用正多边形铺设地面(华东师大版)
- 格式:ppt
- 大小:3.56 MB
- 文档页数:44
9.3 用正多边形铺设地面原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!灵师不挂怀,冒涉道转延。
——韩愈《送灵师》9.3.1 用相同的正多边形教学目标一、基本目标1.通过用相同的正多边形拼地板的活动,巩固多边形的内角和与外角和公式.2.通过“拼地板”和有关计算,使学生从中发现能拼成一个不留空隙,又不重叠的平面图形的关键是围绕一点拼在一起的几个多边形的内角相加要等于360°.二、重难点目标【教学重点】正多边形进行密铺的原理.【教学难点】掌握用哪些正多边形可以进行密铺.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P88~P89的内容,完成下面练习.【3 min反馈】1.完成下表:n-2×180°n内角的大小2.当围绕一点拼在一起的几个内角加在一起恰好组成一个周角时,就能拼成一个平面图形,即可以铺满地面.3.用一种正多边形铺地面时,需要的条件是这种正多边形的每个内角都能被360o整除.4.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是( D )A.正三角形B.正四边形C.正六边形D.正八边形环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图所示,有一边长为8米的正方形大厅,它是由黑白完全相同的方砖密铺而成.求一块方砖的边长.【互动探索】(引发学生思考)正方形大厅中共用方砖多少块?正方形大厅的面积与方砖有什么关系?【解答】根据题意可知,共有32块方砖,所以每块方砖的面积为8×8÷32=2(平方米),故一块方砖的边长为2米.【互动总结】(学生总结,老师点评)正方形大厅的四个角处的白方砖正好组成一块白方砖,各边上的残缺白瓷砖正好组成6块完整的白瓷砖,那么共有32块瓷砖.求出每块瓷砖的面积,进而求得边长即可.【例2】如图所示,已知等边三角形ABC的边长为,按图中所示的规律,用2019个这样的三角形镶嵌而成的四边形的周长是( )A.2018 B.2019C.2020 D.2021【互动探索】(引发学生思考)观察图形可知,第一个三角形的周长是3,利用2个三角形成的第1个四边形的周长是3+1=4,利用3个三角形成的第2个四边形的周长是3+2=5,利用4个三角形成的第3个四边形的周长是3+3=6,…,利用n个三角形成的第n-1个四边形的周长就是3+n-1=n+2,所以用2019这样的三角形镶嵌而成的四边形的周长是n+2=2019+2=2021.【答案】D【互动总结】(学生总结,老师点评)解答本题关键是得出利用n个三角形进行镶嵌而成的四边形的周长规律.活动2 巩固练习(学生独学)1.下列几种形状的瓷砖中,只用一种不能够铺满地面的是( B )A.正六边形B.正五边形C.正方形D.正三角形2.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个点处的正六边形地砖有( A )A.3块B.4块C.5块D.6块3.如果只用一种正多边形做平面密铺而且在每一个正多边形的每一个顶点周围都有6个正多边形,则该正多边形的每个内角度数为60°.4.在一个边长为10 m的正六边形地面,用边长为50 cm的正三角形瓷砖铺满,则需这样的瓷砖2400块.环节3 课堂小结,当堂达标(学生总结,老师点评)用一种正多边铺地面时,需要的条件这种正多边形的每个内角都能被360o 整除.练习设计请完成本课时对应练习!9.3.2 用多种正多边形教学目标一、基本目标通过用两种以上的正多边形拼地板,提高学生观察、分析、概括、抽象等能力.二、重难点目标【教学重点】寻找用哪几种正多边形能铺满地面.【教学难点】用列举法根据铺满地面的条件,设计铺设地面的方案.教学过程环节1 自学提纲生成问题【5 min阅读】阅读教材P90~P91的内容,完成下面练习.【3 min反馈】1.下列图形中能单独进行镶嵌的是 ( B )A.正五边形B.正六边形C.正八边形D.正十二边形2.当围绕一点拼在一起的几个内角加在一起恰好组成一个周角时,就能拼成一个平面图形,即可以铺满地面.3.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形,正方形,正六边形,那么另外一个是 ( B ) A.正三角形B.正方形C.正五边形D.正六边形环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖,从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第9层中含有正三角形个数是( )A.54个B.102个C.90个D.114个【互动探索】(引发学生思考)观察图形可知,第1层包括6个正三角形,第2层包括18个正三角形,…,则每一层比上一层多12个,所以第9层中含有正三角形的个数是6+12×8=102(个).【答案】B【互动总结】(学生总结,老师点评)本题考查了平面镶嵌(密铺)问题,此题要注意能够分别找到三角形和正方形的个数的规律.【例2】如图是小亮家里地面上铺设的正方形地板砖,上面的图案由一个小正方形和四个等腰梯形组成,小明发现地板上有正八边形图案,那么地板上的两个正八边形图案需要这样的地板砖至少( )A.6块B.8块C.10块D.12块【互动探索】(引发学生思考)由正多边形铺满地面的条件知,在一个顶点处各个内角和为360°.∵正方形的一个内角为90°,∴同一顶点处等腰梯形的一个内角为(360-90)÷2=135°.又∵正八边形的内角为180°-360°÷8=135°,∴小正方形的边长即为正八边形的边长,画图如下:则两个正八边形图案需要这样的地板砖至少8块.【答案】B【互动总结】(学生总结,老师点评)解题时画出图形分析,并利用正八边形的性质得出答案.活动2 巩固练习(学生独学)1.下列正多边形中,与正八边形组合能够铺满地面的是( B )A.正三角形B.正方形C.正五边形D.正六边形2.阳光中学阅览室在装修过程中,准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点周围正方形、正三角形地砖的块数可以是( B ) A.正方形2块,正三角形2块B.正方形2块,正三角形3块C.正方形1块,正三角形2块D.正方形2块,正三角形1块3.下列四组多边形中,能铺满地面的是①②③④.①正六边形与正三角形;②正十二边形与正三角形;③正八边形与正方形;④正三角形与正方形.4.用正多边形镶嵌,设在一个顶点周围有m个正方形,n个正八边形,则m =1,n=2.环节3 课堂小结,当堂达标(学生总结,老师点评)几种边长相等的正多边形能密铺要满足围绕一点拼在一起的几种正多边形的内角和为360°.练习设计请完成本课时对应练习!【素材积累】不怕你不懂不会,旧怕你不学不干。
9.3用正多边形铺设地面教学目标知识与技能1.理解正多边形地板的条件,会用一个正多边形进行平面镶嵌.2.理解用多种多边形拼地板的理论依据.过程与方法1.经历实验、观察、分析、归纳的过程,培养良好的数学习惯.综合应用所学的知识技能解决平面镶嵌的问题,增加应用意识,获得各种体验.2.培养学生分析归纳能力,注重参与、合作、交流的意识.情感、态度与价值观1.体会数学在生活中的实际价值,培养学生学习数学的兴趣,促进创新意识,审美意识的发展.2.在解决实际问题过程中培养应用数学的意识,体会数学的实际应用价值.重点难点重点1.用同种正多边形拼地板及其理论依据.2.理解多种正多边形拼地板的理论依据.难点1.识别怎样的正多边形能无空隙的拼地板.2.识别哪几种正多边形能组合在一起铺满地板.教学过程一、情境导入设计意图:从观察生活现象人手,抽象出数学问题——平面镶嵌的问题,激发学习兴趣.教师引入背景图片,利用教材图片或搜寻其他的素材均可.学生欣赏美丽的校园一角,教师指出:用地砖铺地,用瓷砖贴墙,都要求砖与砖严丝合缝,不留空隙,把地面或墙面全部覆盖.从数学角度去分析,这些工作就是用一些不重叠摆放的多边形把平面一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)的问题.设计意图:通过实例创设情境,从一种图形的镶嵌过渡到两种图形的镶嵌,培养学生的观察能力,激发他们的学习兴趣.[问题1]上一节课中我们学习的一种图形的镶嵌应满足的条件是什么?请你举出几种可以用一种图形进行镶嵌的图形.[问题2]正五边形可以进行镶嵌吗?为什么?[问题3]生活中,我们还见过除一种图形以外的多种图形组合的镶嵌,想一想有哪些实例?学生活动:回忆、思考、交流,然后回答问题.教师活动:点评、总结.二、实验探究设计意图:通过实验,让学生发现正三角形、正四边形、正六边形可以镶嵌成一个平面图案,而正五边形则不能.培养学生的操作能力,了解一般的三角形或四边形可以进行密铺.实验1:尝试用手中的正三角形、正四边形、正五边形、正六边形进行密铺.实验2:用任意三角形或任意四边形镶嵌成一个平面图案.学生动手操作,记录结果,教师巡回指导,并展示效果图案.学生在拼图的过程中,教师巡回指导,教师对出现的不同的拼图方法予以肯定,学生完成实验后,出示镶嵌效果图案.学生拼图,教师重点关注学生能否把不相等的角拼接在一个顶点处,能否把相等的边拼在一起,教师出示镶嵌效果图.设计意图:通过实验,让学生知道两种正多边形也可以进行平面镶嵌;探究活动是让学生应用已有的数学知识和能力,去探究生活中有趣而富有挑战性的问题,培养学生自主探索的能力和与他人合作的习惯.实验1:用正三角形和正四边形镶嵌成一个平面图案.实验2:用正三角形和正六边形镶嵌成一个平面图案.实验3:用正四边形与正六边形镶嵌成一个平面图案.学生动手操作,记录结果,教师巡回指导,并展示镶嵌结果.学生在拼图的过程中,教师巡回指导,教师对出现的不同的拼图方法予以肯定.三、分析结果设计意图:学生运用已有的知识对实验结果进行推理分析,把感性认识上升到理性认识的高度,说明了理论来源于实践,验证平面密铺的条件,说明理论来源于实践又运用于实践.问题1:分析实验结果问题2:解释实验结果学生观察上述的实验结果,分组讨论平面镶嵌的条件,发现问题与多边形的内角大小有密切关系,教师出示图例,引导学生发现拼接在同一点的各个角的和恰好等于360°.师生归纳得出多边形平面镶嵌的条件:(1)拼接在同一点的各个角的和恰好等于360°;(2)相邻的多边形有公共边.学生解释任意三角形能够进行平面镶嵌的理由,把6个全等的三角形适当地拼接在同一个点,一定能使以这点为顶点的6个角的和恰好等于360°,并且使边长相等的两边贴在一起.于是,用三角形能镶嵌成一个平面图案.学生说明正五边形不能镶嵌成一个平面图案的原因:由多边形内角和公式,可以得到五边形内角和等于(5-2)×180°=540°,因此,正五边形的每个内角等于540°÷5=108°.360°不是108°的整数倍,也就是用一些108°的角不能拼出360°的角.设计意图:学生运用已有的知识对实验结果进行推理分析,把感性认识上升到理性认识的高度;得出用两种正多边形镶嵌存在的规律,既发挥了学生的主体意识,又培养了学生的创新思维.问题1:分析实验结果问题2:解释实验结果学生观察上述实验结果,正三角形和正四边形可以镶嵌成一个平面图案,即必须由三块正三角形和2块正四边形在一个顶点处围成,根据不同的交错搭配,这两种图形组合在一起可以搭配成多种图案,但它们的块数是固定的;正三角形和正六边形可以镶嵌成一个平面图案,即在一个顶点处由2块正三角形和2块正四边形或由4块正三边形和一块正六边形进行搭配围成,每种搭配也可设计出不同的镶嵌图案,正四边形和正六边形不能镶嵌成一个平面图案.师生共同归纳得出两种多边形进行平面镶嵌的条件:当围绕一点拼在一起的几个正多边形的内角和刚好组成一个周角时,就能拼成一个平面图案.学生说明正四边形和正六边形不能镶嵌成一个平面图案的原因:正四边形的一个内角为90°.正六边形的一个内角为120°,设若能进行平面镶嵌时正四边形有x块,正六边形有y块,则90x+120y=360,此方程x、y都是正整数,找不到能同时满足x、y为正整数的解,故正四边形和正六边形不能平面镶嵌.四、小结设计意图:复习巩固已学知识,学生学会小结反思,将已学的知识用于实际.培养学生的创造能力,提高学生的审美意识.问题1:小结反思问题2:自由设计学生自由谈本节课的收获.教师注意纠正学生的错误与不足,对学生的进步予以表扬.教师先展示几组其他平面镶嵌的图形,扩展学生视野,然后要求学生独立设计一份平面镶嵌的图案,教师先个别辅导,再集中欣赏学生的作品.设计意图:通过小结复习巩固已学知识,让学生学会小结反思,同时培养学生的归纳能力和数学语言的表达能力.让学生谈谈本节课的收获,教师给予纠正和点评,学生之间可以进行互补性的回答.五、布置作业见学生用书课后作业部分.教学反思本节学习了用一种或几种多边形进行平面镶嵌,让学生学到了用一种或几种多边形进行平面镶嵌时都可以建立数学模型,也就是用一元一次方程或者二元一次方程求不等式值的方法来计算多边形的数量,通过学习镶嵌,让学生体会到可以用数学知识来解决构成完美的图案的办法,对学生学习数的兴趣有很大的提高.。
用多种正多边形铺设地面-华东师大版七年级数学下册
教案
一、教学目标
1.知道什么是正多边形,了解常见的正多边形及其性质。
2.能够使用正多边形拼凑地面,掌握不同正多边形铺设地面的方法。
3.提高学生的空间想象力和工程思维能力,培养学生合作意识和团队精神。
二、教学过程
1. 导入与引入
•自主学习:老师在黑板上用Ruler和圆规绘制出各种正多边形,并让学生自学正多边形的定义及性质。
•学生展示:学生将自己认为最重要的正多边形展示给其他同学看,并就该正多边形进行简单的介绍。
2. 探究过程
•了解多边形拼凑地面的基本方法:学生分组设计出一种用单一正多边形拼凑地面的方法,并在班内展示讲解。
•学习多边形拼凑地面的其他方法:同学再次分组,每组设计一种不同的用多种正多边形拼凑地面的方法,并在班内展示讲解。
3. 总结反思
•总结:以小组为单位,小结本节课所学的知识,并分享有关这节课的感受和建议。
•反思:学生简单介绍自己的收获及改进方面的意见。
三、教学重点
•正多边形的定义及性质。
•掌握多种正多边形铺设地面的方法。
四、教学方法
•课堂授课、小组合作设计及分享、自主学习、总结反思。
五、教学资源
•黑板、Ruler、圆规。
六、教学评估
•学生展示的品质和效果,以及小组合作的深度和质量。