习题课一阶电路和二阶电路的时域分析
- 格式:ppt
- 大小:557.01 KB
- 文档页数:24
一阶电路和二阶电路的时域分析一、一阶电路的时域分析:一阶电路指的是由一个电感或电容与线性电阻串联或并联而成的电路。
对于串联的一阶电路,其特征方程为:L di(t)/dt + Ri(t) = V(t) ---------- (1)其中,L是电感的感值,R是电阻的电阻值,i(t)是电路中的电流,V(t)是电路中的输入电压。
通过对上述方程进行求解可以得到电路中电流与时间的关系。
对于并联的一阶电路,其特征方程为:1/R C dq(t)/dt + q(t) = V(t) ---------- (2)其中,C是电容的电容值,q(t)是电路中电荷的变化,V(t)是电路中的输入电压。
同样,通过对上述方程进行求解可以得到电路中电荷与时间的关系。
一阶电路的响应可以分为自由响应和强迫响应两部分。
自由响应指的是由于电路中初始条件的存在,电流或电荷在没有外部输入电压的情况下的变化。
强迫响应指的是由于外部输入电压作用而产生的电流或电荷的变化。
对于一个初始处于稳定状态的电路,在有外部输入电压作用时,电路中电流或电荷会从初始值开始发生变化,最终趋于一个新的稳定状态。
这一过程可以由电流或电荷的指数递减或递增的形式表示。
在分析一阶电路的时域特性时,可以利用巴塞尔函数法或拉普拉斯变换法。
巴塞尔函数法主要是通过巴塞尔函数的表达式计算电压或电流的变化情况;拉普拉斯变换法则通过将时域的微分方程转化为复频域的代数方程,然后求解代数方程,最后再对求得的结果进行逆变换获得电流或电压的表达式。
二、二阶电路的时域分析:二阶电路是指由两个电感或电容与线性电阻串联或并联而成的电路。
对于串联的二阶电路,其特征方程为:L₁L₂ d²i(t)/dt² + (L₁R₁+L₂R₂+L₁R₂+L₂R₁) di(t)/dt + R₁R₂i(t) = V(t) ---------- (3)其中,L₁和L₂分别是两个电感的感值,R₁和R₂分别是两个电阻的电阻值,i(t)是电路中的电流,V(t)是电路中的输入电压。
一二阶电路时域分析一、基本概念含有动态元件的电路称为动态电路。
动态电路的特征是电路出现换路时,将出现过渡过程。
一阶电路通常含有一个动态元件,可以列写电压或电流的一阶微分方程来描述。
二阶电路通常含有二个动态元件,可以列写电压或电流的二阶微分方程来描述。
零状态响应:是指换路后电路无外加电源,其响应由储能元件的初始值引起,称暂态电路的零输入响应。
零状态响应:是指储能元件的初始值为零,换路后电路的响应是由外加电源引起的响应,称暂态电路的零状态响应。
全响应:换路后的响应由储能元件初始值和外加电源共同产生的响应,称为暂态电路的全响应。
二、一阶电路的阶跃响应和冲激响应1、 奇异函数奇异函数也叫开关函数,当电路有开关动作时,就会产生开关信号,奇异函数是开关信号最接近的理想模型。
(1)单位阶跃函数00()10t t t ε<⎧=⎨>⎩ (2)单位冲激函数⎪⎩⎪⎨⎧≠==⎰∞∞-)0(0)(1)(t t dt t 当δδ冲激函数有两个非常重要的性质:① 单位冲激函数()t δ对时间t 的积分等于单位阶跃函数()t ε,即 )()(t d tεξξδ=⎰∞-反之,阶跃进函数()t ε对时间的一阶导数等于冲激函数()t δ,即 )()(t dt t d δε=② 单位冲激函数的“筛分”性质设()f t 是一个定义域为(,)t ∈-∞∞,且在0t t =时连续的函数,则)()()(00t f dt t t t f =-⎰∞∞-δ2、一阶电路的阶跃响应和冲激响应电路在单位阶跃函数电源作用下产生的零状态响应称为单位阶跃响应。
常用)(t S 表示。
电路在单位冲激函数电源作用下产生的零状态响应称为单位冲激响应。
常用)(t h 表示。
冲激响应也可这样求得:因冲激函数是阶跃函数的导数,则冲激响应为阶跃响应的导数。
即dt t dS t h )()(=三、二阶动态电路的分析方法经典法:以电容电压或电感电流为电路变量,根据KVL 、KCL 、VCR 对电路列写二阶微分方程,然后求解。
第九章一阶电路和二阶电路本章意图本章主要介绍动态电路的时域分析法。
主要内容有动态电路及其方程,动态电路的换路定则及初始条件的计算,一阶电路的时间常数,一阶电路的零输入响应,一阶电路的零状态响应,一阶电路的全响应,一阶电路的阶跃响应,一阶电路的冲激响应,二阶电路的零输入响应,二阶电路的零状态响应及阶跃响应,二阶电路的冲激响应和卷积积分。
第一节内容提要一、动态电路电路有两种工作状态——稳态和动态。
描述直流稳态电路的方程是代数方程;用相量法分析交流电路时,描述交流稳态电路的方程也是代数方程。
描述动态电路的方程则是微分方程。
描述一阶电路的方程是一阶微分方程,描述二阶电路的方程是二阶微分方程。
二、动态电路的初始条件1 . 换路当电路中的开关被断开或闭合,使电路的接线方式或元件参数发生变化,我们称此过程为换路。
2 . 换路定则在一般情况下,在换路前后瞬间,电容电流i C为有限值,故有u C(0+) = u C(0 - )在一般情况下,在换路前后瞬间,电感电压u L为有限值,故有i L(0+) = i L(0 - )3 . 如何计算电路的初始条件对于一个动态电路,其独立的初始条件是u C( 0+ )和i L( 0+ ),其余的是非独立初始条件。
如果要计算电路的初始条件,可以由换路前的电路计算出u C( 0 - )和i L( 0 - ),然后令其相等即可求得u C( 0+ )和i L( 0+ )。
最后由换路后的等效电路就可以求出所需要的非独立初始条件。
三、一阶电路的响应1 . 一阶电路的时间常数在换路之后电路中,令独立电源为零,将电路化简成为一个等效电阻与储能元件的并连电路。
对于RC、RL电路的时间常数分别为:τ= RC、τ=L / R。
2 . 一阶电路的零输入响应在换路之后电路中无独立电源,由换路之前储能元件储存的能量在电路中产生响应,称为零输入响应。
3 . 一阶电路的零状态响应在换路之前储能元件没有储存能量,由换路之后电路中独立电源的能量在电路中产生响应,称为零状态响应。
第七章 一阶电路和二阶电路的时域分析一、是非题1.若电容电压(0)0c u -=,则接通时电容相当于短路。
在t=∞时,若电路中电容电流0c i =,则电容相当于开路。
2. 换路定则仅用来确定电容的起始电压(0)c u +及电感的起始电流(0)L i +,其他电量的起始值应根据(0)c u +或(0)L i +按欧姆定律及基尔霍夫定律确定。
3. 在一阶电路中,时间常数越大,则过渡过程越长。
4.一阶电路的时间常数只有一个,即一阶电路中的各电压、电流的时间常数是相同的。
5. 零输入的RC电路中,只要时间常数不变,电容电压从100V 放电到50V 所需时间与从150V 放电到100V 所需时间相等。
6.在R、C串联电路中,由于时间常数与电阻成正比,所以在电源电压及电容量固定时,电阻越大则充电时间越长,因而在充电过程中电阻上消耗的电能也越多。
7.单位冲激函数是单位阶跃函数的一阶导数,因此线性电路的单位冲激响应是单位阶跃响应的一阶导数。
( ) 8.一阶RL 电路在冲激函数()t δ作用下,换路定律()()00L L i i +-=不再适用。
( )二、选择题1.RC 电路在零输入条件下,时间常数的意义是A 、响应的初始值衰减到0.632倍时所需时间B 、响应的初始值衰减到0.368倍时所需时间C 、过渡过程所需的时间D 、过渡过程结束所需的时间c2.一阶电路的零状态响应,是指: (A) 电容电压()00VC u +=或电感电压()00VL u += (B) 电容电压()00VC u +=或电感电流()00VL i +=(C) 电容电流()00VC i +=或电感电压()00V L u += (D) 电容电流()00V C i +=或电感电流()00VL i +=3.R 、C 放电电路经过1.2秒后,电容器电压降为原来的36.8%,则其时间常数τ为 (A) 0.4s (B) 1.2s (C) 0.8s (D) 0.6s4. R 、C 串联电路,已知全响应()()1083V 0tC u t et -=-≥,其零状态响应为:( )(A) 1088V te-- (B) 1083V te-- (C) 103V te-- (D) 105V te-5.电压波形的数值表达式为_____. (A) -2ε(t)+ε(t-1) (B) -2ε(t)+3ε(t+1)-ε(t+3)(C) -2ε(t)+3ε(t-1)-ε(t-3) (D) -2ε(t)+3ε(t-1)6.一阶电路的全响应u C (t)=[10-6 e-10t]V,初始状态不变而若输入增加一倍,则全响应u C (t)为______。