用正多边形铺设地面
- 格式:ppt
- 大小:1.56 MB
- 文档页数:33
正多边形密铺
我们都知道,铺地时要把地面铺满,地砖与地砖之间就不能留有空隙。
如果用的地砖是正方形,它的每个角都是直角,那么4个正方形拼在一起,在公共顶点处的4个角,正好拼成一个360°的周角。
正六边形的每个角都是120°,3个正六边形拼在一起时,在公共顶点上的3个角度数的和正好也是360°。
除了正方形、长方形以外,正三角形也能把地面密铺。
因为正三角形的每个内角都是60°,6个正三角形拼在一起时,在公共顶点处的6个角的度数和正好是360°。
正因为正方形、正六边形拼合以后,在公共顶点上几个角度数的和正好是360°,这就保证了能把地面密铺,而且还比较美观。
因为只有正三角形、正方形、正六边形的内角为360°的约数,因此正多边形中仅此三者可以密铺。
初一下册数学知识点:用正多边形铺设地面知识点
初一下册数学知识点:用正多边形铺设地面知识
点
多阅读和积累,可以使学生增长知识,使学生在学习中做到举一反三。
在此查字典数学网为您提供用正多边形铺设地面知识点,希望给您学习带来帮助,使您学习更上一层楼!
一、知识回顾
1、什么叫正多边形?
2、多边形的内角和公式是什么?正n边形的内角怎么表示?外角和公式是什么?
二、情境导入
随着人们生活水平的提高,很多家庭都铺上了瓷砖,这在数学上是一门学问,叫做平面镶嵌。
即用单一平面图形拼合在一起覆盖一个平面,而图形间没有空隙,也没有重叠。
这种用形状相同或不同的平面封闭图形,把一块地面无缝隙、又不重叠地全部覆盖,在几何里叫做平面镶嵌。
其实本章的开头已提出了瓷砖的铺设问题,今天我们进一步来探究用什么样的多边形能拼成一个既不留下空白,又不互相重叠的平面图形,即用什么样的正多边形可以完全镶嵌一个平面?
三、新知探究
(一)动手操作(小组合作,并讨论交流)
请每个学习小组围圈而坐,拿出各自准备好的各种正多边形纸片,并按照下列顺序进行操作:①、只用正三角形,看
②.对于任一种正多边形,如何判定它能否进行平面镶嵌? 用正多边形铺设地面知识点整理的很及时吧,提高学习成绩离不开知识点和练习的结合,因此大家想要取得更好的成绩一定要注重从平时中发现问题查缺补漏~。
用正多边形铺设地面 知识讲解【学习目标】1. 通过用相同的正多边形拼地板活动,巩固多边形的内角和与外角和公式;2. 联系一种正多边形拼地板,探索用多种正多边形拼地板的过程和原理,体会用多种正多边形拼地板与一种正多边形拼地板的相互关系;3. 通过“拼地板”和有关计算,使学生从中发现能拼成一个不留空隙,又不重叠的平面图形的关键是几个多边形在一个顶点处的内角相加要等于 360°;4.提高观察、分析、概括、抽象等能力,进一步认识图形在日常生活中的应用.【要点梳理】要点一、正多边形的有关概念1.正多边形定义:在平面内各个角相等、各条边相等的多边形叫做正多边形.2. 正多边形的内角:正多边形的每个内角都相等,都等于(2)180n n-g °;正多边形的内角和与一般n 边形的内角和公式相同为(n-2)·180°(n ≥3).3. 正多边形的外角和:正n 边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;正多边形的外角和与一般多边形的外角和一样都为360°. 4.正多边形的对角线:连接正多边形不相邻的两个顶点的线段,叫做正多边形的对角线. 要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)已知正多边形的边数,可求其内角和以及每个内角;已知多边形内角和就可以求其边数;(3)已知正多边形一个内角可以求其外角,从而用外角和求正多边形边数;(4)从正n 边形一个顶点可以引(n -3)条对角线,将正多边形分成(n -2)个三角形;共有 (3)2n n - 条对角线. 要点二、平面铺设的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.2.用一种正多边形铺设地面只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,这种正多边形可以铺设地面.事实上,在正多边形中,能用一种正多边形铺满地面的只有正三角形、正方形、正六边形的地砖可以用.要点诠释:正多边形能用于铺设地面的前提条件是:这个正多边形一个内角的度数是360°的约数.正三角形的一个内角度数为180÷3=60°,是360°的约数;正方形的一个内角度数为360÷4=90°,是360°的约数;正六边形的一个内角度数为180﹣360÷6=120°,是360°的约数,所以它们都可以用于铺设地面,而其他正多边形内角不能满足这个条件,所以不能用于铺设平面.3.用多种正多边形铺设地面正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个正多边形的内角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.(1)用两种正多边形铺设地面的组合有:①正三角形与正方形;②正三角形与正六边形;③正三角形与正十二边形;④正方形与正八边形.(2)用三种正多边形铺设地面的组合有:①正三角形、正方形与正六边形;②正方形、正六边形与正十二边形③正三角形、正十边形与正十五边形④正方形、正五边形与正二十边形.要点诠释:(1)用两种正多边形铺设地面满足方程:内角度数×m + 另一种内角度数×n=360°有正整数解(即m、n均为正整数).(2)用三种正多边形铺设地面满足方程:内角度数×m + 另一种内角度数×n+第三种内角度数×k =360°有正整数解(即m、n、k均为正整数).(3)有时几种正多边形的组合能围绕一点拼成周角,但不能扩展到整个平面,即不能铺满平面.如:正五边形与正十边形的组合.4.任意多边形平面铺设:形状、大小完全相同的任意三角形能镶嵌成平面图形;形状、大小相同的任意四边形(凸四边形)能镶嵌成平面图形.要点诠释:任意三角形、四边形(形状、大小相同)能镶嵌平面是因为:三角形内角和为180°,是360°的约数;四边形(凸四边形)的内角和是360°,也是360°的约数.所以大小形状相同任意三角形、四边形围绕一点拼在一起的几个内角加在一起恰好组成一个周角( 360°)时,就能铺满地面.【典型例题】类型一、正多边形的相关概念1.过正十二边形的一个顶点有条对角线,它共有条对角线;它的每一个内角是度;它的内角和是度.【思路点拨】根据正多边形的相关概念,代入公式中进行计算即可得到答案.【答案与解析】9,54,150,1800.【总结升华】从正n多边形一个顶点出发,可以连的对角线的条数(n-3)条,共有(3)2n n条对角线;正n边形的每个内角都相等,所以它的每个外角都相等,都等于360n°,先求出外角,进而再求出内角;内角和可以用每个内角与边数乘积求解也可以把边数代入内角和公式中进行求解.举一反三:【变式1】已知正多边形的内角和为540°,则该正多边形的边数为;这个正多边形一共有条对角线;它的一个外角为度.【答案】5 ,5,72;【变式2】(2015•鱼峰区二模)一个多边形每个内角都为108°,这个多边形是边形.【答案】五.解:∵多边形每个内角都为108°,∴多边形每个外角都为180°﹣108°=72°,∴边数=360°÷72°=5.故答案为:五.类型二、用一种正多边形铺设地面2. 下列图形中,单独选用一种图形不能进行平面镶嵌的是()A .正三角形 B.正六边形 C.正方形 D.正五边形【思路点拨】围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.【答案与解析】D;解:A、正三角形的一个内角度数为180﹣360÷3=60°,是360°的约数,能镶嵌平面,不符合题意;B、正六边形的一个内角度数为180﹣360÷6=120°,是360°的约数,能镶嵌平面,不符合题意;C、正方形的一个内角度数为180﹣360÷4=90°,是360°的约数,能镶嵌平面,不符合题意;D、正五边形的一个内角度数为180﹣360÷5=108°,不是360°的约数,不能镶嵌平面,符合题意.故选:D.【总结升华】本题考查了平面密铺的知识,注意掌握只用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.举一反三:【变式】用一种正多边形能进行平面图形铺设的条件是()A. 内角都是整数度数B. 边数是3的整数倍C. 内角整除360oD. 内角整除180o【答案】C;类型三、用多种正多边形铺设地面3. 现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是()A.正方形和正六边形 B.正三角形和正方形C.正三角形和正六边形 D.正三角形、正方形和正六边形【思路点拨】正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【答案与解析】A;解:A、正方形和正六边形内角分别为90°、120°,由于90m+120n=360,得m=4﹣n,显然n取任何正整数时,m不能得正整数,故不能铺满;B、正三角形和正方形内角分别为60°、90°,由于60°×3+90°×2=360°,故能铺满;C、正三角形和正六边形内角分别为60°、120°,由于60°×2+120°×2=360°,故能铺满;D、正三角形、正方形和正六边形内角分别为60°、90°、120°,由于60°+90°+90°+120°=360°,故能铺满.故选A.【总结升华】考查了平面镶嵌(密铺),解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.举一反三:【变式】学校要铺设一个活动场地,供选用的地砖有边长相等的正多边形,为了美观,要求至少用两种不同形状的地砖铺设,同学们设计了四种方案:①正三角形,正四边形;②正三角形,正六边形;③正五边形,正八边形;④正三角形,正四边形,正六边形,你认为以上可行的方案有()A.1种B.2种C.3种D.4种4.(2015•西城区校级模拟)在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:正多边形边数 3 4 5 6 …n正多边形每个内角的度数_____ _____ _____ _____ …°(2)如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)从正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.【思路点拨】(1)利用正多边形一个内角=(180﹣)°求解;(2)进行平面镶嵌就是在同一顶点处的几个多边形的内角和应为360°,因此我们只需验证360°是不是上面所给的几个正多边形的一个内角度数的整数倍;(3)常见的两种正多边形的密铺组合有:正三角形和正四边形能密铺,正六边形只能和正三角形密铺.所以要从正三角形、正四边形、正六边形中选一种,只能选择正四边形.【答案与解析】解:(1)由正n边形的内角的性质可分别求得正三角形、正方形、正五边形、正六边形、…、正n边形的每一个内角为:60°,90°,108°,120°,…180﹣;(2)如限于用一种正多边形镶嵌,则由一顶点的周围角的和等于360°得正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)如:正方形和正八边形(如图),设在一个顶点周围有m个正方形的角,n个正八边形的角,那么m,n应是方程m•90°+n•135°=360°的正整数解.即2m+3n=8的正整数解,只有m=1,n=2一组,∴符合条件的图形只有一种.【总结升华】本题考查了求正多边形一个内角度数,可先求出这个外角度数,让180减去即可.一种正多边形的镶嵌应符合一个内角度数能整除360°;两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.举一反三:【变式】用三种边长相等的正多边形铺地面,已选了正方形和正五边形两种,还应选正边形.。
9.3 用正多边形铺设地面原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!灵师不挂怀,冒涉道转延。
——韩愈《送灵师》9.3.1 用相同的正多边形教学目标一、基本目标1.通过用相同的正多边形拼地板的活动,巩固多边形的内角和与外角和公式.2.通过“拼地板”和有关计算,使学生从中发现能拼成一个不留空隙,又不重叠的平面图形的关键是围绕一点拼在一起的几个多边形的内角相加要等于360°.二、重难点目标【教学重点】正多边形进行密铺的原理.【教学难点】掌握用哪些正多边形可以进行密铺.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P88~P89的内容,完成下面练习.【3 min反馈】1.完成下表:n-2×180°n内角的大小2.当围绕一点拼在一起的几个内角加在一起恰好组成一个周角时,就能拼成一个平面图形,即可以铺满地面.3.用一种正多边形铺地面时,需要的条件是这种正多边形的每个内角都能被360o整除.4.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是( D )A.正三角形B.正四边形C.正六边形D.正八边形环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图所示,有一边长为8米的正方形大厅,它是由黑白完全相同的方砖密铺而成.求一块方砖的边长.【互动探索】(引发学生思考)正方形大厅中共用方砖多少块?正方形大厅的面积与方砖有什么关系?【解答】根据题意可知,共有32块方砖,所以每块方砖的面积为8×8÷32=2(平方米),故一块方砖的边长为2米.【互动总结】(学生总结,老师点评)正方形大厅的四个角处的白方砖正好组成一块白方砖,各边上的残缺白瓷砖正好组成6块完整的白瓷砖,那么共有32块瓷砖.求出每块瓷砖的面积,进而求得边长即可.【例2】如图所示,已知等边三角形ABC的边长为,按图中所示的规律,用2019个这样的三角形镶嵌而成的四边形的周长是( )A.2018 B.2019C.2020 D.2021【互动探索】(引发学生思考)观察图形可知,第一个三角形的周长是3,利用2个三角形成的第1个四边形的周长是3+1=4,利用3个三角形成的第2个四边形的周长是3+2=5,利用4个三角形成的第3个四边形的周长是3+3=6,…,利用n个三角形成的第n-1个四边形的周长就是3+n-1=n+2,所以用2019这样的三角形镶嵌而成的四边形的周长是n+2=2019+2=2021.【答案】D【互动总结】(学生总结,老师点评)解答本题关键是得出利用n个三角形进行镶嵌而成的四边形的周长规律.活动2 巩固练习(学生独学)1.下列几种形状的瓷砖中,只用一种不能够铺满地面的是( B )A.正六边形B.正五边形C.正方形D.正三角形2.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个点处的正六边形地砖有( A )A.3块B.4块C.5块D.6块3.如果只用一种正多边形做平面密铺而且在每一个正多边形的每一个顶点周围都有6个正多边形,则该正多边形的每个内角度数为60°.4.在一个边长为10 m的正六边形地面,用边长为50 cm的正三角形瓷砖铺满,则需这样的瓷砖2400块.环节3 课堂小结,当堂达标(学生总结,老师点评)用一种正多边铺地面时,需要的条件这种正多边形的每个内角都能被360o 整除.练习设计请完成本课时对应练习!9.3.2 用多种正多边形教学目标一、基本目标通过用两种以上的正多边形拼地板,提高学生观察、分析、概括、抽象等能力.二、重难点目标【教学重点】寻找用哪几种正多边形能铺满地面.【教学难点】用列举法根据铺满地面的条件,设计铺设地面的方案.教学过程环节1 自学提纲生成问题【5 min阅读】阅读教材P90~P91的内容,完成下面练习.【3 min反馈】1.下列图形中能单独进行镶嵌的是 ( B )A.正五边形B.正六边形C.正八边形D.正十二边形2.当围绕一点拼在一起的几个内角加在一起恰好组成一个周角时,就能拼成一个平面图形,即可以铺满地面.3.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形,正方形,正六边形,那么另外一个是 ( B ) A.正三角形B.正方形C.正五边形D.正六边形环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖,从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第9层中含有正三角形个数是( )A.54个B.102个C.90个D.114个【互动探索】(引发学生思考)观察图形可知,第1层包括6个正三角形,第2层包括18个正三角形,…,则每一层比上一层多12个,所以第9层中含有正三角形的个数是6+12×8=102(个).【答案】B【互动总结】(学生总结,老师点评)本题考查了平面镶嵌(密铺)问题,此题要注意能够分别找到三角形和正方形的个数的规律.【例2】如图是小亮家里地面上铺设的正方形地板砖,上面的图案由一个小正方形和四个等腰梯形组成,小明发现地板上有正八边形图案,那么地板上的两个正八边形图案需要这样的地板砖至少( )A.6块B.8块C.10块D.12块【互动探索】(引发学生思考)由正多边形铺满地面的条件知,在一个顶点处各个内角和为360°.∵正方形的一个内角为90°,∴同一顶点处等腰梯形的一个内角为(360-90)÷2=135°.又∵正八边形的内角为180°-360°÷8=135°,∴小正方形的边长即为正八边形的边长,画图如下:则两个正八边形图案需要这样的地板砖至少8块.【答案】B【互动总结】(学生总结,老师点评)解题时画出图形分析,并利用正八边形的性质得出答案.活动2 巩固练习(学生独学)1.下列正多边形中,与正八边形组合能够铺满地面的是( B )A.正三角形B.正方形C.正五边形D.正六边形2.阳光中学阅览室在装修过程中,准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点周围正方形、正三角形地砖的块数可以是( B ) A.正方形2块,正三角形2块B.正方形2块,正三角形3块C.正方形1块,正三角形2块D.正方形2块,正三角形1块3.下列四组多边形中,能铺满地面的是①②③④.①正六边形与正三角形;②正十二边形与正三角形;③正八边形与正方形;④正三角形与正方形.4.用正多边形镶嵌,设在一个顶点周围有m个正方形,n个正八边形,则m =1,n=2.环节3 课堂小结,当堂达标(学生总结,老师点评)几种边长相等的正多边形能密铺要满足围绕一点拼在一起的几种正多边形的内角和为360°.练习设计请完成本课时对应练习!【素材积累】不怕你不懂不会,旧怕你不学不干。
正多边形铺地板知识点总结一、什么是正多边形正多边形是指所有边的长度相等,所有角的大小也相等的多边形。
其中,正三角形、正四边形、正五边形、正六边形、正七边形、正八边形、正九边形等都属于正多边形。
二、正多边形的特点1. 边长相等:正多边形的所有边的长度都相等。
2. 角度相等:正多边形的所有角的大小都相等。
3. 对称性:正多边形具有多个对称轴,每个对称轴将正多边形分成两个相等的部分。
4. 对角线:正多边形的对角线是将顶点两两连接起来的线段,每个顶点都与其他顶点相连。
三、正多边形的铺地板方法正多边形可以通过不同的方式铺设地板,以下是常见的几种方法:1. 旋转法:将一个正多边形旋转一定角度后复制粘贴,直到铺满整个地板。
这种方法适用于正六边形、正八边形等。
2. 平移法:将一个正多边形平行移动一定距离后复制粘贴,直到铺满整个地板。
这种方法适用于正三角形、正四边形等。
3. 组合法:将不同形状的正多边形组合在一起铺设地板。
例如,可以将正三角形和正六边形组合在一起,形成六边形花纹。
四、正多边形铺地板的注意事项1. 地板的尺寸:在选择正多边形铺地板时,需要考虑地板的尺寸是否与正多边形的边长相匹配,以确保铺设效果美观。
2. 地板的材质:不同材质的地板适合不同的正多边形铺设方法。
例如,木地板适合使用平移法,瓷砖地板适合使用旋转法。
3. 地板的缝隙:在铺设正多边形地板时,需要留出一定的缝隙,以便地板有足够的伸缩空间,避免因温度变化引起地板开裂或变形。
4. 铺设技巧:在铺设正多边形地板时,可以使用工具如三角板、直角尺等来保证地板的平整度和角度的准确性。
五、正多边形铺地板的应用正多边形铺地板在室内装修中有广泛的应用。
以下是一些常见的应用场景:1. 室内地板铺设:正多边形地板可以用于客厅、卧室、厨房等室内区域的地面装饰,增加整体空间的美观度。
2. 公共场所地板铺设:正多边形地板适用于公共场所如酒店、商场、办公室等的地面装饰,为场所营造出独特的氛围。