4
⑴
X
2 i
;
i 1
⑵
1 4
4 i1
Xi 2;
1 4
2
⑶
2 i 1
Xi X
.
解
由定义即知⑵不是统计量, 而⑴⑶是.
同济大学数学系&人民邮电出版社
一、样本均值和样本方差
第6章 统计量和抽样分布 22
设 X1, X 2 ,L , X n 为取自总体的一个样本,称
⑴样本均值
1n X n i1 Xi
由此可得:
M 2 1 n n i1
Xi X
2 =ˆ Sn2 ,
相应的观测值
Sn
1n n i1
Xi X
2
sn2
1 n
n i 1
xi x 2,sn
1n n i1
xi x
2
同济大学数学系&人民邮电出版社
一、样本均值和样本方差
第6章 统计量和抽样分布 25
注 S 2 , Sn2 在计算时的另一表达形式:
分别求 E
X
,D
X
,E
S2
,
E
1 n
n i 1
X
2 i
.
(1) X ~ B(1, p) ;(2) X ~ E() ;(3) X ~ U (0,2 ), 其中 0 .
解 由定理可得
E X E X ˆ , D X D X ˆ 2 , nn
E S 2 D X 2,
统计量的定义
第6章 统计量和抽样分布 20
不含有未知参数的样本的函数 g X1,L , Xn 称为统计量.
例1 假设总体 X ~ U 0, , X1, X 2,L , X n 为取自该 总体的一个样本,