3.1 二维随机变量及其联合分布函数
- 格式:ppt
- 大小:1.17 MB
- 文档页数:14
第三章 二维随机变量及其分布 一、 二维随机变量及其联合分布设Ω为某实验的样本空间,X 和Y 是定义在Ω上的两个随机变量,则称有序随机变量对(X,Y )为比如,研究某地区人口的健康状况可能取身高和体重两个参数作为随机变量;打靶弹着点选取横纵坐标。
§3.1.1联合分布函数定义1:设(X ,Y )为二维随机变量,对任意实数χ,y为(X ,Y )的分布函数或称为X 与Y 几何上,F (χ,y )表示(X ,Y )落在平面直角坐标系中以(χ,y )为顶点左下方的无穷矩形内的概率(见图) y 二维随机变量(X ,Y )的分布函数F (x,y 1°F(x,y)对每个自变量是单调不减的,即若x1<x2,则有F(x1,y)≤F(x2,y); 若y1<y2,则有F(x,y1)≤F(x,y2).2°0≤F(x,y)≤1且 F(x,-∞)=F(-∞,y)=F(-∞,-∞)=0,F(+∞,+∞)=13° F(x,y)对每个自变量是右连续的,即 F (x+0,y )= F (x,y ), F (x,y+0)= F (x,y ) 4° 对任意x1≤x2, y1≤y2有 F(x2,y2)-F(x1,y2)- F(x2,y1)+F(x1,y1)≥0事实上,由图可见(见右图)F(x2,y2)-F(x1,y2)- F(x2,y1)+F(x1,y1)例1设(X ,Y )的分布函数为解:由性质4°可得X,Y)的所有可能取值为有限对或可列对,则称(X,Y设(X,Y)的所有可能取值为(xi,yj),i ,j=1,2,……P{X=xi,Y=yj }=pij,i,j=1,2,……,为(X,Y)的分布律,或称为X与Y 用表格表示:性质 1. pij≥0,一切i,j,2. 显然,(X,Y)落在区域D内的概率应为由此便得(X,Y)的分布函数与分布律之间关系为例2两封信随机地向编号为Ⅰ,Ⅱ,Ⅲ,Ⅳ的四个邮筒内投,令 X表示投入Ⅰ号邮筒内的信件数; Y 表示投入Ⅱ号邮筒内的信件数。
第三章 多维随变量及其分布3.1 二维随机变量及其分布1.二维rv 的定义:Def:设Ω为随机试验E 的样本空间,若对∀ω∈Ω−−−−→−按一定对应法则∃(X(w),Y(w))为Ω上的二维rv 或称二维的随机变量。
着重讨论:①二维rv 作为一个整体的概率特性。
②其中每一个随机变量的概率特性与整体的概率特性的关系。
2.二维rv 的联合分布函数 1)联合分布函数的定义:Def:设(X,Y)为二维rv ,对∀(X,Y)∈R ×R,称二元函数,F(X,Y)=P(X ≤x)∩(Y ≤y)记为P(X ≤x,Y ≤y)为二维rv 的分布函数或称rvx 与rvy 的联合分布函数。
2)几何意义: 3)性质①0≤F(x,y)≤1,F(+∞,+∞)=1F(-∞,-∞)=0,F(x,-∞)=0,F(-∞,y)=0 ②对每个变量均单调不减固定y 对∀x 1≤x 2,有F(x 1,y)≤F(x 2,y) ③对每个变量均右连续F(x 0+0,y 0)= F(x 0,y 0) F(x 0,y 0+0)=F(x 0,y 0) ④对∀a<b,c<d ,有F(b,d)-F(b,c)-F(a,b)+F(a,c)≥0注:①对于满足以上四个性质的二元函数可以作为某二维rv 的分布函数 ②对于二维的rv ,p(x>a,y>c)=1-F(a,+∞)-F(+∞,c)+F(a,c)≠1-F(a,c)3.二维离散型rv 及其联合分布律1) def:若二维rv(X,Y)的所有可能取值为有限个数对或无穷个可列数对,则称(X,Y)为二维离散型rv.2) 联合分布律设二维rv (X ,Y )的所有可能值为:(X i,Y j ),I,j=1,2,3……(X=x i,Y=y j )=P ij ij=1,2……为二维rv (X,Y )的联合分布律。
eg 1 设F(x,y)= 联合分布律也可以用表格来表示:XYx1 x2 x3 (xi)y 1 y 2y 3 … … y j P 11 p 21 p 31 … … … … p i1 P 12 P 22 P 32 … … … … P I2… … … … … … … …… … … … … … … … … … … … … … … … P 1j p 2j p 3j … … … … p ij性质:①非负性 P ij ≥0; ②归一性 ∑∑ijp =13)联合分布函数 F(x,y)=P(X ≤x,Y ≤y)=∑∑≤≤x Xi yYj pij注:①已知分布律可求分布函数,反之,已知分布函数也可求分布律。