贾俊平《统计学》(第5版)课后习题-第6章 统计量及其抽样分布【圣才出品】
- 格式:pdf
- 大小:275.55 KB
- 文档页数:5
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)整理by__kiss-ahuang第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
第6章 统计量及其抽样分布一、思考题1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数? 答:(1)设是从总体中抽取的容量为的一个样本,如果由此样本构造一个函数,不依赖于任何未知参数,则称函数是一个统计量。
(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。
为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。
(3)统计量是样本的一个函数。
由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。
2.判断下列样本函数哪些是统计量?哪些不是统计量?12n X X X ,,…,X n 12()n T X X X ,,…,12()n T X X X ,,…,1121021210310410()/10min()T X X X T X X X T X T X μμσ=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故、是统计量,、不是统计量。
3.什么是次序统计量?答:设是从总体中抽取的一个样本,称为第个次序统计量,它是样本满足如下条件的函数:每当样本得到一组观测值…,时,其由小到大的排序中,第个值就作为次序统计量的观测值,而称为次序统计量,其中和分别为最小和最大次序统计量。
4.什么是充分统计量?答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。
统计量加工过程中一点信息都不损失的统计量通常称为充分统计量。
5.什么是自由度?答:统计学上的自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的变量的个数。
【关键字】单位《统计学》分章习题及答案(贾俊平,第五版)主编:杨群目录习题部分第1章导论一、单项选择题1.指出下面的数据哪一个属于分类数据()A.年龄B.工资C.汽车产量D.购买商品的支付方式(现金、信用卡、支票)2.指出下面的数据哪一个属于顺序数据()A.年龄B.工资C.汽车产量D.员工对企业某项制度改革措施的态度(赞成、中立、反对)3.某研究部门准备在全市200万个家庭中抽取2000个家庭,据此推断该城市所有职工家庭的年人均收入,这项研究的统计量是()A.2000个家庭B.200万个家庭C.2000个家庭的人均收入D.200万个家庭的人均收入4.了解居民的消费支出情况,则()A.居民的消费支出情况是总体B.所有居民是总体C.居民的消费支出情况是总体单位D.所有居民是总体单位5.统计学研究的基本特点是()A.从数量上认识总体单位的特征和规律B.从数量上认识总体的特征和规律C.从性质上认识总体单位的特征和规律D.从性质上认识总体的特征和规律6.一家研究机构从IT从业者中随机抽取500人作为样本进行调查,其中60%的人回答他们的月收入在5000元以上,50%的回答他们的消费支付方式是使用信用卡。
这里的“月收入”是()A.分类变量B.顺序变量C.数值型变量D.离散变量7.要反映我国工业企业的整体业绩水平,总体单位是()A.我国每一家工业企业B.我国所有工业企业C.我国工业企业总数D.我国工业企业的利润总额8.一项调查表明,在所抽取的1000个消费者中,他们每月在网上购物的平均消费是200元,他们选择在网上购物的主要原因是“价格便宜”。
这里的参数是()A.1000个消费者B.所有在网上购物的消费者C.所有在网上购物的消费者的平均消费额D.1000个消费者的平均消费额9.一名统计学专业的学生为了完成其统计作业,在《统计年鉴》中找到的2006年城镇家庭的人均收入数据属于()A.分类数据B.顺序数据C.截面数据D.时间序列数据10.一家公司的人力资源部主管需要研究公司雇员的饮食习惯,改善公司餐厅的现状。
第四章统计数据的概括性度量欧阳光明(2021.03.07)4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:StatisticsMissing0Mean9.60Median10.00Mode10Std. Deviation 4.169Percentiles25 6.255010.007512.504.2 随机抽取25个网络用户,得到他们的年龄数据如下:单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄从频数看出,众数Mo 有两个:19、23;从累计频数看,中位数Me=23。
(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652 (4)计算偏态系数和峰态系数: Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
为分组情况下的直方图:为分组情况下的概率密度曲线: 分组:1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=62、确定组距:组距=( 最大值 最小值)÷ 组数=(4115)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的均值与方差:分组后的直方图:4.3 某银行为缩短顾客到银行办理业务等待的时间。
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括和分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象和实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
贾俊平统计学第六、七章课后习题答案6.1解:设每个瓶子的灌装量为X,X?为样本均值,样本容量为n。
由于总体X服从正态分布,样本均值X?也服从正态分布,且均值相同,标准差为σ√n =1√9=13所以P(|X??μ|≤0.3)=P(|X??μ|13≤0.313)=2Φ(0.9)?1=2?0.8159?1=0.6318 7.1(1)已知σ=500,n=15,x=8900,1-α=95%,Z2α=1.96x+Z2αnσ=8900+1.96×15500=(8647,9153)(2)已知σ=500,n=35,x=8900,1-α=95%,Z2α=1.96x+Z2αnσ=8900+1.96×35500=(8734,9066)(3)已知n=35,x=8900,s=500,由于总体方差未知,但为大样本,所以可用样本方差来代替总体方差。
置信水平1-α=90%,Z2α=1.645x+Z2αns=8900+1.645×35500=(8761,9039)(4)已知n=35,x=8900,s=500,由于总体方差未知,但为大样本,所以可用样本方差来代替总体方差。
置信水平1-α=99%,Z2α=2.58x +Z2αn s =8900+2.58×35500=(8682,9118)7.2已知n=36,x =3.3167,s=1.6093(1)当置信水平为90%时,Z 2α=1.645x +Z 2αn s =3.3167+1.645×366093.1=3.3167+0.4532=(2.88,3.76)(2)当置信水平为95%时,Z 2α=1.96x +Z 2αn s =3.3167+1.96×366093.1=3.3167+0.544=(2.80,3.84)(3)当置信水平为99%时,Z 2α=2.58Z2αn s =3.3167+2.58×366093.1=3.3167+0.7305=(2.63,4.01)7.3(1)已知总体服从正态分布,但σ未知,n=50为大样本,α=0.05,Z 2α=1.96,根据样本计算可知x =101.32,s=1.63x +Z 2αn s =101.32+1.96×5063.1=101.32+0.45=(100.87,101.77)(2)由所给样本数据可知样本合格率:p=5045=0.9p +Z2αnp p )1(-=0.9+1.9650)9.0-19.0(=0.9+0.08=(0.82,0.98)7.4由样本数据得x =16.13,σ=0.8706,置信水平1-α=99%,Z 2α=2.58x +Zαn σ=16.13+2.58×58706.0=16.13+0.45=(15.68,16.58)7.5、(1)n=44,p=0.51,置信水平为99%由题意,已知n=44,置信水平1-α=99%,因此检验统计量为:,代入数值计算,总体比例π的置信区间为(31.6%,70.4%) (2)n=300,p=0.82,置信水平为95%由题意可得知96.12=αZ检验统计量为:,代入数值计算,总体比例π的置信区间为(77.7%,86.3%) (3)n=1150,p=0.48,置信水平为90%由题意可得知检验统计量为:,代入数值计算,58.22=αZ np p Z P )1(2-±α)704.0,316.0(194.051.044)51.01(51.058.251.0=+=-??p p Z P )1(2-±α)863.0,777.0(043.082.0300)82.01(82.096.182.0=+=-?+645.12=αZ np p Z P )1(2-±α总体比例π的置信区间为(45.6%,50.4%)7.6、(1)由题意已知n=200,当置信水平为90%时,,检验统计量为代入数据计算可得:置信区间为(18.10%,27.90%) (2)当置信水平为95%时,96.12=αZ ,检验统计量为代入数据计算可得:置信区间为(17.17%,28.83%)7.7、由题意已知置信水平为99%,即1-α=99%,则,估计误差E=200,=1000504.0,456.0(024.048.01150)48.01(48.0645.148.0=+=-?+645.12=αZ np p Z P )1(2-±α%)90.27%,10.18(%90.4%23200%)231%(23645.1%23=±=-?±np p Z P )1(2-±α%)83.28%,17.17(%83.5%23200%)231%(2396.1%23=+=-?+58.22=αZ σ则,即应该取样本量为1677.8、(1)由题意可知n=50,p=32/50=0.64,α=0.05,96 .12=αZ 总体中赞成该项改革的户数比例的置信区间为,代入数据计算:即置信区间为(51%,77%)(2)如果小区管理者预计赞成的比例能达到80%,即π=0.80,估计误差不超过10%,即E=10%,α=0.05,96.12=αZ ,应抽取的样本量为即应该抽取62户进行调查7.9(1)x?=21,s=2,n=50,α=0.1χ0.12?2(50?1)=66.3387,χ1?0.12?2(50?1)=33.9303∴(n?1)s 2χα22≤σ2≤(n?1)s 2χ1?α22(50?1)×2266.3387≤σ2≤(50?1)×2233.9303即2.95≤σ2≤5.78.标准差的置信区间为1.72≤σ≤2.4 (2)x?=1.3,s=0.02,n=15,α=0.1167200100058.22222222≈?==E Z n σαnp p Z P )1(2-±α)77.0,51.0(13.064.050)64.01(64.096.164.0=±=-±621.0)80.01(80.096.1)1(22222=-?=-?=E Z n ππαχ0.12?2(15?1)=23.6848,χ1?0.12?2(15?1)=6.5706∴(n?1)s 2χα22≤σ2≤(n?1)s 2χ1?α22(15?1)×0.02223.6848≤σ2≤(15?1)×0.0226.5706标准差的置信区间为0.015≤σ≤0.029 (3)x?=167,s=31,n=22,α=0.1χ0.12?2(22?1)=32.6706,χ1?0.12?2(22?1)=11.5913∴(n?1)s 2χα22≤σ2≤(n?1)s 2χ1?α22(22?1)×312≤σ2≤(22?1)×312标准差的置信区间为24.85≤σ≤41.73。
第六章统计量及其抽样分布6。
1 调节一个装瓶机使其对每个瓶子的灌装量均值为盎司,通过观察这台装瓶机对每个瓶子的灌装量服从标准差盎司的正态分布。
随机抽取由这台机器灌装的9个瓶子形成一个样本,并测定每个瓶子的灌装量。
试确定样本均值偏离总体均值不超过0.3盎司的概率。
解:总体方差知道的情况下,均值的抽样分布服从的正态分布,由正态分布,标准化得到标准正态分布:z=~,因此,样本均值不超过总体均值的概率P为:====2—1,查标准正态分布表得=0。
8159因此,=0。
63186。
2 =====0。
95查表得:因此n=436。
3 ,,……,表示从标准正态总体中随机抽取的容量,n=6的一个样本,试确定常数b,使得解:由于卡方分布是由标准正态分布的平方和构成的:设Z1,Z2,……,Z n是来自总体N(0,1)的样本,则统计量2分布,记为χ2~ χ2(n)服从自由度为n的χ因此,令,则,那么由概率,可知:b=,查概率表得:b=12.596。
4 在习题6。
1中,假定装瓶机对瓶子的灌装量服从方差的标准正态分布。
假定我们计划随机抽取10个瓶子组成样本,观测每个瓶子的灌装量,得到10个观测值,用这10个观测值我们可以求出样本方差,确定一个合适的范围使得有较大的概率保证S2落入其中是有用的,试求b1,b2,使得解:更加样本方差的抽样分布知识可知,样本统计量:此处,n=10,,所以统计量根据卡方分布的可知:又因为:因此:则:查概率表:=3。
325,=19。
919,则=0。
369,=1.88。
统计学第五版课后思考题答案(完整版)统计学(第五版)贾俊平课后思考题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
第6章统计量及其抽样分布一、单项选择题1.在抽样推断中,样本统计量是()。
[中央财经大学2015研]A.未知但确定的量B.一个已知的量C.随机变量D.惟一的【答案】C【解析】统计量是用来描述样本特征的概括性数字度量。
它是根据样本数据计算出来的一个量,由于抽样是随机的,因此统计量是样本的函数,是随机变量。
2.在一个饭店门口等待出租车的时间是左偏的,均值为12分钟,标准差为3分钟。
如果从饭店门口随机抽取100名顾客并记录他们等待出租车的时间,则该样本均值的分布服从()。
[山东大学2015研]A.正态分布,均值为12分钟,标准差为0.3分钟B.正态分布,均值为12分钟,标准差为3分钟C.左偏分布,均值为12分钟,标准差为3分钟D.左偏分布,均值为12分钟,标准差为0.3分钟【答案】A【解析】中心极限定理:设从均值为μ、方差为σ2(有限)的任意一个总体中抽取样本量为n 的样本,当n 充分大(通常是大于36)时,样本均值X 的抽样分布近似服从均值为μ、方差为σ2/n 的正态分布。
故即使总体是左偏分布,该样本均值仍服从正态分布,其均值为12,标准差为3/10=0.3。
3.设总体X ~N (2,σ2),X 1,…,X 16是来自总体X 的样本,161116i i X X ==∑,则48X σ-服从的分布是( )。
[对外经济贸易大学2015研]A .t (15)B .t (16)C .χ2(15)D .N (0,1)【答案】D【解析】由题可知样本均值2~(2,)16X N σ则 ()2/4~01X N -,σ即()18~04N X -,σ4.1000名学生参加某课程的考试,平均成绩是82分,标准差是8分,从学生中随机抽取100个同学作为样本,则样本均值的数学期望和抽样分布的标准差分别为()。
[华中农业大学2015研]A.82,8B.82,0.8C.82,64D.86,1【答案】B【解析】由中心极限定理得,在大样本条件下,样本均值X的抽样分布近似服从均值为μ方差为σ2/n的正态分布。
统计学(第五版)贾俊平课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
第6章 统计量及其抽样分布一、思考题
1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数?
答:(1)设12n X X X ,,
…,是从总体X 中抽取的容量为n 的一个样本,如果由此
样本构造一个函数12()n T X X X ,,…,,不依赖于任何未知参数,则称函数12()n T X X X ,,…,是一个统计量。
(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。
为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。
(3)统计量是样本的一个函数。
由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。
2.判断下列样本函数哪些是统计量?哪些不是统计量?
1121021210310410()/10
min()
T X X X T X X X T X T X μ
μσ
=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故1T 、2T 是统计量,3T 、4T 不是统计量。
3.什么是次序统计量?
答:设12n X X X ,,
…,是从总体X 中抽取的一个样本,()i X 称为第i 个次序统计量,它是样本
12()n X X X ,,…,满足如下条件的函数:每当样本得到一组观测值12X X ,,…,n X 时,其由小到大的排序
(1)(2)()()i n X X X X ≤≤≤≤≤……中,第i 个值()i X 就作为次序统计量()i X 的观测值,而(1)(2)()n X X X ,,…,称为次序统计量,其中(1)X 和()n X 分别为最小和最大次序统计量。
4.什么是充分统计量?
答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。
统计量加工过程中一点信息都不损失的统计量通常称为充分统计量。
5.什么是自由度?
答:统计学上的自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的变量的个数。
6.简述2
χ分布、t 分布、F 分布及正态分布之间的关系。
答:(1)随机变量X 1,X 2,… X n 相互独立,且都服从标准正态分布,则它们的平方和21
n i i X =∑服从自由度为n 的2
χ分布。
(2)随机变量X 服从标准正态分布,Y 服从自由度为n 的2
χ分布,且X 与Y 独立,
那么X
服从自由度为n的t分布。
Y
(3)随机变量Y和Z分别服从自由度为m和n的2χ分布并且相互独立,那么
Y m
服从第一自由度为m,第二自由度为n的F分布。
Z n
7.什么是抽样分布?
答:近代统计学的创始人之一,英国统计学家费希尔曾把抽样分布、参数估计和假设检验看做统计推断的三个中心内容。
研究统计量的性质和评价一个统计推断的优良性,完全取决于其抽样分布的性质。
所以抽样分布的研究是统计学中的重要内容。
在总体X的分布类型已知时,若对任一自然数n,都能导出统计量
T=T(X1,X2,…,n X)的分布的数学表达式,这种分布称为精确的抽样分布。
精确的抽样分布大多是在正态总体下得到的。
在正态总体条件下,主要有2χ分布、t分布、F分布,常称之为统计三大分布。
8.简述中心极限定理的意义。
答:中心极限定理是概率论中最著名的结果之一。
它提出,大量的独立随机变量之和具有近似于正态的分布,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。
二、练习题
1.调节一个装瓶机使其对每个瓶子的灌装量均值为μ盎司,通过观察这台装瓶机对每个瓶子的灌装量服从标准差σ=1.0盎司的正态分布。
随机抽取这台机器灌装的9个瓶子形成一个样本,并测定每个瓶子的灌装量。
试确定样本均值偏离总体均值不超过0.3盎司的概率。
解:设每个瓶子的灌装量为X ,X 为样本,样本容量为n 。
由于总体X
服从正态分布,样本均值X
13==。
所以||0.3(||0.3)()2(0.9)11313
20.815910.6318
X P X P μμΦ--≤=≤=- =⨯-=2.在习题1中,如果我们希望Y 与μ的偏差在0.3盎司之内的概率达到0.95,应当
抽取多大的样本?
解:(||0.3)210.95P X P μΦ-≤=≤=-
≥,则0.975
Φ≥1.96=,所以n =43。
3.126,, L ,Z Z Z 表示从标准正态总体中随机抽取的容量n =6的一个样本,试确定常数b ,使得
6
21()0.95
i i P Z b =≤=∑
解:由于126,, L Z Z Z 为正态分布,并且相互独立,所以
621=∑i i Z 服从χ2(6)分布。
P (621=∑i i Z
>b )=1-P (621=∑i i Z ≤b )=1-0.95=0.05
查表得:b =12.5916。
4.在习题1中,假定装瓶机对瓶子的灌装量服从方差σ2=1的标准正态分布。
假定我们计划随机抽取10个瓶子组成样本,观测每个瓶子的灌装量,得到10个观测值,用这10个观测值我们可以求出样本方差
22
211(())1n i i S S Y Y n ==--∑,确定一个合适的范围使得有较大的概率保证S 2落入其中是有用的,试求b 1,b 2,使得P (b 1≤2
S ≤b 2)=0.90。
解:由于灌装量服从方差σ2=1的标准正态分布,故222(1)9-=n S S 服从χ2(9)。
要使P (b 1 ≤ S 2 ≤ b 2)=P (9b 1 ≤9S 2 ≤ 9b 2)=0.90,只要P (9S 2 ≥9b 2)= P (9S 2 ≤9b 1)=0.05。
查表得:9b 1=3.3251,9b 2=16.9190,解得:b 1=0.37,b 2=1.88。