电路分析基础 第4章 一阶电路的时域分析
- 格式:ppt
- 大小:4.45 MB
- 文档页数:87
第4章 一阶电路的时域分析基础与提高题P4-1 uF 2电容器的端电压是V 10时,存储电荷是多少? 解:uC 20101026=⨯⨯==-CU qP4-2 充电到V 150的uF 20电容器,通过一个M Ω3电阻器放电,需要多长时间?何时的放电电流最大?最大值多少?解:s RC 60102010366=⨯⨯⨯==-τ,放电完毕约等于s 3005=τ 刚开始放电时电流最大,最大电流为uA 501031506=⨯ P4-3 当uF 2电容器电压如图P4-3所示时,画出流过此电容器的电流波形图。
假设电压与电流为关联参考方向。
图P4-3 图1解:关联参考方向,则电容电流dtt du C t i c c )()(=,分段求解如下: (1)A t i V t u ust c c 0)(,0)(,0=∴=≤(2)()A t i Vt t u us t c c 401020102)(,1020)(,10666=⨯⨯⨯=∴⨯=≤≤-(3)A t i V t u us t c c 0)(,20)(,41=∴=≤≤(4)()A t i V t t u us t c c 40)1020(102)(,1001020)(,64666-=⨯-⨯⨯=∴+⨯-=≤≤-(5)()A t i Vt t u us t c c 201010102)(,801010)(,86666=⨯⨯⨯=∴-⨯=≤≤-(6)A t i V t u ust c c 0)(,0)(,8=∴=≥ 电容的电流如图1所示。
P4-4 0.32tA 电流流过150mH 电感器,求s t 4=时,电感器存储的能量。
解:电感器存储的能量()23232.0101502121t Li W ⨯⨯⨯==- 当s t 4=时,电感器存储的能量为0.123WP4-5 由20V 电源与Ω2电阻、H 6.3电感组成的串联电路,合上开关后经过多长时间电流达到其最大值,最大值多少?设合上开关前电感无初始储能。
第4章动态电路的时域分析学习指导与题解一、基本要求1.明确过渡过程的含义,电路中发生过渡过程的原因及其实。
2.熟练掌握换路定律及电路中电压和电流初始值的计算。
3.能熟练地运用经典分析RC和RL电路接通或断开直流电源时过渡过程中的电压和电流。
明确RC和RL电路放电和充电时的物理过程与过渡过程中电压电流随时间的规律。
4.明确时间常数、零输入与零状态、暂态与稳态、自由分量与强制分量的概念,电路过渡过程中的暂态响应与稳态响应。
5.熟练掌握直流激励RC和RL一阶电路过渡过程分析的三要素法。
能分析含受控源一阶电路的过渡过程。
6.明确叠加定理在电路过渡过程分析中的应用,完全响应中零输入响应与零状态响应的分解方式。
掌握阶跃函数和RC,RL电路阶跃响应的计算。
7.明确RLC电路发生过渡过程的物理过程,掌握RLC串联二阶电路固有频率的计算和固有响应与固有频率的关系,以及振荡与非振荡的概念。
会建立RLC二阶电路描述过渡过程特性的微分方程。
明确初始条件与电路初始状态的关系和微分方程的解法。
会计算RLC 串联二阶电路在断开直流电源时过渡过程中的电压和电流。
了解它在接通直流电源时电压和电流的计算方法。
二、学习指导电路中过渡过程的分析,是本课程的重要内容。
教学内容可分如下四部分:1.过渡过程的概念;2.换路定律;3.典型电路中的过渡过程,包括RC和RL一阶电路和RLC串联二阶电路过渡过程的分析;4.叠加定理在电路过渡过程分析中的应用。
着重讨论电路过渡过程的概念,换路定律,RC和RL一阶电路过渡过程中暂态响应与稳态响应和时间常数的概念,计算一阶电路过渡过程的三要素法,完全响应是的零输入响应和零状态响应,阶跃响应,以及RLC串联二阶电路过渡过程的分析方法。
现就教学内容中的几个问题分述如下。
(一) 关于过渡过程的概念与换路定律1. 关于过渡过程的概念电路从一种稳定状态转变到另一种稳定状态所经历的过程,称为过渡过程。
电路过渡过程中的电压和电流,是随时间从初始值按一定的规律过渡到最终的稳态值。
一阶电路和二阶电路的时域分析一、一阶电路的时域分析:一阶电路指的是由一个电感或电容与线性电阻串联或并联而成的电路。
对于串联的一阶电路,其特征方程为:L di(t)/dt + Ri(t) = V(t) ---------- (1)其中,L是电感的感值,R是电阻的电阻值,i(t)是电路中的电流,V(t)是电路中的输入电压。
通过对上述方程进行求解可以得到电路中电流与时间的关系。
对于并联的一阶电路,其特征方程为:1/R C dq(t)/dt + q(t) = V(t) ---------- (2)其中,C是电容的电容值,q(t)是电路中电荷的变化,V(t)是电路中的输入电压。
同样,通过对上述方程进行求解可以得到电路中电荷与时间的关系。
一阶电路的响应可以分为自由响应和强迫响应两部分。
自由响应指的是由于电路中初始条件的存在,电流或电荷在没有外部输入电压的情况下的变化。
强迫响应指的是由于外部输入电压作用而产生的电流或电荷的变化。
对于一个初始处于稳定状态的电路,在有外部输入电压作用时,电路中电流或电荷会从初始值开始发生变化,最终趋于一个新的稳定状态。
这一过程可以由电流或电荷的指数递减或递增的形式表示。
在分析一阶电路的时域特性时,可以利用巴塞尔函数法或拉普拉斯变换法。
巴塞尔函数法主要是通过巴塞尔函数的表达式计算电压或电流的变化情况;拉普拉斯变换法则通过将时域的微分方程转化为复频域的代数方程,然后求解代数方程,最后再对求得的结果进行逆变换获得电流或电压的表达式。
二、二阶电路的时域分析:二阶电路是指由两个电感或电容与线性电阻串联或并联而成的电路。
对于串联的二阶电路,其特征方程为:L₁L₂ d²i(t)/dt² + (L₁R₁+L₂R₂+L₁R₂+L₂R₁) di(t)/dt + R₁R₂i(t) = V(t) ---------- (3)其中,L₁和L₂分别是两个电感的感值,R₁和R₂分别是两个电阻的电阻值,i(t)是电路中的电流,V(t)是电路中的输入电压。
§7.1 动态电路的方程及其初始条件一、动态电路的方程1.动态电路:含有动态元件(电容或电感)的电路。
2.动态电路的方程:电路中有储能元件(电容或电感)时,因这些元件的电压和电流的约束关系是通过导数(或积分)表达的。
根据KCL、KVL和支路方程式(VAR)所建立的电路方程是以电流、电压为变量的微分方程或微分-积分方程。
一阶动态电路:仅含一个动态元件的电路(RC电路、RL电路)。
3.动态电路的特征:当电路的结构或元件的参数发生改变时(如电源或无源元件的断开或接入,信号的突然注入等),可能使电路改变原来的工作状态,而转变到另一个工作状态。
换路:电路或参数的改变引起的电路变化。
=t:换路时刻,换路经历的时间为 0_ 到+0;-=0t:换路前的最终时刻;+=0t:换路后的最初时刻;4.经典法(时域分析法):根据KCL,KVL和VAR建立描述电路的以时间为自变量的线性常微分方程,然后求解常微分方程,从而得到所求变量(电流或电压)的方法。
用经典法求解常微分方程时,必须根据电路的初始条件确定解答中的积分常数。
电路独立初始条件:)0(+Cu和Li)0(+。
二、电路的初始条件1.电容的电荷和电压⎪⎪⎩⎪⎪⎨⎧+=+=⎰⎰ξξξξdttiCtutudttitqtqCCCCCC)(1)()()()()(取+-==0,tt, 则⎪⎩⎪⎨⎧+=+=⎰⎰+-+--+-+ξξξξd i c u u d i q q C C C C C C 0000)(1)0()0()()0()0(若 有限)( M i C ≤, 则 0)(00=⎰+-ξξd i C ,且⎩⎨⎧==-+-+)0()0()0()0(C C C C u u q q 电容上电荷和电压不发生跃变! ① 若 -=0t 时,0)0(q q C =-, 0)0(U u C =-, 则有 0)0(q q C =+, 0)0(U u C =+, 故换路瞬间,电容相当于电压值为 0U 的电压源;② 若 -=0t 时,0)0( ,0)0(==--C C u q , 则应有 0)0( ,0)0(==++C C u q , 则换路瞬间,电容相当于短路。
Chapter 7 一阶电路和二阶电路的时域分析主要内容1.动态电路的方程及其初始条件;2.一阶和二阶电路的零输入响应、零状态响应和全响应的概念及求解;3.一阶和二阶电路的阶跃响应概念及求解。
§7-1 动态电路的方程及其初始条件一、动态电路的方程1.动态电路:含有动态元件(电容或电感)的电路。
2.动态电路的方程: 电路中有储能元件(电容或电感)时,因这些元件的电压和电流的约束关系是通过导数(或积分)表达的。
根据KCL 、KVL 和支路方程式(VAR )所建立的电路方程是以电流、电压为变量的微分方程或微分-积分方程。
一阶动态电路:仅含一个动态元件的电路(RC 电路、RL 电路)。
3.动态电路的特征:当电路的结构或元件的参数发生改变时(如电源或无源元件的断开或接入,信号的突然注入等),可能使电路改变原来的工作状态,而转变到另一个工作状态。
换路:电路或参数的改变引起的电路变化。
0=t :换路时刻,换路经历的时间为 0_ 到 +0;-=0t :换路前的最终时刻; +=0t :换路后的最初时刻;4.经典法(时域分析法):根据KCL ,KVL 和VAR 建立描述电路的以时间为自变量的线性常微分方程,然后求解常微分方程,从而得到所求变量(电流或电压)的方法。
用经典法求解常微分方程时,必须根据电路的初始条件确定解答中的积分常数。
电路独立初始条件:)0(+C u 和 L i )0(+。
二、电路的初始条件1.电容的电荷和电压⎪⎪⎩⎪⎪⎨⎧+=+=⎰⎰ξξξξd tt i C t u t u d t t i t q t q C C C C C C 0000)(1)()()()()( 取 +-==0 ,00t t , 则⎪⎩⎪⎨⎧+=+=⎰⎰+-+--+-+ξξξξd i c u u d i q q C C C C C C 0000)(1)0()0()()0()0(若 有限)( M i C ≤, 则 0)(00=⎰+-ξξd i C ,且⎩⎨⎧==-+-+)0()0()0()0(C C C C u u q q 电容上电荷和电压不发生跃变! ① 若 -=0t 时,0)0(q q C =-, 0)0(U u C =-, 则有 0)0(q q C =+, 0)0(U u C =+, 故换路瞬间,电容相当于电压值为 0U 的电压源;② 若 -=0t 时,0)0( ,0)0(==--C C u q , 则应有 0)0( ,0)0(==++C C u q , 则换路瞬间,电容相当于短路。
一阶电路动态过程的时域分析1、典型一阶电路一阶电路仅包含一个动态元件,若将动态元件分离出来,则由戴维南或诺顿定理可得到如下两种典型一阶电路:典型一阶RC 电路典型一阶RL 电路注意:图中N 是线性含源单口网络。
2、一阶电路的电路方程及其一般形式 ✓ 一阶RC 电路:①关于u C 的电路方程:C C C S du R u u dt +=②关于i C 的电路方程:C S C di du RC i C dt dt +=③关于u R 的电路方程:S R R du du RC u RC dt dt+= ✓ 一阶RL 电路①关于i L 的电路方程:1L L S di L i u R dt R +=②关于u L 的电路方程:S L L du du L L u R dt R dt+= ③关于u R 的电路方程:R R S du L u u R dt+= ✓ 一阶电路方程的一般形式从上可知,一阶电路的电路方程都是一阶常系数微分方程。
并且,若记电路的激励为x (t ),响应为y (t ),则一阶电路方程一般形如:()()()τdy t y t x t += 式中,τ 因具有时间的单位而称为一阶电路的时间常数(time constant)。
并且,对于一阶RC 电路,[][][][][][][]RC τ⎡⎤⎡⎤=====⎢⎥⎢⎥⎣⎦⎣⎦库安秒欧法欧欧秒伏伏 对于一阶RL 电路,[][]L R τ⋅⎡⎤⎡⎤⎡⎤⎡⎤=====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⋅⋅⎣⎦⎣⎦⎣⎦亨韦伏秒秒欧安欧安欧 3、常系数一阶微分方程的经典时域解法对于常系数一阶微分方程()()()τdy t y t x t dt+=,其解(即电路的响应)由通解和特解两部分构成。
通解:是对应齐次方程的解,与激励无关,称为电路的自由响应。
()⇒(t)=(A )0=A t ptτh dy t y t d e t y e -1+=τ通解 式中,A 为待定积分系数,可根据初始条件来确定。