动态电路的时域分析
- 格式:ppt
- 大小:2.29 MB
- 文档页数:113
第8章动态电路的时域分析重点1.动态电路关于解变量的输入一输出方程的列写、换路定律及初始值的确定;2.一阶电路的零输入响应、零状态响应、全响应、概念和求法;3.二阶电路的零输入响应及解的三种形式。
难点1.通过实验理解一阶电路的动态过程;2.通过典型例题和练习掌握冇关计算。
8. 1电路的暂态过程与换路定则含有动态元件(储能元件L、C)的电路叫做动态电路。
一、电路的暂态过程电路从一种稳定状态变化到另一种稳定状态的中间过程叫做电路的过渡过程。
称为电路的暂态过程,简称暂态。
暂态产生的原因是电感、电容等储能元件储存的能量发生了变化。
暂态产生的必要条件是动态电路发生了换路。
屯路中屯源的接人与切除、支路的接通和切断、元件参数的改变等统称为换路。
二、换路定则1、定理内容:电容电压(电荷)不能跃变,而只能连续地变化,否则,电流:将为无限大。
电感电流(磁链)也不能跃变,而只能连续地变化,否则,电压u将为无限大。
数学表达式为%c(0+)=况c(°J ] 江(0 亠)=ZL(O-))换路定则的实质是能量不能跃变。
需要指出:理想屯压源的屯压不受外部条件的影响,理想电流源的电流不受外部条件的影响,它们都不能因换路而跃变。
但是,理想电压源的电流、理想电流源的电压,却是可能跃变的。
三、初始值的确定电路中各元件的电压与电流在换路后的最初一憐间『 =()+时的值,称为电路的初始值。
1、确定原则:1)电容兀件的初始电丿卡• ”c(0 )及电感兀件的初始电流匚(0 )为独立初始值,按换路定则确定。
2)换路时可能跃变的初始量,则需根据电容电压々(o’)及电感电流匚(0+)应用KCL、KVL和VCR來确定。
3)在较复杂的情况T, 40替代定理。
将电容元件用电压为々(0」收超獰电压源等效替代(若匚矽),则代之以短路);将电感元件用电流为的理想电流源等效替代(若=0 ,则代之以开路)。
例:如图所示的电路中,电压源的电压U S=12V,电阻&二40,& =80,开关S接通前电路已达稳定状态,且电容C未充电。
第4章动态电路的时域分析学习指导与题解一、基本要求1.明确过渡过程的含义,电路中发生过渡过程的原因及其实。
2.熟练掌握换路定律及电路中电压和电流初始值的计算。
3.能熟练地运用经典分析RC和RL电路接通或断开直流电源时过渡过程中的电压和电流。
明确RC和RL电路放电和充电时的物理过程与过渡过程中电压电流随时间的规律。
4.明确时间常数、零输入与零状态、暂态与稳态、自由分量与强制分量的概念,电路过渡过程中的暂态响应与稳态响应。
5.熟练掌握直流激励RC和RL一阶电路过渡过程分析的三要素法。
能分析含受控源一阶电路的过渡过程。
6.明确叠加定理在电路过渡过程分析中的应用,完全响应中零输入响应与零状态响应的分解方式。
掌握阶跃函数和RC,RL电路阶跃响应的计算。
7.明确RLC电路发生过渡过程的物理过程,掌握RLC串联二阶电路固有频率的计算和固有响应与固有频率的关系,以及振荡与非振荡的概念。
会建立RLC二阶电路描述过渡过程特性的微分方程。
明确初始条件与电路初始状态的关系和微分方程的解法。
会计算RLC 串联二阶电路在断开直流电源时过渡过程中的电压和电流。
了解它在接通直流电源时电压和电流的计算方法。
二、学习指导电路中过渡过程的分析,是本课程的重要内容。
教学内容可分如下四部分:1.过渡过程的概念;2.换路定律;3.典型电路中的过渡过程,包括RC和RL一阶电路和RLC串联二阶电路过渡过程的分析;4.叠加定理在电路过渡过程分析中的应用。
着重讨论电路过渡过程的概念,换路定律,RC和RL一阶电路过渡过程中暂态响应与稳态响应和时间常数的概念,计算一阶电路过渡过程的三要素法,完全响应是的零输入响应和零状态响应,阶跃响应,以及RLC串联二阶电路过渡过程的分析方法。
现就教学内容中的几个问题分述如下。
(一) 关于过渡过程的概念与换路定律1. 关于过渡过程的概念电路从一种稳定状态转变到另一种稳定状态所经历的过程,称为过渡过程。
电路过渡过程中的电压和电流,是随时间从初始值按一定的规律过渡到最终的稳态值。
动态电路的时域分析 第一节 换路及其初始条件一、电路的两种工作状态(稳态、动态) 1、稳态电路: (1)定义当电路在直流电源的作用下,各条支路的响应也是直流;当电路在正弦交流电源的作用下,各条支路的响应也是正弦交流,这种类型的电路称为稳态电路。
(2)特征:稳态电路中不存在换路现象,描述稳态电路的方程是代数方程。
2、动态电路: (1)定义当电路中含有储能元件或称动态元件(如电容或电感),电路中的开关在打开或闭合的过程中参数发生变化时,可使电路改变原来的工作状态,转变到另一个工作状态。
电路从一种稳态到达另一种稳态的中间过程称为动态过程或过渡过程。
过渡过程中的电路称为动态电路。
(2)待征:动态电路中存在动态元件且有换路现象,描述动态电路的方程是微分方程。
一阶电路:能够用一阶微分方程描述的电路; 二阶电路:能够用二阶微分方程描述的电路; n 阶电路:能够用n 阶微分方程描述的电路。
(3)存在原因:1)含有动态元件电感或电容 ::di L u L dtdu C i Cdt ⎧=⎪⎪⎨⎪=⎪⎩2)存在换路:电路结构或参数发生变化 二、换路 1、定义:电路中含有储能元件,且电路中开关的突然接通或断开、元件参数的变化、激励形式的改变等引起的电路变化统称为“换路”。
(1)换路是在0t =时刻进行的(2)换路前一瞬间定义为:0t -=;换路后一瞬间定义为:0t +=; (3)换路后达到新的稳态表示为:t =∞。
2、换路定律:在换路时电容电流和电感电压为有限值的条件下,换路前后瞬间电容电压和电感电流不能跃变。
即:(0)(0),(0)(0)c c L L u u i i +-+-==。
注意:00()()C C i t i t +-≠,00()()L L u t u t +-≠,00()()R R i t i t +-≠,00()()R R t u t +-≠ 三、独立初始条件 1、定义:一个动态电路的电容电压(0)C u +和电感电流(0)L i +称为独立初始条件,其余的称为非独立初始条件,非独立初始条件需通过已知的独立初始条件来求得。
动态电路的时域分析
动态电路分析的基本方法是建立电路的微分方程,利用电路中的基尔
霍夫定律和伏安定律,推导出描述电路元件电压和电流变化关系的微分方程。
然后,通过求解微分方程,得到电路的时间响应,即电压和电流随时
间的变化规律。
动态电路的分析过程中需要考虑电路元件的动态特性,包括电容元件
和电感元件的存储能量和存储效应。
对于电容元件,其电压和电流之间的
关系可以用电容的充放电方程来描述。
而对于电感元件,其电压和电流之
间的关系可以用电感的变化率来描述。
在时域分析中,最常用的方法是Laplace变换法。
通过将电路中的微
分方程转化为复频域中的代数方程,可以大大简化电路的分析过程。
利用Laplace变换后的电路方程,可以通过进行代数运算和逆变换,得到电路
的时间响应。
动态电路的时域分析还需要考虑电路的初始条件。
对于包含存储元件
的电路,初始条件是指电容电压和电感电流在初始时刻的取值。
有时候,
电路的初始条件会影响电路的稳定性和响应速度,因此在进行时域分析时,需要充分考虑初始条件的影响。
此外,动态电路的时域分析还可以通过脉冲响应法进行。
该方法利用
电路的单位阶跃响应和冲击响应的线性叠加原理,可以将任意输入信号分
解为一系列单位阶跃函数和冲击函数,并通过对各个分量的处理来得到电
路的时间响应。
总之,动态电路的时域分析是电路理论中的重要内容。
通过对电路中各个元件的电压和电流随时间的变化进行分析,可以揭示电路的动态行为和响应过程,为电路设计和故障诊断提供重要的理论依据。