6.2正态样本统计量抽样分布
- 格式:ppt
- 大小:981.50 KB
- 文档页数:45
第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。
抽样分布样本统计量的分布及其应用在统计学中,抽样是一种数据分析的方法,它通过对总体中的一部分个体进行观察和测量来推断总体的特征。
而抽样分布是指抽取相同样本量的多个样本后得到的统计量的分布。
样本统计量是对样本数据进行计算得到的统计指标,它可以用来估计总体参数,并进行假设检验。
1. 抽样分布的基本概念抽样分布具有一些基本性质,首先是无偏性。
当样本容量趋向于总体容量时,样本统计量的期望值会无限接近总体参数的真实值。
其次是有效性,即样本统计量的方差趋近于零,它可以用来估计总体参数的精确度。
最后是一致性,样本统计量在样本容量逐渐增大时趋近于总体参数。
2. 抽样分布的常见形式常见的抽样分布有正态分布、t分布和卡方分布。
其中正态分布应用最为广泛,它在中心极限定理的作用下,当样本容量足够大时,样本均值的抽样分布近似服从正态分布。
而t分布则适用于当总体标准差未知、样本容量较小的情况下,它的形状比正态分布要略扁平一些。
卡方分布则主要用于样本方差的估计与检验。
3. 抽样分布的应用抽样分布的应用非常广泛,常用于以下几个方面:3.1 参数估计通过抽样分布,我们可以利用样本统计量对总体参数进行估计。
例如,可以利用样本均值估计总体均值,利用样本标准差估计总体标准差。
通过计算置信区间,我们可以得到对总体参数的范围估计。
3.2 假设检验假设检验是统计学中非常重要的一项工具,用于判断样本数据是否支持某个假设。
基于抽样分布,我们可以计算统计量的P值,进而判断样本数据与假设的一致性。
常用的假设检验有均值检验、方差检验、比例检验等。
3.3 质量控制在生产过程中,质量控制是非常关键的。
通过对样本数据进行分析,可以判断生产过程是否正常。
例如,可以通过控制图分析样本均值的变化情况,以判断过程是否处于控制状态。
3.4 统计决策在实际决策中,我们往往需要依据样本数据来进行判断。
抽样分布提供了一种基于统计的决策依据。
例如,在市场调研中,我们可以通过对样本数据进行分析,对市场潜力进行预测,从而指导营销策略的制定。