2i【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:z =i 3+1=﹣i +1,∴=1+i,∴﹣z2=1+i﹣(1﹣i)2=1+i﹣1+2i﹣i2=1+3i,故选:B.(4)已知复数z1=2+i,z2=﹣1+2i,则z1•z2虚部为()A.﹣4B.4C.3D.3i【分析】利用复数的四则运算求出z1•z2,然后由复数的定义即可得到答案.【解答】解:因为复数z1=2+i,z2=﹣1+2i,所以z1•z2=(2+i)(﹣1+2i)=﹣2+4i﹣i+2i2=﹣2+3i﹣2=﹣4+3i,由复数的定义可知,z1•z2虚部为3.故选:C.(5)已知2+i是关于x的方程x2+ax+5=0的根,则实数a=()A.2﹣i B.﹣4C.2D.4【分析】由题意利用实系数一元二次方程虚根成对定理,韦达定理,求得实数a.【解答】解:∵已知z=2+i是关于x的方程x2+ax+5=0的根,∴2﹣i是关于x的方程x2+ax+5=0的根,∴2+i+(2﹣i)=﹣a,解得a=﹣4,故选:B.【变式训练1】.若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2B.3,2C.3,﹣3D.﹣1,4【分析】由复数的加法运算化简等式左边,然后由实部等于实部,虚部等于虚部求得a,b的值.【解答】解:由(1+i)+(2﹣3i)=3﹣2i=a+bi,得a=3,b=﹣2.故选:A.【变式训练2】.(1﹣i)(4+i)=()A.3+5i B.3﹣5i C.5+3i D.5﹣3i【分析】根据复数代数形式的运算法则,计算即可.【解答】解:(1﹣i)(4+i)=1×4+1×i﹣i×4﹣i2=5﹣3i.故选:D.【变式训练3】.若Z=1+i,则|Z2﹣Z|=()A.0B.1C.D.2【分析】由Z=1+i,得到Z2﹣Z=(1+i)2﹣(1+i)=﹣1+i,再求出|Z2﹣Z|.【解答】解:∵Z=1+i,∴Z2﹣Z=(1+i)2﹣(1+i)=1+2i+i2﹣1﹣i=i2+i=﹣1+i,∴|Z2﹣Z|==.故选:C.【变式训练4】.若复数z=m(m﹣1)+(m﹣1)i是纯虚数,实数m=()A.1B.0C.0或1D.1或﹣1【分析】利用纯虚数的定义即可得出.【解答】解:∵复数z=m(m﹣1)+(m﹣1)i是纯虚数,∴m(m﹣1)=0,m﹣1≠0,∴m=0,故选:B.【变式训练5】.若2﹣i是关于x的实系数方程x2+ax+b=0的一根,则a+b=()A.1B.﹣1C.9D.﹣9【分析】题目给出的是实系数一元二次方程,2﹣i是该方程的一个虚根,则方程的另一个根为2+i,则根据韦达定理即可求出.【解答】解:因为2﹣i是关于x的实系数方程x2+ax+b=0的一根,根据实系数方程虚根成对原理知,方程x 2+ax +b =0的另一根为2+i ,根据韦达定理得2﹣i +2+i =﹣a ,(2+i )(2﹣i )=b ,∴a =﹣4,b =5,∴a +b =1,故选:A .考点2 复数的除法运算复数z 1与z 2的除法运算律:z 1÷z 2 =(a +bi )÷(c +di )=i dc ad bc d c bd ac 2222+-+++(分母实数化) 几个常用结论(1)i i -=1, (2) i ii =-+11 , (3) i i i -=+-11 例2.(1)复数=( )A .﹣2﹣9iB .C .﹣D . 【分析】利用复数除法的运算法则,分子分母同乘以分母的共轭复数,即可求出所求.【解答】解:=, 故选:C .(2)复数(i 为虚数单位)的共轭复数是( ) A .i B .﹣i C .1+iD .1﹣i 【分析】利用复数的运算法则求出复数=i ,由此能求出复数(i 为虚数单位)的共轭复数. 【解答】解:复数====i ,∴复数(i 为虚数单位)的共轭复数为﹣i . 故选:B .(3)设z =+i ,则|z |=( ) A . B . C . D .2【分析】先求z ,再利用求模的公式求出|z |.【解答】解:z=+i=+i=.故|z|==.故选:B.(4)=()A.B.C.D.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:=.故选:D.【变式训练1】.=()A.1+2i B.1﹣2i C.2+i D.2﹣i【分析】分子和分母同时乘以分母的共轭复数,再利用虚数单位i的幂运算性质,求出结果.【解答】解:===2﹣i,故选:D.【变式训练2】.已知z=,则=()A.﹣1+2i B.﹣1﹣2i C.﹣1+3i D.﹣1﹣3i【分析】先根据复数除法的运算法则进行化简,然后根据复数的共轭复数的定义进行求解即可.【解答】解:z==,所以=﹣1﹣3i,故选:D.【变式训练3】.设i是虚数单位,则复数i3﹣=()A.﹣i B.﹣3i C.i D.3i【分析】通分得出,利用i的性质运算即可.【解答】解:∵i是虚数单位,则复数i3﹣,∴===i,故选:C.【变式训练4】.复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,把复数整理成整式形式,再进行复数的乘方运算,合并同类项,得到结果.【解答】解:()2=[]2=(1﹣2i)2=﹣3﹣4i.故选:A.考点3 解方程例3.(1)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【分析】由条件利用两个复数代数形式的乘除法法则,求得z的值.【解答】解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.(2)已知,则复数z=()A.1﹣3i B.﹣1﹣3i C.﹣1+3i D.1+3i【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:,∴=(1+i)(2+i)=1+3i.则复数z=1﹣3i.故选:A.(3)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【分析】设出复数z,通过复数方程求解即可.【解答】解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.(4)已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1B.1C.2D.3【分析】先化简复数,再利用复数相等,解出a、b,可得结果.【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选:B.(5)若i(x+yi)=3+4i,x,y∈R,则复数x+yi的模是()A.2B.3C.4D.5【分析】利用复数的运算法则把i(x+yi)可化为3+4i,利用复数相等即可得出x=4,y=﹣3.再利用模的计算公式可得|x+yi|=|4﹣3i|==5.【解答】解:∵i(x+yi)=xi﹣y=3+4i,x,y∈R,∴x=4,﹣y=3,即x=4,y=﹣3.∴|x+yi|=|4﹣3i|==5.故选:D.【变式训练1】.若z(1+i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【分析】利用复数的运算法则求解即可.【解答】解:由z(1+i)=2i,得z==1+i.故选:D.【变式训练2】.若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【分析】直接利用复数的乘除运算法则化简求解即可.【解答】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.【变式训练3】.若复数z满足3z+=1+i,其中i是虚数单位,则z=.【分析】设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.【解答】解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.【变式训练4】.已知a,b∈R,i是虚数单位.若(a+i)(1+i)=bi,则a+bi=1+2i.【分析】利用复数的乘法展开等式的左边,通过复数的相等,求出a,b的值即可得到结果.【解答】解:因为(a+i)(1+i)=bi,所以a﹣1+(a+1)i=bi,所以,解得a=1,b=2,所以a+bi=1+2i.故答案为:1+2i.【变式训练5】.若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z 的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.二、课堂检测1.下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)【分析】利用复数的运算法则、纯虚数的定义即可判断出结论.【解答】解:A.i(1+i)2=i•2i=﹣2,是实数.B.i2(1﹣i)=﹣1+i,不是纯虚数.C.(1+i)2=2i为纯虚数.D.i(1+i)=i﹣1不是纯虚数.故选:C.2.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.2【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.3.若z=4+3i,则=()A.1B.﹣1C.+i D.﹣i【分析】利用复数的除法以及复数的模化简求解即可.【解答】解:z=4+3i,则===﹣i.故选:D.4.=()A.i B.C.D.【分析】利用复数的除法的运算法则化简求解即可.【解答】解:==+.故选:D.5.若z=1+2i,则=()A.1B.﹣1C.i D.﹣i【分析】利用复数的乘法运算法则,化简求解即可.【解答】解:z=1+2i,则===i.故选:C.6.(多选)设复数z满足=i,则下列说法错误的是()A.z为纯虚数B.z的虚部为﹣iC.在复平面内,z对应的点位于第二象限D.|z|=【分析】利用复数的运算法则化简z,再利用有关知识即可判断出正误.【解答】解:复数z满足=i,∴z===﹣﹣i,则z不是纯虚数,虚部为﹣,在复平面内,z对应的点位于第三象限,|z|==.故说法错误的是ABC.故选:ABC.7.(多选)设z1,z2,z3为复数,z1≠0.下列命题中正确的是()A.若|z2|=|z3|,则z2=±z3B.若z1z2=z1z3,则z2=z3C.若=z3,则|z1z2|=|z1z3|D.若z1z2=|z1|2,则z1=z2【分析】利用复数的模的有关性质和运算,结合共轭复数的概念对各个选项逐一分析判断即可.【解答】解:由复数的形式可知,选项A错误;当z1z2=z1z3时,有z1z2﹣z1z3=z1(z2﹣z3)=0,又z1≠0,所以z2=z3,故选项B正确;当=z3时,则,所以=,故选项C正确;当z1z2=|z1|2时,则,可得,所以,故选项D错误.故选:BC.8.计算:(2+7i)﹣|﹣3+4i|+|5﹣12i|+3﹣8i=13﹣i.【分析】根据复数的基本运算法则和复数模长的定义进行化简即可.【解答】解:原式=2+7i﹣5+13+3﹣8i=13﹣i,故答案为:13﹣i.9.已知复数z满足1+2zi=i,其中i是虚数单位,则|z|=.【分析】先化简复数z,再直接求模即可.【解答】解:依题意,,故.故答案为:.10.设复数z满足=|1﹣i|+i(i为虚数单位),则复数z=﹣i.【分析】利用复数模的计算公式、共轭复数的定义即可得出结论.【解答】解:复数z满足=|1﹣i|+i=+i=+i,则复数z=﹣i,故答案为:﹣i.11.已知复数在z1=a+i,z2=1﹣i,a∈R.(Ⅰ)当a=1时,求z1•的值:(Ⅱ)若z1﹣z2是纯虚数,求a的值;(Ⅲ)若在复平面上对应的点在第二象限,求a的取值范围.【分析】(Ⅰ)把a=1代入,再由复数代数形式的乘除运算化简得答案;(Ⅱ)利用复数代数形式的减法运算化简,再由实部为0求解;(Ⅲ)利用复数代数形式的乘除运算化简,再由实部小于0且虚部大于0求解.【解答】解:(Ⅰ)当a=1时,z1•=(1+i)(1+i)=1+i+i﹣1=2i;(Ⅱ)由z1﹣z2=(a+i)﹣(1﹣i)=a﹣1+2i是纯虚数,得a﹣1=0,即a=1;(Ⅲ)由=在复平面上对应的点在第二象限,得,即﹣1<a<1.12.已知:复数z=(1+i)2+,其中i为虚数单位.(1)求z及|z|;(2)若z2+a,求实数a,b的值.【分析】(1)利用复数代数形式的乘除运算化简z,再由复数模的计算公式求解;(2)把z代入z2+a,整理后利用复数相等的条件列式求解.【解答】解:(1)∵,∴;(2)由z2+a,得:(﹣1+3i)2+a(﹣1﹣3i)+b=2+3i,即(﹣8﹣a+b)+(﹣6﹣3a)i=2+3i,∴,解得.。
§2复数的四则运算学习目标1.熟练掌握复数代数形式的加减乘除运算.2.理解复数乘法的交换律、结合律和乘法对加法的分配律.3.理解共轭复数的概念.知识点一复数代数形式的加减法思考类比多项式的加减法运算,想一想复数如何进行加减法运算?答案两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(a+b i)±(c+d i)=(a±c)+(b±d)i.梳理(1)运算法则设z1=a+b i,z2=c+d i是任意两个复数,那么(a+b i)+(c+d i)=(a+c)+(b+d)i,(a+b i)-(c+d i)=(a-c)+(b-d)i.(2)加法运算律对任意z1,z2,z3∈C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).知识点二复数的乘法及其运算律思考怎样进行复数的乘法运算?答案两个复数相乘,类似于两个多项式相乘,只要把已得结果中的i2换成-1,并且把实部与虚部分别合并即可.梳理(1)复数的乘法法则设z1=a+b i,z2=c+d i是任意两个复数,那么它们的积(a+b i)(c+d i)=(ac-bd)+(ad+bc)i.(2)复数乘法的运算律对于任意z1,z2,z3∈C,有知识点三共轭复数当两个复数的实部相等,虚部互为相反数时,这两个复数叫作互为共轭复数,z的共轭复数用z表示.即当z=a+b i时,z=a-b i.知识点四复数的除法法则设z1=a+b i,z2=c+d i(a,b,c,d∈R,z2≠0),则z1z2=a+b ic+d i=ac+bdc2+d2+bc-adc2+d2i(c+d i≠0).1.在进行复数的加法时,实部与实部相加得实部,虚部与虚部相加得虚部.(√) 2.复数加减乘除的混合运算法则是先乘除,再加减.(√)3.两个共轭复数的和与积是实数.(√)4.若z1,z2∈C,且z21+z22=0,则z1=z2=0.(×)类型一 复数的加法、减法运算例1 (1)若z 1=2+i ,z 2=3+a i(a ∈R ),复数z 1+z 2所对应的点在实轴上,则a =________.(2)已知复数z 满足|z |i +z =1+3i ,则z =________.考点 复数的加减法运算法则题点 复数加减法的综合应用答案 (1)-1 (2)1+43i 解析 (1)z 1+z 2=(2+i)+(3+a i)=5+(a +1)i ,由题意得a +1=0,则a =-1.(2)设z =x +y i(x ,y ∈R ),则|z |=x 2+y 2, ∴|z |i +z =x 2+y 2i +x +y i =x +(x 2+y 2+y )i=1+3i , ∴⎩⎪⎨⎪⎧ x =1,x 2+y 2+y =3,解得⎩⎪⎨⎪⎧x =1,y =43,∴z =1+43i. 反思与感悟 (1)复数的加减运算就是实部与实部相加减,虚部与虚部相加减.(2)当一个等式中同时含有|z |与z 时,一般用待定系数法,设z =x +y i(x ,y ∈R ). 跟踪训练1 (1)若复数z 满足z +i -3=3-i ,则z =________.(2)(a +b i)-(2a -3b i)-3i =________(a ,b ∈R ).(3)已知复数z 满足|z |+z =1+i ,则z =________.考点 复数的加减法运算法则题点 复数加减法的综合应用答案 (1)6-2i (2)-a +(4b -3)i (3)i解析 (1)∵z +i -3=3-i ,∴z =6-2i.(2)(a +b i)-(2a -3b i)-3i=(a -2a )+(b +3b -3)i =-a +(4b -3)i.(3)设z =x +y i(x ,y ∈R ),|z |=x 2+y 2, ∴|z |+z =(x 2+y 2+x )+y i =1+i ,∴⎩⎪⎨⎪⎧ x 2+y 2+x =1,y =1,解得⎩⎪⎨⎪⎧ x =0,y =1, ∴z =i.类型二 复数代数形式的乘除运算例2 计算:(1)⎝⎛⎭⎫-12+32i ⎝⎛⎭⎫32+12i (1+i); (2)(1+2i )2+3(1-i )2+i; (3)(1-4i )(1+i )+2+4i 3+4i. 考点 复数的乘除法运算法则题点 乘除法的运算法则解 (1)⎝⎛⎭⎫-12+32i ⎝⎛⎭⎫32+12i (1+i) =⎣⎡⎦⎤⎝⎛⎭⎫-34-34+⎝⎛⎭⎫34-14i (1+i) =⎝⎛⎭⎫-32+12i (1+i) =⎝⎛⎭⎫-32-12+⎝⎛⎭⎫12-32i =-1+32+1-32i.(2)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i=i 2+i=i (2-i )5=15+25i. (3)(1-4i )(1+i )+2+4i 3+4i =5-3i +2+4i 3+4i=7+i 3+4i =(7+i )(3-4i )(3+4i )(3-4i ) =21-28i +3i +425=25-25i 25=1-i. 反思与感悟 (1)按照复数的乘法法则,三个或三个以上的复数相乘可按从左到右的顺序运算或利用结合律运算,混合运算和实数的运算顺序一致,在计算时,若符合乘法公式,则可直接运用公式计算.(2)根据复数的除法法则,通过分子、分母都乘以分母的共轭复数,使“分母实数化”,这个过程与“分母有理化”类似.跟踪训练2 计算:(1)(4-i)(6+2i)-(7-i)(4+3i);(2)3+2i 2-3i +3-2i 2+3i; (3)(i -2)(i -1)(1+i )(i -1)+i. 考点 复数的乘除法运算法则题点 乘除法的运算法则解 (1)(4-i)(6+2i)-(7-i)(4+3i)=(24+8i -6i +2)-(28+21i -4i +3)=(26+2i)-(31+17i)=-5-15i.(2)3+2i 2-3i +3-2i 2+3i=i (2-3i )2-3i +-i (2+3i )2+3i=i -i =0.(3)(i -2)(i -1)(1+i )(i -1)+i =i 2-i -2i +2i -1+i 2-i +i=1-3i -2+i =(1-3i )(-2-i )(-2+i )(-2-i ) =-2-i +6i +3i 25=-5+5i 5=-1+i. 类型三 i 的运算性质例3 计算:(1)2+2i (1-i )2+⎝ ⎛⎭⎪⎫21+i 2 016; (2)i +i 2+…+i 2 017.考点 虚数单位i 及其性质题点 虚数单位i 的运算性质 解 (1)原式=2(1+i )-2i+⎝⎛⎭⎫22i 1 008=i(1+i)+(-i)1 008 =i +i 2+(-1)1 008·i 1 008=i -1+i 4×252=i -1+1=i.(2)方法一 原式=i (1-i 2 017)1-i =i -i 2 0181-i =i -(i 4)504·i 21-i=i +11-i =(1+i )(1+i )(1-i )(1+i )=2i 2=i. 方法二 因为i n +i n +1+i n +2+i n +3=i n (1+i +i 2+i 3)=0(n ∈N +),所以原式=(i +i 2+i 3+i 4)+(i 5+i 6+i 7+i 8)+…+(i 2 013+i 2 014+i 2 015+i 2 016)+i 2 017=i 2 017=(i 4)504·i =1504·i =i.反思与感悟 (1)等差、等比数列的求和公式在复数集C 中仍适用,i 的周期性要记熟,即i n +i n +1+i n +2+i n +3=0(n ∈N +).(2)记住以下结果,可提高运算速度.①(1+i)2=2i ,(1-i)2=-2i.②1-i 1+i =-i ,1+i 1-i=i.③1i=-i. 跟踪训练3 (1)⎝ ⎛⎭⎪⎫1+i 1-i 2 018=________. 考点 虚数单位i 及其性质题点 虚数单位i 的运算性质答案 -1解析 ⎝ ⎛⎭⎪⎫1+i 1-i 2 018=⎣⎢⎡⎦⎥⎤(1+i )(1+i )(1-i )(1+i ) 2 018=⎝⎛⎭⎫2i 2 2 018 =i 2 018=(i 4)504·i 2=1504·i 2=-1.(2)化简i +2i 2+3i 3+…+100i 100.考点 虚数单位i 及其性质题点 虚数单位i 的运算性质解 设S =i +2i 2+3i 3+…+100i 100,①所以i S =i 2+2i 3+…+99i 100+100i 101,②①-②得(1-i)S =i +i 2+i 3+…+i 100-100i 101=i (1-i 100)1-i -100i 101=0-100i =-100i.所以S =-100i 1-i =-100i (1+i )(1-i )(1+i )=-100(-1+i )2 =50-50i.所以i +2i 2+3i 3+…+100i 100=50-50i.类型四 共轭复数及其应用例4 把复数z 的共轭复数记作z ,已知(1+2i)z =4+3i ,求z .考点 共轭复数的定义与应用题点 利用定义求共轭复数解 设z =a +b i(a ,b ∈R ),则z =a -b i ,由已知得(1+2i)(a -b i)=(a +2b )+(2a -b )i =4+3i ,由复数相等的定义知,⎩⎪⎨⎪⎧ a +2b =4,2a -b =3,得⎩⎪⎨⎪⎧ a =2,b =1, 所以z =2+i.引申探究若将本例条件改为z (z +2)=4+3i ,求z .解 设z =x +y i(x ,y ∈R ).则z =x -y i ,由题意知,(x -y i)(x +y i +2)=4+3i.得⎩⎪⎨⎪⎧x (2+x )+y 2=4,xy -y (x +2)=3, 解得⎩⎨⎧ x =-1-112,y =-32或⎩⎨⎧ x =-1+112,y =-32, 所以z =⎝⎛⎭⎫-1-112-32i 或z =⎝⎛⎭⎫-1+112-32i. 反思与感悟 当已知条件出现复数等式时,常设出复数的代数形式,利用复数相等的充要条件转化为实数问题求解.跟踪训练4 已知复数z 满足|z |=1,且(3+4i)z 是纯虚数,求z 的共轭复数z .考点 共轭复数的定义与应用题点 利用定义求共轭复数解 设z =a +b i(a ,b ∈R ),则|z |=a 2+b 2=1,即a 2+b 2=1.①因为(3+4i)z =(3+4i)(a +b i)=(3a -4b )+(3b +4a )i 是纯虚数,所以3a -4b =0,且3b +4a ≠0.② 由①②联立,解得⎩⎨⎧ a =45,b =35或⎩⎨⎧ a =-45,b =-35.所以z =45-35i 或z =-45+35i.1.设z 1=3-4i ,z 2=-2+3i ,则z 1-z 2在复平面内对应的点位于() A .第一象限 B .第二象限C .第三象限D .第四象限 考点 复数的加减法运算法则题点 复数加减法与点的对应答案 D解析 ∵z 1-z 2=5-7i ,∴z 1-z 2在复平面内对应的点位于第四象限.2.设复数z 满足i z =1,其中i 为虚数单位,则z 等于( )A .-iB .iC .-1D .1考点 复数的乘除法运算法则题点 利用乘除法求复数答案 A解析 z =1i =-i.3.若z =4+3i(i 为虚数单位),则z|z |等于( )A .1B .-1C.45+35iD.45-35i考点 复数的乘除法运算法则题点 乘除法的运算法则答案 D解析z=4+3i,|z|=5,z|z|=45-35i.4.设i 是虚数单位,z 是复数z 的共轭复数,若z =2i 31+i,则z =________. 考点 共轭复数的定义与应用题点 利用定义求共轭复数答案 -1+i解析 z =2i 31+i =-2i (1-i )(1+i )(1-i )=-1-i , 所以z =-1+i.5.已知复数z 满足:z ·z +2z i =8+6i ,求复数z 的实部与虚部的和.考点 共轭复数的定义与应用题点 与共轭复数有关的综合问题解 设z =a +b i(a ,b ∈R ),则z ·z =a 2+b 2,∴a 2+b 2+2i(a +b i)=8+6i ,即a 2+b 2-2b +2a i =8+6i ,∴⎩⎪⎨⎪⎧ a 2+b 2-2b =8,2a =6,解得⎩⎪⎨⎪⎧a =3,b =1, ∴a +b =4,∴复数z 的实部与虚部的和是4.1.复数代数形式的加减法满足交换律、结合律,复数的减法是加法的逆运算.2.复数代数形式的乘除运算(1)复数代数形式的乘法类似于多项式乘以多项式,复数的乘法满足交换律、结合律以及乘法对加法的分配律.(2)在进行复数代数形式的除法运算时,通常先将除法写成分式的形式,再把分子、分母都乘以分母的共轭复数,化简后可得,类似于以前学习的分母有理化.3.复数问题实数化思想复数问题实数化是解决复数问题的基本思想方法,其桥梁是设复数z=a+b i(a,b∈R),利用复数相等的充要条件转化.一、选择题1.若复数z 满足z +(3-4i)=1,则z 的虚部是( )A .-2B .4C .3D .-4考点 复数的加减法运算法则题点 复数加减法的运算法则答案 B解析 ∵z +(3-4i)=1,∴z =-2+4i ,故z 的虚部是4.2.设复数z 满足关系式z +|z |=2+i ,那么z 等于( )A .-34+i B.34-i C .-34-i D.34+i 考点 复数的加减法运算法则题点 复数加减法的运算法则答案 D解析 设z =a +b i(a ,b ∈R ),则z +|z |=(a +a 2+b 2)+b i =2+i , 则⎩⎪⎨⎪⎧ a +a 2+b 2=2,b =1, 解得⎩⎪⎨⎪⎧a =34,b =1, ∴z =34+i.3.已知复数z满足(z-1)i=1+i,则z等于()A.-2-i B.-2+iC.2-i D.2+i考点复数的乘除法运算法则题点利用乘除法求复数答案 C解析由(z-1)i=1+i,两边同乘以-i,则有z-1=1-i,所以z=2-i.4.已知复数z 1=3-b i ,z 2=1-2i ,若z 1z 2是实数,则实数b 等于( )A .6B .-6C .0 D.16考点 复数的乘除法运算法则题点 利用乘除法求复数中的未知数答案 A解析 ∵z 1z 2=3-b i1-2i =(3-b i )(1+2i )(1-2i )(1+2i )=3+2b +(6-b )i 5是实数,∴6-b =0,∴实数b 的值为6,故选A.5.已知i 为虚数单位,图中复平面内的点A 表示复数z ,则表示复数z1+i 的点是()A .MB .NC .PD .Q考点 复数的乘除法运算法则题点 运算结果与点的对应关系答案 D解析 由图可知z =3+i ,所以复数z 1+i =3+i 1+i =(3+i)(1-i )(1+i )(1-i )=4-2i 2=2-i 表示的点是Q (2,-1).故选D.6.设复数z 满足1+z1-z =i ,则|z |等于( )A .1 B. 2 C. 3 D .2考点 复数的乘除法运算法则题点 利用乘除法求复数答案 A解析 由1+z 1-z=i , 得z =-1+i 1+i=(-1+i )(1-i )2=2i 2=i , ∴|z |=|i|=1.7.若z +z =6,z ·z =10,则z 等于( )A .1±3iB .3±iC .3+iD .3-i考点 共轭复数的定义与应用题点 与共轭复数有关的综合问题答案 B解析 设z =a +b i(a ,b ∈R ),则z =a -b i , 所以⎩⎪⎨⎪⎧ 2a =6,a 2+b 2=10,解得⎩⎪⎨⎪⎧ a =3,b =±1,则z =3±i. 8.计算(-1+3i )3(1+i )6+-2+i 1+2i的值是( ) A .0 B .1 C .2i D .i考点 复数四则运算的综合应用题点 复数的混合运算答案 C解析 原式=(-1+3i )3[(1+i )2]3+(-2+i )(1-2i )(1+2i )(1-2i )=(-1+3i )3(2i )3+-2+4i +i +25=⎝⎛⎭⎫-12+32i 3-i +i =1-i +i =i (-i )i+i =2i.二、填空题9.已知a ,b ∈R ,i 是虚数单位,若(1+i)(1-b i)=a ,则a b的值为________. 考点 复数的乘除法运算法则题点 利用乘除法求复数中的未知数答案 2解析 因为(1+i)(1-b i)=1+b +(1-b )i =a ,又a ,b ∈R ,所以1+b =a 且1-b =0,得a =2,b =1,所以a b=2. 10.若复数z 满足(3-4i)z =4+3i(i 是虚数单位),|z |=________.考点 复数的乘除法运算法则题点 利用乘除法求复数答案 1解析 因为(3-4i)z =4+3i ,所以z =4+3i 3-4i =(4+3i )(3+4i )(3-4i )(3+4i )=25i 25=i. 则|z |=1.11.定义一种运算:⎣⎢⎡⎦⎥⎤a b c d =ad -bc .则复数⎣⎢⎡⎦⎥⎤1+i -12 3i 的共轭复数是________.考点 共轭复数的定义与应用题点 利用定义求共轭复数答案 -1-3i解析 ⎣⎢⎡⎦⎥⎤1+i -12 3i =3i(1+i)+2=-1+3i , ∴其共轭复数为-1-3i.三、解答题12.已知z ,ω为复数,(1+3i)z 为纯虚数,ω=z 2+i,且|ω|=52,求ω. 考点 复数的乘除法运算法则题点 乘除法的综合应用解 设z =a +b i(a ,b ∈R ),则(1+3i)z =a -3b +(3a +b )i.由题意得a -3b =0,3a +b ≠0.因为|ω|=⎪⎪⎪⎪⎪⎪z 2+i =52, 所以|z |=a 2+b 2=510,将a =3b 代入,解得a =15,b =5或a =-15,b =-5,故ω=±15+5i 2+i=±(7-i). 13.已知复数z =1+i.(1)设ω=z 2+3z -4,求ω;(2)若z 2+az +b z 2-z +1=1-i ,求实数a ,b 的值. 考点 复数四则运算的综合应用题点 与混合运算有关的未知数求解解 (1)因为z =1+i ,所以ω=z 2+3z -4=(1+i)2+3(1-i)-4=-1-i.(2)因为z =1+i ,所以z 2+az +b z 2-z +1=(1+i )2+a (1+i )+b (1+i )2-(1+i )+1=1-i , 即(a +b )+(a +2)i i=1-i , 所以(a +b )+(a +2)i =(1-i)i =1+i ,所以⎩⎪⎨⎪⎧ a +2=1,a +b =1,解得⎩⎪⎨⎪⎧a =-1,b =2.四、探究与拓展14.投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数(m +n i)(n -m i)为实数的概率为________.考点 复数的乘除法运算法则题点 乘除法的综合应用答案 16解析 易知(m +n i)(n -m i)=mn -m 2i +n 2i +mn =2mn +(n 2-m 2)i. 若复数(m +n i)(n -m i)为实数,则m 2=n 2,即(m ,n )共有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),6种情况,所以所求概率为636=16. 15.设z 是虚数,ω=z +1z是实数,且-1<ω<2. (1)求|z |的值及z 的实部的取值范围;(2)设μ=1-z 1+z,求证:μ为纯虚数. 考点 复数四则运算的综合应用题点 与四则运算有关的问题(1)解 因为z 是虚数,所以可设z =x +y i(x ,y ∈R ,且y ≠0),则ω=z +1z =(x +y i)+1x +y i =x +y i +x -y i x 2+y 2=⎝⎛⎭⎪⎫x +x x 2+y 2+⎝ ⎛⎭⎪⎫y -y x 2+y 2i. 因为ω是实数,且y ≠0,所以y -y x 2+y 2=0,即x 2+y 2=1. 所以|z |=1,此时ω=2x .又-1<ω<2,所以-1<2x <2.所以-12<x <1, 即z 的实部的取值范围是⎝⎛⎭⎫-12,1. (2)证明 μ=1-z 1+z =1-(x +y i )1+(x +y i )=(1-x -y i )(1+x -y i )(1+x )2+y 2=1-x 2-y 2-2y i 1+2x +x 2+y 2.又x2+y2=1,所以μ=-yi.1+x 因为y≠0,所以μ为纯虚数.。
复数四则运算的公式
复数四则运算公式是指对两个复数进行加、减、乘、除的运算。
复数是由实数和虚数构成的数,其中虚数单位i满足i²=-1。
加法公式:(a+bi)+(c+di)=(a+c)+(b+d)i,即实部相加,虚部相加。
例如,(2+3i)+(4+5i)=(2+4)+(3+5)i=6+8i。
减法公式:(a+bi)-(c+di)=(a-c)+(b-d)i,即实部相减,虚部相减。
例如,(2+3i)-(4+5i)=(2-4)+(3-5)i=-2-2i。
乘法公式:(a+bi)×(c+di)=(ac-bd)+(ad+bc)i,即实部相乘减虚部相乘。
例如,(2+3i)×(4+5i)=(2×4-3×5)+(2×5+3×4)i=-7+22i。
除法公式:(a+bi)/(c+di)=(ac+bd)/(c²+d²)+((bc-ad)/(c²+d²))i,即分子分母同乘分母的共轭复数,再化简。
例如,(2+3i)/(4+5i)=((2×4+3×5)/(4²+5²))+((3×4-2×5)/(4²+5²))i=23/41-2/41i。
复数四则运算公式是复数运算的基础,掌握了这些公式,就能够进行复数的加减乘除运算。
在实际应用中,复数广泛应用于电路分析、信号处理、量子力学等领域。